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Abstract

Background: We recently identified two robust ovarian cancer subtypes, defined by the expression of genes
involved in angiogenesis, with significant differences in clinical outcome. To identify potential regulatory
mechanisms that distinguish the subtypes we applied PANDA, a method that uses an integrative approach to
model information flow in gene regulatory networks.

Results: We find distinct differences between networks that are active in the angiogenic and non-angiogenic
subtypes, largely defined by a set of key transcription factors that, although previously reported to play a role in
angiogenesis, are not strongly differentially-expressed between the subtypes. Our network analysis indicates that
these factors are involved in the activation (or repression) of different genes in the two subtypes, resulting in
differential expression of their network targets. Mechanisms mediating differences between subtypes include a
previously unrecognized pro-angiogenic role for increased genome-wide DNA methylation and complex patterns
of combinatorial regulation.

Conclusions: The models we develop require a shift in our interpretation of the driving factors in biological
networks away from the genes themselves and toward their interactions. The observed regulatory changes
between subtypes suggest therapeutic interventions that may help in the treatment of ovarian cancer.

Keywords: Network modeling, Gene regulation, Regulatory networks, Ovarian cancer, Cancer subtypes,
Angiogenesis
Background
Ovarian cancer is the fifth leading cause of cancer death
for women in the U.S. and the seventh most fatal world-
wide [1]. Although ovarian cancer is notable for its ini-
tial sensitivity to platinum-based therapies, the vast
majority of women eventually recur and succumb to in-
creasingly platinum-resistant disease. Despite significant
investment, improvements in patient prognosis have
been slow and usually in small increments. The disease
generally presents at an advanced stage (III/IV) and the
five-year survival rate of advanced disease is less than
30% with median survival only slightly longer than two
years [2]. Furthermore, ovarian cancer patients often
undergo similar treatment regimens, mainly because the
highly suspected multiple subtypes have not yet been
well characterized in terms of their biological significance.
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In previous work, we analyzed gene expression data from
129 high-grade serous ovarian cancer samples and identi-
fied a poor-prognosis subtype characterized by the ex-
pression of angiogenic genes [3]. This subtype and the
associated differences in patient survival were validated
using gene expression data from a collection of 1606
ovarian cancer samples assembled from ten independent
published studies. Multiple other subtypes have been
proposed [4,5], but the importance of this subtyping,
relative to other definitions, is that angiogenesis repre-
sents a process that is of potential clinical relevance and
it is the only subtyping model which has been shown to
be robust and prognostic in multiple independent
datasets.
Angiogenesis is one of the well-characterized hall-

marks associated with cancer progression [6], playing an
important role in maintaining tumor growth [7]. Angio-
genesis is facilitated by interactions between cells and
the extra-cellular matrix [8,9] and is associated with
increased expression among a set of particular genes,
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including, but not limited to, matrix metalloproteinases
(MMPs) [10] and VEGF [11-13]. Angiogenesis inhibition
is being intensely studied as a possible therapeutic ad-
vance in ovarian cancer, but the effects in survival are
still modest, suggesting that our understanding of the
molecular underpinnings and biological implications of
angiogenesis in this disease is still limited [2,14]. A num-
ber of clinical trials have tested drugs targeting angio-
genic factors and shown these drugs have anti-cancer
activity in a subset of ovarian cancer patients [15-18];
however, better understanding of the complex mecha-
nisms driving response to these therapies is crucial to
improving their efficacy and patient outcomes [17,19].
Although we have long studied ovarian cancer from

the perspective of single genes and their properties, it
has become clear that more integrative, systems-level
analyses are necessary to better understand how the dis-
ease and its subtypes develop and progress, and how it
may respond to different therapeutic interventions. The
characterization of biological processes can distinguish
disease states in cases where single gene biomarkers
cannot [20]. The importance of applying network ap-
proaches in particular to better understand disease has
previously been highlighted [21-24]. Simultaneously, it
has become evident that integrative approaches that in-
corporate multiple sources of data to model biological
systems often yield the most informative results [25-27].
Along these lines, we recently described an integrative
network inference method, PANDA (Passing Attributes be-
tween Networks for Data Assimilation), that models infor-
mation flow in regulatory networks by searching for
agreement among various data-types, using information
from each to iteratively refine predictions in the others [28].
PANDA models network interactions as communica-

tion between “transmitters” and “receivers”. In the con-
text of PANDA’s regulatory networks, the transmitters
are transcription factors and the receivers are their
downstream target genes. This approach recognizes that
for communication to occur, both the transmitter and
the receiver have an essential role – although a tran-
scription factor is responsible for regulating a target
gene, the gene must also be available to be regulated. By
constructing a “prior” regulatory network consisting of
potential routes for communication (for example, by
mapping transcription factor motifs to a reference gen-
ome) and integrating with other sources of regulatory
information (such as protein interaction and gene ex-
pression data), one can estimate the responsibility and
availability of each potential interaction, predict where
communication is succeeding and failing, and deduce
condition-specific network structures.
Here we describe the application of PANDA to recon-

structing subtype-specific regulatory networks in ovarian
cancer. We identify differences in network topologies
between the angiogenic and non-angiogenic subtypes, and
use this information to suggest potential therapies that
may be efficacious in treating patients with angiogenic-
subtype ovarian tumors.

Results and discussion
Building angiogenic and non-angiogenic specific regulatory
network modules
To begin, we downloaded mRNA expression data for 510
ovarian samples profiled by the Cancer Genome Atlas
(TCGA) (https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp,
[5]), normalized this data using fRMA [29], and mapped
probes to Ensembl identifiers using the biomaRt Biocon-
ductor package version 2.8.1 [30]. As reported in [3] we
classified samples as belonging to either the angiogenic or
non-angiogenic subtype; 188 were classified as part of the
angiogenic subtype, and 322 were classified as non-
angiogenic. We constructed separate genome-wide regula-
tory network models for the two subtypes. We began by
mapping 111 TFs with known binding motifs to the pro-
moters, here defined as [−750,+250] base-pairs around the
transcription start site, of the 12290 genes with expression
data in TCGA samples. Because transcriptional regulation
involves assembly of protein complexes and allows for
combinatorial regulatory processes, we collected informa-
tion regarding physical protein interaction data between
human transcription factors estimated using a mouse-
2-hybrid assay [31]. We used PANDA to integrate in-
formation from transcription factor binding motifs,
protein-protein interaction data, and subtype-specific
gene expression, constructing directed transcriptional regu-
latory networks for the angiogenic and non-angiogenic
ovarian cancer subtypes (Figure 1A).
For each edge that connects a transcription factor to

its target gene, PANDA assigns a weight, in z-score
units, that reflects the confidence level of a potential in-
ferred regulatory relationship. Not surprisingly, we found
the edge weights for the angiogenic and non-angiogenic
regulatory networks to be highly correlated (Figure 1B),
representing common regulatory mechanisms and pro-
cesses active in both subtypes. However, we also found
regulatory edges that were more strongly supported by
either the angiogenic or the non-angiogenic subtype. We
identified 12631 edges that we assigned to an angiogenic
subnetwork, shown in red, and 15735 edges for the non-
angiogenic subnetwork, shown in blue. The edges in the
angiogenic subnetwork target 4081 genes while the non-
angiogenic subnetwork edges target 4419; of these, 1828
genes are targeted in both subnetworks (Figure 1C), al-
though by different upstream transcription factors. This
may reflect the fact that in addition to different path-
ways being activated in each of the subtypes, there may
also be a complex “re-wiring” of the networks around
commonly targeted genes.

