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Abstract

Rare diseases represent a highly heterogeneous group of disorders with high phenotypic and genotypic diversity within individual conditions. Due to
the small numbers of people affected, there are unique challenges in understanding rare diseases and drug development for these conditions, including
patient identification and recruitment, trial design, and costs. Natural history data and real-world data (RWD) play significant roles in defining and
characterizing disease progression, final patient populations, novel biomarkers, genetic relationships, and treatment effects. This review provides an
introduction to rare diseases, natural history data, RWD, and real-world evidence, the respective sources and applications of these data in several rare
diseases. Considerations for data quality and limitations when using natural history and RWD are also elaborated. Opportunities are highlighted for
cross-sector collaboration, standardized and high-quality data collection using new technologies, and more comprehensive evidence generation using
quantitative approaches such as disease progression modeling, artificial intelligence, and machine learning. Advanced statistical approaches to integrate
natural history data and RWD to further disease understanding and guide more efficient clinical study design and data analysis in drug development in
rare diseases are also discussed.
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What Is Different About Rare Diseases and Orphan
Drugs?
Rare diseases are defined by the US Food and Drug
Administration (FDA) as conditions that affect fewer
than 200,000 people in the United States and by the
EuropeanMedicines Agency (EMA) as conditions that
affect fewer than 1 in 2000 people.1,2 To date, over 7000
rare diseases have been identified, and collectively they
affect more than 250 million people across the world.1,3

Rare diseases represent a highly heterogeneous group
of disorders, and there is often high phenotypic di-
versity within individual conditions.4 Due to the small
numbers of people affected, opportunities to study each
disease are limited, and as a result, rare diseases are
usually poorly or incompletely understood.4 Most rare
diseases also lack effective treatments, and there are
many challenges associated with drug development for
these conditions, including patient identification and
recruitment, trial design, and costs.5 To overcome some
of these challenges, the OrphanDrug Act was passed in
1983 in the United States and the Orphan Regulation
was adopted in the European Union in 2000, with
the aim of incentivizing pharmaceutical companies to
develop orphan drugs that target rare diseases.6

What Are Natural History Data?
Comprehensive knowledge of a disease is required to
design and conduct clinical trials of adequate duration
and with clinically meaningful end points.1 For rare
diseases, natural history studies play an important
role in identifying appropriate patient populations and
clinical outcome assessments and biomarkers, and in
the design of externally controlled studies.1 A natural
history study is an observational study that is designed
to track the natural course of a disease and is likely
to include patients receiving the current standard of
care.1 They should be comprehensive and granular and
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should aim to identify demographic, genetic, environ-
mental, and other variables that correlate with disease
outcomes in the absence of treatment.1,4 Beyond their
role in drug development, natural history studies may
also benefit patients with rare diseases by establishing
communication pathways, identifying disease-specific
centers of excellence, facilitating the understanding
and evaluation of current standard-of-care practices,
evaluating signs and symptoms of a disease to improve
diagnosis, and identifying ways to improve patient
care.1,4 Patients included in natural history studies may
sometimes be used as historical controls for studies that
lack an internal control, thus allowing the effectiveness
of the study treatment to be determined.4,7 Guidance
is available from the FDA and the EMA on the use of
registries for supporting regulatory decision making for
drugs and biological products.8,9

What Are Real-World Data?
Real-world data (RWD) can serve as a source of infor-
mation for natural history studies. The FDA and EMA
have recently developed definitions of RWD and real-
world evidence (RWE).10,11 RWD is defined by the FDA
as “data relating to patient health status and/or the
delivery of health care routinely collected from a variety
of sources” and by the EMA as “routinely collected
data relating to a patient’s health status or the delivery
of health care from a variety of sources other than
traditional clinical trials.”10,11 RWE is defined by the
FDAas “clinical evidence about the usage and potential
benefits or risks of a medical product derived from an
analysis of RWD” and by the EMA as “information
derived from an analysis of RWD.”10,11 Both the FDA
and EMA state that evidence from traditional clinical
trials will not be considered RWE, but that hybrid or
pragmatic trial designs and observational studies can
generate RWE.10,11 RWD can be collected retrospec-
tively as well as prospectively. There are many sources
of RWD, including electronic health records; medical
claims and billing data; data from product and disease
registries; patient-generated data; and data gathered
from other sources, for example, mobile devices.10,11

While randomized controlled trials (RCTs) con-
tinue to be considered the gold-standard source of
evidence for regulatory decision making,12 the highly
selected patient populations included in RCTs may not
be representative of real-world clinical practice and
there is a growing role for RWD to bridge evidence
gaps not addressed by RCTs.12 For example, RWE
can provide novel insights into the performance of
medicines in everyday clinical use and is frequently
used to fulfill pharmacovigilance and postmarketing
commitments.10,11 RWE can also be used to improve
the performance of clinical trials, including generating
hypotheses for testing, identifying drug development

tools (eg, biomarkers), assessing trial feasibility, in-
forming statistical models, identifying patient baseline
characteristics for enrichment or stratification, and as-
sembling geographically distributed research cohorts.8

There may also be a role for RWE in the development
of orphan drugs where performing traditional RCTs
may not be feasible or ethical.10 For example, RWD
can sometimes be used as an external control arm to
confirm the response rate from a single-arm trial.10,11

More detailed applications of RWD in rare diseases
are presented in the subsequent sections. Recently,
the FDA has established an RWE framework under
the 21st Century Cures Act13 to evaluate the use of
RWE in regulatory decision making. In particular, this
framework aims to evaluate the potential use of RWE
to help support approval of new indications for drugs
that are already approved.11

Sources of Natural History and RWD
Natural History Data in Rare Diseases
Natural history studies have previously been employed
in several rare diseases, including Duchenne muscular
dystrophy (DMD), spinal muscular atrophy (SMA),
andHuntington’s disease (HD), and have provided data
on the etiology and pathophysiology of these condi-
tions, along with insights into the outcomes achieved
with standard-of-care treatments.14–16

An example is the Cooperative International Neuro-
muscular Research Group (CINRG) Duchenne Natu-
ralHistory Study (DNHS), which is the largest prospec-
tive natural history study performed in DMD to date.14

Overall, 440 patients aged 2–28 years were recruited
from 20 centers in 9 countries and were followed up
for up to 10 years. The majority of patients (66%) were
ambulatory at the initial study visit, and most (87%)
received glucocorticoid therapy at some point during
follow-up.

Other examples of natural history data include
Treat–Neuromuscular Diseases global DMD database,
Universitair Ziekenhuis Leuven, CureDuchenne,
iMDEX, and ImagingDMD.17,18

Patient Registries in Rare Diseases
Patient registries are typically considered as RWD and
can be used to expand knowledge on the natural history
of rare diseases.

STRIDE Registry of Patients With Nonsense Mutation DMD.
Strategic Targeting of Registries and International
Database of Excellence (STRIDE; ClinicalTrials.gov
identifier: NCT02369731) is an ongoing, multicenter,
observational registry providing RWE on the use of
ataluren in patients with nonsense mutations in the
DMD gene in routine clinical practice.19 It is a postap-
proval safety study performed to fulfill a postmarketing
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commitment to the Pharmacovigilance Risk Assess-
ment Committee of the EMA.19,20 STRIDE is the
first drug registry to be established for patients with
DMD and represents the largest real-world registry of
patients with nonsense mutations in the DMD gene to
date.20 As of July 9, 2018, 213 male patients had been
enrolled in STRIDE from 11 countries (53 active study
sites).20 Corticosteroids were used by 89% of patients
and mean (standard deviation) ataluren exposure was
639.0 (362.9) days.20