https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp


Figure 1 A summary of PANDA gene regulatory network reconstruction and the identification of subtype-specific subnetworks. (A) We combine
transcription factor motif and physical protein-protein interaction (PPI) data with gene expression data from each subtype to build individual
network models. (B) We compare the weights of edges predicted by PANDA for each of the network models. Each point in the graph represents
an edge connecting a TF to a target gene. We also define subnetworks by selecting high-probability edges specific to either the angiogenic (red)
and non-angiogenic (blue) model. The number of edges and genes identified as part of these subnetworks is noted. (C) Although the subnetworks
contain unique sets of edges, genes targeted by TFs in these interactions are not necessarily unique, suggesting distinct regulatory processes.
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Network analysis reveals biological mechanisms
associated with regulatory differences
We compared the corresponding subnetworks and iden-
tified a subset of transcription factors associated with
the strongest regulatory changes. To do this we identi-
fied the genes targeted for regulation by a transcription
factor in each of the two subnetworks and determined
both an “edge enrichment” score as well as a p-value sig-
nificance for the difference in the number of target
genes. Specifically, we define “edge enrichment” for each
transcription factor as the out-degree of that transcrip-
tion factor (number of edges pointing out to a target
gene) in the angiogenic subnetwork divided by the out-
degree for the same transcription factor in the non-
angiogenic subnetwork (multiplied by a normalization
factor equal to the total number of edges in the angio-
genic subnetwork divided by the total number of edges
in the non-angiogenic subnetwork); the statistical signifi-
cance (quantified as a p-value) of the rewiring is deter-
mined by using the hypergeometric distribution model
to evaluate the overlap between edges from a transcrip-
tion factor and edges specific to a particular subnetwork.
On average, a given transcription factor will be asso-

ciated with around 114 edges in the subtype-specific
subnetworks. However some transcription factors are
associated with a relatively small number (less than
twenty) of edges. These transcription factors were
excluded in further analysis to enhance statistical robust-
ness. We identified ten “key” transcription factors with an
edge enrichment greater than 1.5 (or less than 1/1.5) and
with p < 10−3 (Figure 2A). The identified transcription fac-
tors all have established associations with angiogenesis or
survival ([32-43], Figure 2B). For example NFKB1 is im-
portant for chromatin remodeling during angiogenesis
[32], PRRX1 deletion causes vascular anomalies [38], and
MZF1 can repress MMP2 [41], a key prognostic factor in
ovarian cancer [44].
We tested if these ten transcription factors would also

be identified in a simple differential expression analysis
using a t-test. Only three out of ten TFs are differentially
expressed at the p < 0.01 cutoff: NFKB1 (more highly
expressed in the angiogenic subtype, p = 7.8 × 10−5, FDR =
4.3 × 10−4), PRRX2 (more highly expressed in the angio-
genic subtype, p = 0.005, FDR = 0.015), and MZF1 (more
highly expressed in the non-angiogenic subtype, p = 4.1 ×
10−7, FDR = 4.2 × 10−6). Thus, PANDA identified tran-
scription factors that are not strongly differentially ex-
pressed between the subtypes yet are known to participate
in angiogenic processes.
We also tested targets of each transcription factor for

differential expression (see Methods) and found signifi-
cant differences in target expression for six of the seven
remaining TFs. For example, ARID3A is not differen-
tially expressed between angiogenic and non-angiogenic



Figure 2 A summary of some of the key regulatory events distinguishing the two subnetworks. (A) Transcriptional factors that have significantly
more targets in one of the subnetworks compared to the other (edge enrichment > 1.5, p < 1e-3). The differential expression and methylation of
each transcription factor as well as the differential expression/methylation of its target genes (in the corresponding subnetwork) is noted. Color
corresponds to direction of differential expression/methylation (red: higher in angiogenic, blue: higher in non-angiogenic). (B) Genetic functions
associated with these key transcription factors describing their potential role in angiogenesis and ovarian cancer. (C) A distribution of the t-statistic for
differential methylation across all the genes. The shift of the distribution to the right indicates an overall increase in methylation in the angiogenic
compared to the non-angiogenic samples.
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subtypes, but its targets have significantly (p = 2.6 × 10−22)
increased expression in the angiogenic subtype. This sug-
gests that transcription factor activity changes may not be
detectable based on their own expression level increases
or decreases, but that the expression of their targets can
provide information on how they influence phenotype.
There are many factors that could contribute to ex-

pression abnormalities in cancer, such as differences in
mutations, copy-number variation and epigenetic states.
We sought to determine which, if any, of these, might be
contributing to the differential expression of the genes
targeted by each of our ten key transcription factors.
First, we investigated whether copy-number variation
might explain the overall change in gene expression (see
Methods). Although we find some nominally significant
changes for the targets of PRRX2 (p = 0.0029) and
ARID3A (p = 0.0257), these genes actually have less overall
amplification in the agiogenic subtype compared to the
non-angiogenic subtype (t = −2.98 and t = −2.23 respect-
ively). This is despite the fact that their mRNA expression
levels are higher in the angiogenic compared to non-
angiogenic subtype. Thus copy-number variation does not
appear to be the primary factor driving changes in expres-
sion of these target genes.
Epigenetic factors provide an alternative mechanism

for differential targeting by these transcription factors.
To explore this possibility we mapped DNA methylation
data from TCGA to the samples and genes used in our
network reconstruction. We used a t-test to quantify any
potential change in DNA methylation for each gene be-
tween the angiogenic and non-angiogenic subtypes and
show the distribution of these values in Figure 2C. Over-
all we found DNA methylation levels to be higher in an-
giogenic tumor samples (mean value of t-statistic across
all genes is 1.52). We next determined the differential
methylation of the ten transcription factors and their
targets in each of the subnetworks (Figure 2A). Com-
pared to the rest of the genome, genes targeted by four
of the ten transcription factors, ARID3A, SOX5, NKX2-
5 and PRRX2, are associated with significantly lower
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methylation in angiogenic samples. It should be noted that
this lower level of methylation does not indicate hypome-
thylation. In fact, the average t-statistic value for the tar-
gets of these transcription factors is greater than zero
(ARID3A, t = 1.17; SOX5, t = 1.31; NKX2-5, t = 0.70;
PRRX2, t = 1.24), indicating that their targets, on average,
have higher levels of methylation in the angiogenic com-
pared to the non-angiogenic subtype; however, that in-
crease in methylation is comparatively less than that
experienced by genes not targeted by these regulators.
We note that the TCGA methylation data was not

used by PANDA to construct the networks, yet is highly
concordant with the predicted patterns of gene regulation.
Although many of the transcription factors that alter tar-
geting between the aniogenic and non-angiogenic sub-
networks are not significantly differentially-expressed
between the subnetworks, their targets genes often are. At
the same time, these target genes are also differentially-
methylated between the subtypes. Overall this analysis
provides independent support of the overall network
model.