RESTORE Registry of Patients With Genetically Confirmed
SMA. The Registry of Patients With a Diagnosis
of Spinal Muscular Atrophy (RESTORE; Clinical-
Trials.gov identifier: NCT04174157) is a prospective,
multicenter, observational, multinational registry with
the objective of assessing long-term outcomes for pa-
tients with genetically confirmed SMA, and providing
information on the effectiveness and long-term safety
of emerging and approved treatments for SMA, in-
cluding the gene therapies nusinersen and onasemno-
gene abeparvovec.21,22 The estimated enrollment is 500
participants, and the target follow-up duration is 15
years.21 Recruitment began in September 2018, and as
of January 3, 2020, 64 patients had been enrolled at 25
participating sites.22

ENROLL-HD Registry of Patients With HD
ENROLL-HD (ClinicalTrials.gov identifier:
NCT01574053) is a longitudinal, observational,
multinational study that integrates 2 former HD
registries (REGISTRY in Europe and COHORT in
North America and Australasia), and additionally
includes sites in Latin America.23 It is the world’s
largest observational study for HD and has already
enrolled >20,000 participants across 158 clinical sites
in 22 countries.24 The objective of this study is to
develop a comprehensive repository of prospective
and systematically collected clinical research data and
biological specimens from individuals who manifest
HD, unaffected individuals known to carry the HD
mutation or at risk of carrying the HD mutation, and
control research participants (eg, spouses, siblings, or
offspring of HD mutation carriers known not to carry
the HD mutation).23

Other Resources on Rare Disease Registries
Additional resources on rare disease registries have
been compiled by the National Organization for
Rare Disorders and include EU recommendations on
registration of patients with rare diseases and data
collection.25 Orphanet is another important reference
source on rare diseases and includes a directory
of registered patients for each of the countries in
Orphanet’s network.26

Real-World Data From Claims Databases
IBM’s MarketScan Research Databases are claims
databases that provide proprietary deidentified real-
world claims data for privately and publicly insured
people in the United States.27 The claims data may also
be useful to understand patient characteristics, disease
progression, and treatment effects.

Applications of Natural History and
RWD
Natural History Studies for Drug Development
According to the FDA’s guidance on conducting nat-
ural history studies,1 drug development in rare dis-
ease can benefit from a well-designed natural history
study. Potential benefits include identification of patient
population, identification or development of clinical
outcome assessment and biomarkers, and design of
external controls.

Patient Population to Inform Clinical Trial. Some rare
diseases such as idiopathic dilated cardiomyopathy of-
ten present with substantial heterogeneity of genotypes
and/or phenotypes and natural history of each subtype
(eg, LMNA gene–related dilated cardiomyopathy,
BLC2-associated athanogene 3–associated dilated
cardiomyopathy) is often unclear. A well-designed
natural history study can collect information on
patients with disease subtypes and draw meaningful
conclusions around rate, patterns of and time to
progression, potential genotype versus phenotype
correlations, and so on, which can be used to inform
clinical trial inclusion criteria, the stage of disease to
treat, duration of a trial, and other parameters.

Clinical Outcome Assessments. Clinical outcome as-
sessment (COA) is often used to assess both safety
and efficacy of an investigational treatment during a
clinical trial. Four types of COAs are used by the FDA
including clinician-reported outcome (eg, reasons for
hospitalization), observer-reported outcome (eg, care-
giver reports), patient-reported outcome (eg, Quality of
Life, Kansas City CardiomyopathyQuestionnaire), and
performance outcome (eg, test of functional capacity).
A new or existing clinical outcome assessment can be
used and evaluated in a natural history study to assess
change or progression in a particular disease along with
its performance and reproducibility for use in a clinical
investigation. In addition, natural history studies can be
used to assess correlation of COAs; understand mini-
mal clinically important differences; and explore digital
end points, such as gait, stride, or other digital func-
tional assessments, as well as digital therapeutics.28–30

Biomarker Development. Identification and validation
of robust biomarkers are integral parts of rare disease
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drug development and even more important for spon-
sors managing early development portfolio.31 In a
natural history study for a rare disease, information
collected on biomarkers can be used to diagnose the
disease, serve as a prognostic factor for the disease’s
course, predict treatment response, or guide patient
selection. Some biomarkers may serve as end points
(eg, hemoglobin A1C) or surrogate end points (eg, low-
density lipoprotein as a surrogate end point for heart
attack) in clinical trials if robustly validated.