Both transcriptional activation and repression are used to
control angiogenic pathways
Transcription factors can either activate or repress gene
expression. The target gene expression analysis in
Figure 2A provides a preliminary indication about po-
tential regulatory roles for the identified transcription
factors. For example, although MZF1 and BRCA1 ex-
hibit an edge-enrichment in the non-angiogenic subnet-
work and are themselves also more highly expressed in
the non-angiogenic samples, their targets show the op-
posite trend, with significantly higher expression in the
angiogenic samples (p = 1.0 × 10−56 and 4.3 × 10−41, re-
spectively). There are two scenarios consistent with
these observations: (1) loss of control by these transcrip-
tion factors results in the increased expression of their
former targets, and (2) increased control by these tran-
scription factors results in the decreased expression of
their target genes. Interestingly, BRCA1 is known to
negatively regulate IGF1 expression in breast cancer cells
[43], which could inhibit angiogenesis as multiple studies
have shown that increased levels of IGF1 in cancer calls
leads to an increase in cell proliferation [45-47]. Simi-
larly, MZF1 is a repressor of MMP2 [41] and is known
to inhibit hematopoietic lineage differentiation in embry-
onic stem cells [48]. Combined with the analysis pre-
sented in Figure 2A, this suggests that MZF1 and
BRCA1 act as transcriptional repressors in the non-
angiogenic samples.
Motivated by these observations, we classified the

edges in our two subnetworks as either “activating” or
“repressing” based on whether changes in the target
gene's expression is correlated or anti-correlated with
subnetwork assignment. We then assigned each target
gene to one of six non-overlapping classes (see Figure 3A):

1) “A+”: genes targeted only in the angiogenic
subnetwork that are more highly expressed in the
angiogenic subtype;

2) “A-”: genes targeted only in the angiogenic
subnetwork that are more highly expressed in the
non-angiogenic subtype;

3) “A+;N-”: genes targeted in both subnetworks and
more highly expressed in the angiogenic subtype;

4) “N+;A-”: genes targeted in both subnetworks and
more highly expressed in the non-angiogenic
subtype;

5) “N-”: genes targeted only in the non-angiogenic
subnetwork that are more highly expressed in the
angiogenic subtype;

6) “N+”: genes targeted only in the non-angiogenic
subnetwork that are more highly expressed in the
non-angiogenic subtype.

We used DAVID [49] to test for functional enrichment
in these six classes of target genes, with the 12290 net-
work genes taken as a background. The FDR p-values
for GO “Biological Process” categories with more than
one hundred members that have an FDR enrichment of
less than 0.1 in at least one of our six classes of genes
are illustrated as a heat map in Figure 3B.
The angiogenic-activated class (“A+”) has the greatest

number of significantly enriched functional categories.
Many of these are associated with immune-response;
processes associated with angiogenesis are also included,
for example “chemotaxis,” “hematopoiesis,” “positive regu-
lation of cell communication” and “metal ion homeosta-
sis.” Some processes found to be enriched for genes
repressed in the non-angiogenic subnetwork (“N-” genes),
such as “cell adhesion” and “extracellular structure
organization,” also play a role in angiogenesis. In addition,
genes activated in the angiogenic subnetwork but re-
pressed in the non-angiogenic subnetwork (“A+;N-”) in-
clude those involved in “blood vessel morphogenesis.”
This suggests angiogenesis involves not only the activation
of certain genes in the angiogenic subtype, but also re-
moval of repressive regulatory interactions from the non-
angiogenic subtype. In contrast, genes repressed in the
angiogenic subnetwork (“A-” genes) are associated with
“chromatin organization,” consistent with the observed
role that epigenetics plays in distinguishing the subtypes
(see Figure 2C). Genes activated in the non-angiogenic
subnetwork but repressed in the angiogenic-subnetwork
(“N+;A-” genes) are involved in functions such as “tran-
scription” and “DNA metabolic process”.
We also investigated whether previously identified po-

tential biomarkers for angiogenesis were targeted in our



Figure 3 Characteristics of six classes of differentially-targeted genes. (A) The classification of genes based on whether evidence suggests that
the regulatory interactions targeting those genes are activating, repressive, or both. (B) Enriched Biological Process Gene Ontology terms (FDR < 0.1)
associated with at least one of these six classes; we only included categories with at least 100 gene annotations. FDR significance is shown as a color
with darker colors representing more significant enrichment. (C) Potential angiogenesis biomarkers that belong to each of the six classes of genes.
Biomarkers differentially-expressed between the subtypes at an FDR < 0.1 are noted in red or blue based on whether they are more highly expressed
in the angiogenic or non-angiogenic subtypes, respectively.
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networks, and, if so, which “class” of genes those bio-
markers belonged to. In particular, we investigated
thirty-five biomarkers, described in [50,51], and found
twenty-two targeted in our defined subnetworks (Figure 3C).
The majority (eighteen) of these biomarkers are targeted
in either the “A+”, “A+;N-“or “N-“class, consistent with
higher expression in the angiogenic subtype. Interestingly,
many of these biomarkers are targeted in the non-angio-
genic subnetwork (“A+;N-“or “N-“classes). One possible
interpretation of these results is that repressive regulatory
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features play a role in inhibiting angiogenic progression,
in addition to transcriptional activation of these bio-
markers in angiogenic tumors. Curiously, three of the
four biomarkers not included in the pro-angiogenic net-
work classes were identified in only a single study [52]
that included twenty patients with inflammatory breast
cancer [50]. We note that while many of the network-
targeted biomarkers are also significantly differentially-
expressed between the subtypes (FDR < 0.1 based on
un-paired t-test), several are not, including VEGFA
(FDR = 0.69), TP53 (FDR = 0.12), LCN2 (FDR = 0.68),
KIT (FDR = 0.73) and SLC2A1 (FDR = 0.10). The identi-
fication of VEGFA and other biomarkers in our network
model despite clear lack of differential-expression may
indicate that our network model is able to identify im-
portant cellular regulatory alterations even in the ab-
sence of distinct changes in downstream target gene
expression.