External Controls. In many rare disease trials, having
an adequate control group may not be feasible due
to the small patient populations for recruitment or
randomization to placebo being unethical for a life-
threatening disease. Data from natural history studies
may provide the general medical knowledge of the
disease course to contextualize the clinical trial results.
They can also serve as an external control group as
compared with the treatment group to demonstrate
substantial evidence of effectiveness in an investiga-
tional trial or an observational registry study, as shown
in the case examples of FDA approvals.

Use of Natural History Databases to Compare Treatment
Outcomes in DMD
Data obtained from natural history studies can be used
to compare outcomes in patients receiving different
treatments. For example, the effect of glucocorticoids
on clinically relevant functional outcomes can be com-
pared in patients with DMD. These outcomes include
loss of ambulation and decline in the ability to stand
from supine and hand-to-mouth function, which are all
predictors of DMD disease progression and are highly
meaningful to patients, given that they are associated
with delay in the onset of subsequent irreversible dis-
ease milestones and represent the degree of patients’
personal autonomy in daily life.14

The results of the CINRGDNHSdemonstrated that
glucocorticoid treatment for ≥1 year was associated
with a reduced risk of losing ambulation and upper
limb disease progressionmilestones as well as a reduced
risk of death compared with treatment for <1 month
or no treatment. Overall, 9 clinically meaningful mile-
stones of disease progression were established that were
predictive of future trajectories of functional decline.
The natural history study enabled comparison of loss
of function outcomes that are applicable to clinical
practice over a longer follow-up period and in a larger
rare disease cohort than would be possible in the
context of an RCT.14 The benefits of glucocorticoid
therapy were also reported for patients included in the
Treat–Neuromuscular Diseases global DMD database,
which included clinical data from 5345 patients with
DMD from 31 countries.17

The CINRG DNHS additionally allowed for the
comparison of effectiveness of individual glucocorti-
coids. In that study, 26%of patients received prednisone
or prednisolone, and 27% received deflazacort. Decline
in functional outcomes tended to be more delayed in
patients treated with deflazacort compared with those
treated with prednisone or prednisolone, with statisti-
cally significant 2.1–2.7-year differences observed for
age at loss of ability to stand from supine, age at loss of
ambulation, and age at loss of hand-to-mouth function
with retained hand function.14 Similar results were
obtained in an analysis of data from 4 other DMD nat-
ural history databases (Universitair Ziekenhuis Leuven,
CureDuchenne, iMDEX and ImagingDMD).18 A Cox
proportional hazards model indicated that deflazacort
use was significantly associated with a longer time to
loss of ability to stand from supine. Observational stud-
ies have also provided insights into the safety profiles
associated with corticosteroid use over a much longer
period of time than can be afforded in RCTs.14,32–35

As another example of how natural history studies
can enable treatment comparison, outcomes for
patients enrolled in STRIDE were compared with
those reported in the CINRG DNHS to assess the
effectiveness of ataluren treatment.36 As the patients in
STRIDE and the CINRG DNHS were not randomly
assigned to treatment, propensity score matching
was performed to identify a subset of CINRG
DNHS patients who were comparable to STRIDE
patients according to established predictors of disease
progression.36 This technique of using natural history
data as an external control is described in more details
in the Statistical Analysis Approaches section below.
For the comparison of STRIDE and the CINRG
DNHS, a propensity score was created using a logistic
regressionmodel that included the following covariates:
age at first clinical symptoms, age at first corticosteroid
use, duration of deflazacort use (<1 month, ≥1 to
<12 months, and ≥12 months); and duration of other
corticosteroid use (<1 month, ≥1 to <12 months,
and ≥12 months).36 Kaplan–Meier analyses of the
matched STRIDE and CINRG DNHS populations
demonstrated that ataluren combined with standard-
of-care treatment significantly delayed the age at loss
of ambulation and age at worsening performance in
timed function tests compared with standard of care
alone (P ≤ .05).36