Combinatorial control plays a critical role in potentiating
angiogenesis
Regulatory information that pertains to the core of our
network can be depicted using a ring diagram represent-
ing the union of the two subnetworks (Figure 4A). In
this visualization, our ten key regulators form the inner
ring, while their targets, colored based on whether they
Figure 4 Characterizing combinatorial regulation in the subnetworks. (A) A
transcription factors form the inner ring and their target genes the outer ri
expressed in the angiogenic (red) or non-angiogenic subtype (blue) and ar
edges (red) and non-angiogenic subnetwork edges (blue) extend between
to its target gene in the outer ring. (B) A table of the top three co-regulato
co-regulatory interactions, and (D) a Venn-diagram showing the overlap of
co-regulatory TF-pairs targeting “N-” genes, (F) a diagram illustrating all sign
(G) a Venn diagram showing the overlap of “N-” genes targeted by each o
exhibit higher average expression in the angiogenic (red)
or non-angiogenic (blue) samples, form the outer ring.
Viewing the two subnetworks, it is clear that there is a
high degree of combinatorial gene regulation. To quantify
this, we applied the hypergeometric distribution model
and, using the union of the genes targeted in both the
angiogeneic and non-angiogenic networks as a back-
ground, tested for over-representation of genes co-
targeted by specific pairs of transcription factors in the
various network classifications (either “A+,” “A-,” “N+”
and “N-”). Here, we focus on the three most significant
pairs that include at least one of the ten identified key
transcription factors. Information for all pairs can be
found in the Supplemental Material (Additional file 1:
Dataset S1). Note that the genes in the “A-” and “N+”
classes had no combinatorial pairs significantly enriched
(using a p = 10−3 cutoff).
For “A+” genes, as was seen in Figure 4A, we identify

significant co-regulatory associations between ARID3A,
PRRX2, and SOX5 (Figure 4B-C) and these three regu-
lators share many common targets (Figure 4D). In fact,
58% of the “A+” genes are targeted by at least one of
these transcription factors, 32% by at least two, and
14% are targeted by all three, suggesting they may
function as a module that coordinately regulates these
genes.
n illustration of the identified key active subnetworks. Identified key
ng. Target genes are colored based on whether they are more highly
e organized based on their classification. Angiogenic subnetwork
these rings, from the regulating transcription factor in the inner ring,
ry TF-pairs targeting “A+” genes, (C) a diagram illustrating these
the “A+” genes targeted by these TFs. (E) A table of the top three
ificant co-regulatory events between these TFs in “N-” genes, and
f these TFs.
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For the “N-” genes, the top three significant co-
regulatory transcription factor pairs include combina-
tions of ETS1, ARNT (also known as HIF1β), MZF1 and
AHR (Figure 4E). All possible pairs of these four TFs
(including those that don’t include one of our “key”
transcription factors) are enriched in “N-” genes at a
statistically significant level (p < 1 × 10−6, Figure 4F), al-
though MZF1 generally only shares targets of AHR or
ARNT in combination with ETS1 (Figure 4G). AHR and
MZF1 are among our key regulators, and, as noted
previously, MZF1 is known to repress MMP2 and re-
duced cancer invasiveness [41]. However, ETS1 and
ARNT were not among our list of key regulators, indi-
cating that combinatorial events might be especially im-
portant for these two transcription factors. Previous
reports suggest that although various ETS family mem-
bers can either activate or repress angiogenic pathways
[53,54], ETS1, in particular, acts as a mediator of angio-
genesis [55], dimerizing with HIF2α to activate VEGFR1
and VEGFR2 [56,57]. Similarly, ARNT dimerizes with
HIF1α to activate VEGF and angiogenesis [58]. However,
the dimerization of AHR with ARNT inhibits ARNT/
HIF1α dimerization, thereby reducing VEGF produc-
tion and subsequent angiogenesis [59]. Thus, even
though ARNT/HIF1α promotes angiogenesis, the fact
that ARNT/AHR dimerization inhibits angiogenesis of-
fers an explanation for our observation that ARNT is
associated with the repression of genes. Since both
ETS1/HIF2α and ARNT/HIF1α interactions occur through
a PAS domain [60,61], it is likely that a similar mechan-
ism underlies our observed combinatorial enrichment of
ETS1 with AHR and we hypothesize that ETS1 inter-
action with AHR prevents dimerization with HIFα pro-
teins, thereby reducing VEGF production and subsequent
angiogenesis.
Figure 5 Proposed therapeutic approaches. (A) A summary of the results f
versus “control” samples in each of the GEO datasets to “classes” of genes def
differential expression with the indicated gene class, using a GSEA approach [
upon treatment, blue - decrease upon treatment). (B) An illustration of some of
in ovarian cancer found using PANDA, as well as three potential treatments th
The network model captures the effects of various
treatment strategies
We wished to investigate how genes identified using our
network model might respond to standard or other
treatment protocols. Therefore, we analyzed experimen-
tal data (GEO accession numbers GSE8057, GSE40837)
measuring gene expression levels in response to several
chemotherapy drugs that are commonly used to treat
ovarian cancer patients and/or angiogenesis, including
cisplatin, oxaliplatin and sorafenib. For each experiment,
we used RMA [62] to normalize gene expression CEL
files downloaded from the Gene Expression Omnibus
and used a custom-CDF to map to Entrez GeneIDs [63].
We selected samples that correspond to either a treat-
ment or control experiment and performed a t-test to
quantify the differential expression of all genes between
these sets of samples. Finally, we computed a summary
statistic representing the aggregate differential expres-
sion value for the sets of genes within each of the six
“classes” defined by our subnetworks (for more details,
see Methods). The results are summarized in Figure 5A;
intensity of red or blue coloration scales with the signifi-
cance of increased or decreased expression, respectively,
in the treatment compared to the control samples, for
the genes belonging to each of our networks “classes”.
Platinum-based therapies are widely used in ovarian

cancer treatment regimens. Therefore, we began by in-
vestigating the effect of the chemotherapy drugs cis-
platin and oxaliplatin on the expression levels of genes
in A2780 human ovarian carcinoma cells (GSE8057,
[64]). As a negative control, we compared expression
levels of cells grown in a drug-free medium for 16 hours
to their expression at 0 hours. As expected, there is little
differential expression and we observe no association
with any of our classes of genes (Figure 5A). We next
ound by comparing the expression patterns of genes in “treatment”
ined in our network analysis. We report the significance of association of
110]; colors indicate direction of differential expression (red - increase
the key findings regarding the potential mechanisms driving angiogenesis
at may inhibit angiogenesis.
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compared expression of cells grown for 16 hours follow-
ing treatment with either cisplatin or oxaliplatin to
those grown for 16 hours in drug-free medium. Curi-
ously, in both instances we see that genes normally re-
pressed in the non-angiogenic subnetwork (“N-”)
actually increase their expression levels following treat-
ment, suggesting that these drugs disrupt regulatory in-
teractions that are important for repressing angiogenic
activities. This is consistent with the results of a previ-
ous study [65] showing that when taken in isolation, cis-
platin is not effective for treating angiogenesis in
ovarian cancer.
Although decreased expression in “A+” genes does not

occur following platinum-based treatment, we reasoned
that the effects of a VEGF-inhibiting drug should be
reflected in our identified subnetworks. Biopsies of ER+
breast tumors have been collected from patients both
prior to and following a clinical trial of sorafenib, and
the genome-wide expression levels of genes were mea-
sured in these samples (GSE40837). Analysis of this data
in the same manner as the platinum-based therapies
shows a striking association with the subnetworks
(Figure 5A). Genes in the “A+,” “A+;N-” and “N-”
groups all show a profound decrease in expression post-
treatment while genes in the “A-,” “A-;N+” and “N+”
groups all increase their expression. Although this is
breast rather than ovarian cancer, these results are excit-
ing since they rely on patient samples collected from a
clinical trial rather than cell-lines, illustrating a patient-
level association of an angiogenic-inhibition drug among
network-defined genes. This result also serves as a posi-
tive control on our network analysis. We note that the
six classes of genes we define are not wholey independ-
ent of the gene expression data, which we used both to
reconstruct the networks as well as to divide target
genes into distinct classes. Consequently, we would ex-
pect similar results for analyses of other “classes” of
genes whose differential-expression is associated with
differences between the two subtypes. However, analyz-
ing the networks has the potential to provide additional
mechanistic insight into differences between the sub-
types and identify other drugs not classically associated
with angiogenesis.

Three treatments may synergistically inhibit angiogenic
progression
The optimal angiogenesis-based treatment in ovarian
cancer is still a matter of ongoing investigation [14].
Commonly-used anti-angiogenic drugs mainly target
VEGF, a major contributor to angiogenesis. On the other
hand, as described below and illustrated in Figure 5B,
several mechanisms highlighted in our network analysis
suggest alternate approaches for treatment that, al-
though speculative, could utilize existing compounds to
control, or potentially reverse, angiogenesis in ovarian
cancer. For each of these proposed treatments we identi-
fied highly-related compounds and ascertained if there is
a verifiable effect on gene expression in either ovarian
cancer or another human system.

ARNT and ETS1 dimerization with HIF1α and HIF2α,
respectively, must be prevented
As noted above, the dimerization of ETS1 and ARNT
with HIF1α and HIF2α, respectively, generally promotes
angiogenesis, although AHR may be interfering to re-
press target gene expression in the non-angiogenic sub-
type. It is therefore essential that the dimerization of
these HIF proteins with ARNT and ETS1 is inhibited.
HIF2α dimerizes with ARNT through a PAS-B domain,
located on the C-terminus of the ARNT protein. The
structural basis for this dimerization has been solved
[66,67] and a small molecule ligand has been identified
that dimerizes with HIF2α, decreasing affinity of the
ARNT/HIF2α heterodimer [60]. Similarly, a compound
has been identified that dimerizes with HIF1α, decreas-
ing the affinity of the ARNT/HIF1α heterodimer [68].
Using either or both of these compounds, we believe
one could prevent or reverse angiogenic effects driven
by ARNT/HIF1α and perhaps also those driven by
ETS1/HIF2α dimerization. In lieu of a dimerization in-
hibitor, we investigated how siRNA depletion of HIF1α
affects the expression levels of genes in our identified
subnetworks. We observe that in two independent ex-
periments [69,70], “A+” genes exhibit a decrease in ex-
pression upon HIFα depletion, as we would expect from
our model (Figure 5A).

AHR dimerization with ARNT and ETS1 must be promoted
Preventing the dimerization of ARNT/HIF1α and ETS1/
HIF2α may be insufficient; inhibition of angiogenesis is
also contingent upon the dimerization of ARNT with
AHR (and perhaps also ETS1/AHR). Consequently, we
also suggest treatment with an AHR agonist, such as the
selective AHR modular (SAhRM) 6-methyl-1,3,8-trichlor-
odibensofuran (6-MCDF), which has been shown to in-
hibit carcinogen-induced mammary tumor growth in rats
[71]. TRAMP mice fed 6-MCDF in their diet had overall
lower levels of serum VEFG and were five times less likely
to have metastasis compared to mice on a control diet
[72]. Although a known carcinogen, one of the most
efficient AHR agonists is the environmental toxin 2,3,7,8-
Tetrachlorodibenzo-p-dioxin (TCDD). TCCD has been
shown to potentiate ARNT/AHR dimerization thereby
inhibiting angiogenesis and preventing vascular remodel-
ing in rat placenta [73]. Curiously, accidental exposure to
TCCD was found to potentially decrease incidence of
breast and endometrial cancer in a group of women [74].
In our network, “A+” genes show a decrease in expression
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upon treatment with the AHR agonist TCDD in both
hepatocytes [75] and CD43+ hematopoetic cells [76]
(Figure 5A). The hepatocyte data also shows a significant
decrease in expression for “A+;N-” genes and “N-” genes,
and an increase in expression for “A-” genes.

Methylation levels across the entire angiogenic genome
must be decreased
In patients whose tumors have already become angio-
genic, epigenetic alterations may need to be considered.
One hallmark of many cancers is alteration of DNA
methylation and, indeed, we found higher genome-wide
methylation levels in the angiogenic subtype (Figure 2C).
Interestingly, SOX5, one of our “key” transcription factors
that was also found to play an important combinatorial
role with ARID3A and PRRX2, contains an HMG-box
which binds the minor groove [77]. Since methylation
modifications occupy the major groove of DNA [78], this
implies that SOX5 might be mediating key regulatory
processes in the angiogenic subtype in a methylation-
independent manner. This suggests that it may be neces-
sary to decrease methylation levels across the angiogenic
genome, thereby increasing competition with SOX5 binding
to gene promoters, and altering their subsequent expression.
This could be achieved using, for example, DNA methyl-
transferase (DNMT) and histone deacetylase (HDAC) in-
hibitors, which have already shown potential to inhibit
angiogenesis in other systems [79,80]; such treatments in
ovarian cancer might yield similar results. A hypomethy-
lating agent, such as 5-azacytedine, could also be used to
alter the epigenetic landscape and control angiogenic pro-
gression. With this in mind, we investigated the expres-
sion of ovarian cancer cells both prior to and post
treatment with 5-azacytedine [81]; we observe a decrease
in expression of the “A+” genes, consistent with our hy-
potheses (Figure 5A).

Additional potential therapies associated with
differentially-targeted genes
We have identified several treatment options that target
specific biological mechanisms uncovered when con-
trasting our network models; however, these are the re-
sult of intensive literature mining to determine suitable
candidate drugs. We used the connectivity map (CMAP)
[82] to determine if a gene classification based on our
network analysis could also be used to identify potential
drugs for treating angiogenesis in ovarian cancer.
We first used genes assigned to the “A+” and “A-” clas-

sification (see Figure 3) to build a “network-signature”
suitable for CMAP analysis. As expression information
was included in our network model, we also built an “ex-
pression-signature” by selecting genes with the most sig-
nificant changes in expression between in the angiogenic
and the non-angiogenic subtypes (based on an unpaired
t-test). A cutoff of p < 1.6e-6 (FDR < 1.45 × 10−5) was
used to select genes more highly expressed in the angio-
genic subtype and p < 3.05e-4 (FDR < 1.4 × 10−3) to select
genes more highly expressed in the non-angiogenic sub-
type. We used these criteria to select differentially-
expressed genes so that the expression-signature and
network-signature had equivalent dimensions (920 “up”
genes and 1287 “down” genes in both cases). These two
signatures share approximately 20% of their genes, with
225 in common in the “up” direction and 223 in common
in the “down” direction. We used CMAP to identify
drugs associated with each of these signatures. Compar-
ing results from these two signatures will allow us to dis-
tinguish between drug candidates only identified in the
network context, and those which would also be identi-
fied using a differential-expression analysis.
Table 1 lists drugs significantly associated with the

network-signature classification (p < 0.01). Most of these
drugs are also significantly associated with the expression-
signature – not surprising given that these two signatures
are non-independent; however, the ranking from the
expression-signature is vastly different from that of the
network-signature. One significant exception is Prestwick-
675, or hippeastrine, which is ranked highly in both ana-
lyses. Hippeastrine is an amaryllidaceae alkaloid with
potent anti-invasive properties [83] and anticancer activ-
ities in cell lines [84]; it is also believed to contribute to
the reported anti-cancer activities of the Chinese herb
Lycoris aurea [85].
One of the most striking results from this analysis is

that several drugs are significantly associated with the
network-signature but not the expression-signature.
The antitussive pentoxyverine is an agonist of the
sigma-1 receptor [86], which has been shown to con-
tribute to the induction of cancer-specific apoptosis by
interleukin-24, a known inhibitor of angiogenesis [87].
Dicoumarol is an anticoagulant that is often adminis-
tered to cancer patients. Anticoagulants are believed to
be able to interfere with tumor angiogenesis [88] and in
clinical trials their overall association with improved
patient-survival, while encouraging, may to be limited
to a subset of cancers [89]. Dicoumarol, in particular,
inhibits furin-like activity by blocking the processing of
MMP1 [34] and has been shown to abolish the TNF-
induced activation of NFKB1 [90], one of our identified
“core” transcription factors.
Another interesting drug identified by the network-

signature is harmine. Harmine was recently shown to
suppress tumor growth by inhibiting angiogenic activ-
ities in endothelial cells [91] and to induce apoptosis by
inhibiting the expression of MMP2 in gastric cancer
[92]. Interestingly, in light of the network model we
propose above, harman, a related alkaloid, stimulates
AHR-dependent luciferase activity [93], and harmine is a



Table 1 The drugs significantly associated (FDR < 0.1) with the network-signature classification based on CMAP analysis

Drug name CMAP rank CMAP P-value CMAP FDR

Network
signature

Expression
signature

Network
signature

Expression
signature

Network
signature

Expression
signature

Harmol 1 61 4.6E-04 1.1 × 10−3 0.015 4.9 × 10−3

Harmalol 2 67 4.9E-04 1.8 × 10−3 0.015 7.1 × 10−3

Brinzolamide 3 95 5.6E-04 5.8 × 10−3 0.016 0.020

Edrophonium chloride 4 42 6.0E-04 3.6 × 10−4 0.017 1.8 × 10−3

Trimethadione 5 138 6.8E-04 0.035 0.018 0.101

Canavanine 6 39 7.0E-04 2.7 × 10−4 0.018 1.5 × 10−3

Oxamniquine 7 49 1.3E-03 6.0 × 10−4 0.025 2.8 × 10−3

Metolazone 8 59 1.3E-03 1.0 × 10−3 0.025 4.4 × 10−3

Etofylline 9 112 3.2E-03 0.015 0.048 0.048

Harmine** 10 613 3.6E-03 1.000 0.051 1.000

Tetracycline 11 108 4.0E-03 0.013 0.056 0.041

Sotalol 12 136 5.5E-03 0.033 0.069 0.096

5213008 13 55 6.5E-03 8.1 × 10−4 0.080 3.7 × 10−3

Prestwick-675 14 1 7.3E-03 6.0 × 10−6 0.084 5.2 × 10−5

Pirinixic acid 15 21 8.6E-03 2.4 × 10−5 0.095 1.8 × 10−4

Dicoumarol** 16 184 8.8E-03 0.239 0.097 0.534

Pentoxyverine** 17 784 9.1E-03 1.000 0.098 1.000

Adipiodone** 18 689 0.010 1.000 0.100 1.000

Drugs that are not significantly associated with the expression-signature are bolded and asterisked (**).
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competing ligand with the well-known AHR-agonist
TCDD [94]. The association of these alkaloids with the
network-signature is strengthened by the fact that two of
harmine’s sister compounds, harmol and harmalol, were
identified as the top compounds most significantly asso-
ciated with the network-signature.

Conclusions
Although a wealth of cancer gene expression data has
been generated over the last decade, most biological in-
ference has been based on statistical tests at the level of
individual genes (with very high rates of spurious associ-
ations) followed by functional meta-analysis using gene
set enrichment. Our network analysis of angiogenic and
non-angiogenic phenotypes in ovarian cancer led us not
just to differential expression, but also to the underlying
regulatory mechanisms associated with the differential
activity of transcriptional programs. By associating dif-
ferences in regulatory patterns with differences in gene
expression we were able to define subsets of genes that
are activated or repressed by their regulators. Then, by
identifying and exploring relationships between a set of
key transcriptional regulators, we were able to identify
putative mechanisms by which they might be coordinately
working together to activate, or repress, the expression of
their target genes. Based on these observations we
propose three therapeutic strategies that may com-
plement or replace currently-used anti-angiogenic treat-
ments. While these proposed strategies remain speculative,
and experimental validation will be critical in validating
their efficacy, the strategies are supported by our ana-
lysis of experiments from independent, published gene
expression datasets, where mechanisms closely relevant
to those predicted by our models were tested. We an-
ticipate that these treatments could be combined syner-
gistically to better inhibit angiogenesis in ovarian cancer
tumors and bypass resistance that develops with the use
mono-therapeutic conventional angiogenesis inhibitor
regimens.
Until recently no clinical trials have collected the ex-

pression data needed to validate the angiogenic subtype
classification in ovarian cancer, and consequently there
is currently no experimental data supporting increased
angiogenesis in the angiogenic subtype. However, there
is strong anecdotal evidence supporting the classifica-
tion, including response rates consistent with what we
would have predicted in clinical trials involving angio-
genesis inhibitors [95-97]. The use of PANDA in com-
paring the subtypes led to an independent identification
of angiogenic processes, among others. Importantly,
PANDA itself does not rely on differential-expression,
but rather characterizes the targeting of genes by
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transcription factors. Indeed, we found that many of
the transcription factors with the greatest differential-
targeting between the subtype-specific subnetworks are
not themselves strongly differentially-expressed between
the two subtypes. However, subsequent analysis led us
to identify potential therapies that could disrupt the
processes that distinguish the subtypes, which are only
coincidentally associated with angiogenesis.
The clinical impact of current anti-angiogneic therap-

ies on the outcome of ovarian cancer and other cancers,
although real, continues to be modest, despite early
highly promising results in mouse models [98]. In seminal
ovarian cancer clinical trials only a small amount of im-
provement in progression free survival (four months) was
observed with bevacizumab treatment [99] and angiogen-
esis inhibitor resistance is frequently seen de novo, or over
the course of treatment [100]. In addition, several at-
tempts to define biomarkers of clinical response to anti-
angiogenesis drugs, have failed to produce a singular
strong or consistently predictive biomarker [50,51,101-104].
Such therapeutic and predictive limitations may also re-
flect our limited understanding of the specific underlying
mechanisms driving angiogenic progression. Indeed, we
observe that the activity of many previously identified po-
tential biomarkers for angiogenesis may be modulated
through complex regulatory features (see Figure 3C) that
include an important role both for coordinated transcrip-
tional activation and repression. For instance, our analysis
revealed that VEGFA is targeted in the angiogenic
network but not differentially expressed between the
subtypes. Furthermore, markers such as HIF1 (a pro-
angiogenic factor) and PDGFRA (a kinase contributing
to angiogeneisis and frequently targeted by angiogenesis
inhibitor drugs), while having increased expression in the
angiogenic tumor subtype, were identified as targeted for
repression in the non-angiogenic subnetwork. Thus, our
proposed network and treatment models begin to address,
in more depth, the complex regulatory mechanisms rele-
vant to angiogenesis in ovarian cancer, laying the ground
for a network-based subtype categorization that may allow
better prediction as well as more rational therapeutic de-
velopment. Importantly, the methods we use in our ana-
lyses are generalizable and could be applied to many other
disease settings to suggest new therapeutic approaches.
The specific transcriptional programs activated in an-

giogenic ovarian cancer, and identified through our use
of PANDA, underscore the complex nature of regulatory
processes and point to specific interventions that may
have an increased likelihood of success. While a great
deal of work would be required to validate these drug
candidates, and to test whether they are subtype specific,
their identification and the plausibility of their specific
mode of action suggest that the type of network analysis
we performed can identify candidates not found through
the more widely-used gene-by-gene methods for expres-
sion analysis. In diseases such as ovarian cancer, where
the outcome is poor and there are few viable drug candi-
dates, network-based methods could represent a valuable
addition to the existing repertoire of tools for analyzing
genomic data.

Methods
Constructing regulatory networks with PANDA
PANDA [28,105] uses three inputs: a motif prior, a set of
known protein-protein interactions, and expression data.
To create angiogenic and non-angiogenic subtype-specific
transcriptional regulatory networks, we ran PANDA twice
using the same transcription factor motif prior and
protein-protein interaction data, but with gene expression
data unique to either the angiogenic or non-angiogenic
ovarian cancer subtypes. In both runs the update param-
eter (α) was set equal to 0.25.

Expression data
Gene expression data were downloaded from TCGA
(https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp), nor-
malized using fRMA, and individual ovarian cancer
samples were assigned to either the angiogenic or non-
angiogenic subtype, as described in [3]. Briefly, a Gaussian
mixture model was fit to the distribution of these patient
scores using Mclust R package version 3.4.10 [106] and
the maximum posterior probability was used to classify
each sample. Of the 510 samples, 188 were classified as
angiogenic, and 322 were classified as non-angiogenic. An
R-package containing the data used in this manuscript has
been deposited at the URL: http://bcb.dfci.harvard.edu/
ovariancancer/.

Motif data
To create our motif prior, we downloaded the position
weight matrixes (PWM) of 130 core vertebrate tran-
scription factor binding site motifs from the JASPAR
database [107,108] as processed as described in [109].
Namely, to search for motif target candidates, the motif
score of each candidate S was defined as motif score =
log [P(S|M)/P(S|B)], where P(S|M) is the probability to
observe sequence S given the motif M, and P(S|B) is the
probability to observe sequence S given the genome
background B. To define motif targets, we modeled the
motif score distribution by randomly sampling the gen-
ome 106 times. Targets of motifs were then defined as
those with a score at a significance level of p < 10−5. We
associated genes with these motif targets if that target
fell within its promoter region ([−750, 250] base-pairs
around a transcriptional start site). It is possible for a
motif to correspond to multiple transcription factors; in
these cases we included all corresponding transcription
factors. This resulted in a transcription factor to target

https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp
http://bcb.dfci.harvard.edu/ovariancancer/
http://bcb.dfci.harvard.edu/ovariancancer/
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gene mapping. From this mapping we excluded edges
connected to transcription factors or genes for which we
did not have expression data. This left us with a prior
network from 111 transcription factors to 12290 genes.

Protein-protein interactions
Predicted human transcription factor interactions were
obtained from [31]. We filtered these interactions to
only include those between the 111 transcription factors
in our motif prior and used these interactions in con-
structing the regulatory networks.

Network quality estimation
To evaluate the robustness of our predicted networks
we performed a number of variations on the input data
used in the reconstruction and determined how it might
influence the resulting estimated edge weights. The ana-
lysis shown in Additional file 2: Figure S1-S3 demon-
strates the predicted networks’ robustness to jackknifing
the prior edges in the motif data, the protein-protein
interaction dataset used, and the samples used to esti-
mate the two subtype networks. See the Additional file 2:
Figure S1-S3 legends for more details.

Quantitative network comparison
PANDA estimates a probability that an edge exists in an
individual network and reports that estimate in terms of
z-score units. We wanted to identify potential regulatory
interactions that best characterized each of the subtype-
specific networks. Therefore, we selected edges based
both on the probability that they are “supported” in the
network inference, and on whether they are “different”
between the subtypes. To determine the probability that
an edge is “supported,” we took the value of the inverse
cumulative distribution function of a normal distribution
to assign a probability value between zero and one for
each edge (instead of a z-score). To determine the prob-
ability that an edge is “different” between the networks,
we first subtracted the z-score weight values estimated
by PANDA for the two networks and then determined
the value of the inverse cumulative distribution for this
difference. The product of these two probabilities repre-
sents the probability than an edge is both “supported”
and “different.” We select edges for which this combined
probability is greater than 80%, or:
Edge identified as

angiogenic−specific CDF−1 W
�

non−angiogenic−specific CDF−1 W
�

neither

8>><
>>:
This 80% cutoff was chosen so that each subnetwork
contains roughly 1% of all possible edges. We verified
the robustness of our network analysis to this cutoff by
varying it systematically between 65% and 95% (see
Additional file 2: Figure S4). A file with the edge-
enrichment analysis for TFs performed across each of
these cutoffs is also supplied in the supplemental mater-
ial (Additional file 3: Dataset S2).
We recognize that there could be hidden dependencies

between the z-scores so this analysis may be over-
estimating the significance.

Edge enrichment
To identify key transcription factors we calculated two
values, an “edge enrichment” score as well as a p-value
significance for the difference in the number of target
genes. The edge enrichment for a given transcription fac-
tor (ETF) can be formulaically defined as: ETF = (kA/kN)/
(nA/nN), where kA and kN are the out-degree of the TF in
the angiogenic and non-angiogenic subnetwork, respect-
ively, and nA and nN are the total number of edges in the
angiogenic and non-angiogenic subnetworks, respectively.
The p-value significance in the overlap between edges

from a transcription factor and edges specific to the an-
giogenic subnetwork, as modeled by the hypergeometric
distribution, can then be defined as:

p Að Þ
TF ¼

XnA
kA

nA
kA

� �
nN
kN

� �

nA þ nN
kA þ kN

� �

An equivalent formula is used to calculate p Nð Þ
TF . For sim-

plicity we report p Að Þ
TF for ETF > 1 and p Nð Þ

TF for ETF < 1.
In selecting “key” transcription factors we used an

edge enrichment of greater than 1.5 (or less than 1/1.5),
and a p-value significance less than 10−3. To help ac-
count for the fact that these measures are not highly ro-
bust for small out-degree values, we also only limited
our analysis to transcription factors with twenty or more
total edges (kA + kN ≥ 20). This last threshold resulted in
excluding one potential TF, ELK4, from being identified
as a “key” transcription factor. For a full list of every
TF’s edge-enrichment, p-value significance and total
edge count across a variety of potential subnetwork
Að Þ
ij
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ij −W Nð Þ
ij
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> 0:8
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otherwise



Glass et al. BMC Bioinformatics  (2015) 16:115 Page 14 of 17
definitions, see supplemental material (Additional file 3:
Dataset S2).

Characterizing differential expression/methylation of
transcription factors and their target genes
We determined the differential expression between the
subtypes for each gene in our network by using the t-test.
We determined the corresponding significance and ad-
justed for multiple-hypotheses by applying the Benjamini-
Hochberg correction. The differential expression patterns
of a set of target genes was determined by comparing the
values of the t-statistic for that set of genes to the values
of the t-statistic for all other genes [110]. For the same
510 samples for which we have expression data, we also
downloaded level-3 methylation data from the TCGA
website (https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp)
Of the 14473 genes with methylation data, we limited our-
selves to the 10108 included in the expression data, 621 of
which had empty values reported across all 510 patient
samples analyzed. For the remaining 9487 genes, we
compared methylation levels between the two subtypes
using a t-test. We further tested for the differential
methylation patterns for sets of target genes as we did for
the gene expression data. Values for the differential-
expression and differential methylation of each gene are
included in Additional file 4: Dataset S3.
For sets of target genes we also performed a ran-

domization procedure to ensure that the results observed
in the above analysis is not coincidental (Additional file 2:
Figure S5). See the supplemental figure legend for more
details.

Characterizing differential CNV for target genes
To evaluate changes in copy-number for sets of target
genes, we downloaded level 3 CNV (SNP Array) data
files from TGCA. According to the TCGA documenta-
tion, these files contain the results of CBS segmentation
of the log R ratio data for each tumor/normal pair. We
identified all the segments in which each gene occurs
and used a t-test to compare the values of the segments
identified within subjects classified into the angiogenic
subtype to the segments identified within subjects classi-
fied into the non-angiogenic subtype. To determine the
overall differential-CNV for a set of target genes, we
compared the resulting t-statistic value for the set of
genes targeted by a particular transcription factor to all
other genes [110]. Values for the differential-CNV of
each gene are included in Additional file 4: Dataset S3.

Characterizing the association of differential gene
expression within classes of network genes
We wished to investigate how genes identified by our
network model might respond to standard or other
treatment protocols. Therefore, we analyzed publically-
available experimental data measuring gene expression
levels in response to various stimuli. For each experi-
ment, we RMA-normalized raw CEL data deposited on
the Gene Expression Omnibus using a custom-CDF to
map to Entrez GeneIDs [63], selected samples that cor-
respond to either a treatment or control experiment,
and performed a t-test to quantify the expression differ-
ences between the treatment and control samples. Fi-
nally, we computed a summary statistic representing the
significance of the association of this differential expres-
sion with genes in each of the “classes” defined by our
subnetworks. Specifically, we calculate a “meta”-t-statistic
and associated p-value by comparing the differential-
expression t-statistic values for genes in a given network
class to the t-statistic values for all other genes [110].
We also performed a randomization procedure to en-

sure that significant results identified in the above ana-
lysis is not accidental, and would not be observed for
random “classes” of genes (Additional file 2: Figure S5).
See the legend for Additional file 2: Figure S5 for more
details.

CMAP analysis
We downloaded the “raw” gene expression CEL files
from the Connectivity Map website (http://www.broad
institute.org/cmap/cel_file_chunks.jsp) and normalized
these using fRMA [29]. This dataset contains the expres-
sion of approximately 12,000 genes before and after ad-
ministration of 1,309 drugs in as many as 5 cell lines.
We generated drug perturbation signatures by quantify-
ing the differential gene expression, controlling for tissue
type and batch effects using the following model:

Gi ¼ βd0;i þ βdc;iC
d þ βdt;iT

d þ βdb;iB
d; ∀i ∈M

where variables are the same as those used for drug sen-
sitivity signatures except for Cd, representing the con-
centration of drug d used to treat the cell lines, Td,
representing the tissue of the cell-line treated with drug
d, and Bd, representing the batch of the array measuring
the effect of drug d. The strength and significance of dif-
ferential expression of gene i due to perturbation by

drug d is given here by the term βdc;i and its associated
p-value (Student’s t-test). We defined the gene signatures
for drug perturbations based on estimates for the coeffi-

cients of βdc;i and their associated p-values.

Code and materials for repeating the analysis in the paper
The PANDA implementation used to perform this ana-
lysis, data input files, output predicted networks, as well
as a separate tool to perform edge-enrichment analysis
on a pair of PANDA networks is available at http://sour-
ceforge.net/projects/panda-net/.

https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp
http://www.broadinstitute.org/cmap/cel_file_chunks.jsp
http://www.broadinstitute.org/cmap/cel_file_chunks.jsp
http://sourceforge.net/projects/panda-net/
http://sourceforge.net/projects/panda-net/
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Additional files

Additional file 1: Dataset S1. (TranscriptionFactor_Combinatorial
Enrichment.txt): The significance of co-targeting by all pairs of transcription
factors in the various network classifications.

Additional file 2: Figure S1. Analysis demonstrating that network
estimates are robust to the exact expression samples used. Figure S2.
Analysis examining the effect of the prior motif structure on network
estimates. Figure S3. Evaluation of how different protein-interaction
databases affect PANDA’s predicted networks. Figure S4. Analysis
examining the consequences of varying the threshold used to define the
angiogenic and non-angiogenic subnetworks. Figure S5. Analysis
examining whether the differential methylation and expression of target
genes and gene classes might be observed by chance.

Additional file 3: Dataset S2. (TF_Statistics_Across_P-cutoffs.txt): A file
containing the edge-enrichment and p-values for TF-differential-targeting
between subnetworks identified across various P-cutoff values. The results
included in this file were used to generate Additional file 2: Figure S4.
The P-cutoff value of 0.8 was used to define the subnetworks used in the
analysis shown in the main text (see Figure 2A).

Additional file 4: Dataset S3. (AllGenes_SubtypeInformation.txt): File
containing various characteristics of the genes included in our network
reconstruction. This includes (1) whether each gene was identified as a
key TF or is a previously-identified biomarker for angiogenesis; (2) the
network and expression classification of each gene (used for functional
and CMAP analysis); and (3) the differential-expression, -methylation
and –CNV of each gene between the subtypes.
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