Real-World Studies to Investigate Treatment Effects
in DMD
Results froma retrospective real-world study performed
at the Cincinnati Children’s Hospital Medical Center
corroborated data from CINRG DHNS reporting dif-
ferences in treatment outcomes with deflazacort ver-
sus prednisone.37 The Cincinnati Children’s Hospital
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Medical Center study analyzed 435 boys with DMD
and demonstrated that median age at loss of ambula-
tion was 15.6 years and 13.5 years among deflazacort
and prednisone-initiated patients, respectively. Deflaza-
cort was also associated with better pulmonary func-
tion indicated by a higher percentage—predicted forced
vital capacity, lower risk of scoliosis, higher percentage
of lean body mass, shorter stature, and lower weight
compared with prednisone after adjusting for age, and
corticosteroid duration.37 The benefits of switching
from prednisone to deflazacort were also shown in a
different real-world study, a retrospective chart review
of patients with DMD or Becker muscular dystrophy
in the United States.38 In this study, 62 patients with
DMD and 30 patients with Becker muscular dystrophy
switched from prednisone to deflazacort. The primary
physician-reported reasons for switching were to slow
disease progression and improve tolerability. On aver-
age, the physician-recorded clinical global impression
of improvement scores were improved in patients re-
ceiving deflazacort compared with prednisone, and pa-
tients experienced fewer adverse events after switching
to deflazacort compared with prednisone.38

Real-World Data in Understanding Disease Burden
and Routine Care in HD
RWD has been used in the understanding of disease
burden and routine care in HD.39 Data from the In-
stitute for Applied Health Research Berlin Research
Database, comprising data of ≈4 million insured per-
sons from ≈70 German statutory health insurances
was analyzed. The prevalence of HD increased with
advancing age, peaking at 60–69 years (16.8 per 100,000
persons; 95%CI, 13.4–21.0) and decreasing afterward.
The most common medications in patients with HD
were antipsychotics (66.9%) followed by antidepres-
sants (45.1%). Physical therapy was the most often used
medical aid in patients with HD (46.4%). This study
provides new insights into the epidemiology and routine
care of patients with HD in Germany.

RWD has also been used in longitudinal evaluation
of treatment effects of commonly used medications
in HD.40 Analysis of the cross-sectional data in the
ENROLL-HD database showed that disease progres-
sion regarding clinical, functional, and cognitive out-
comes over 2 years was not affected by any of the
treatment groups compared with HD control.

Model-Based Approaches for Integrating
Natural History and RWD in Rare
Diseases
Model-based data analysis plays an important role in
quantitatively understanding the natural history of rare
diseases, not only on the disease progression rates, but

also on identification of disease onset, patient subpop-
ulations, new end points, novel prognostic variables,
optimal duration for signal detection, and the variabil-
ity of the above factors. More importantly, the models
will allow prediction of responses and inform efficient
clinical trial design in the diseases with scarce patients.
Various types of data including observational data,
controlled clinical trial data, aggregated study level
literature data, and RWD can be used in the modeling.

Disease Progression Modeling in HD
The longitudinal disease progression has been charac-
terized using linear mixed effect modeling using the
Unified Huntington Disease Rating Scale (UHDRS)
dimension scores from 379 patients with early HD in a
placebo-controlled clinical trial European Huntington
Disease Initiative study.41 The mean linear progression
rates in total motor scores (TMS) and total functional
capacity (TFC) were 4.75/year and –0.44/year, respec-
tively, and were the most significant among all the
dimension scores.

Similar linear disease progression has also been
reported using data from 334 patients with clinically
manifesting HD in the COHORT database.16 The
mean progression rates in the TMS, Mini-Mental
State Examination, and TFC were 3.0/year (95%CI,
2.5–3.4), –0.68/year (95%CI, –0.6 to –0.8), and
–0.6/year (95%CI, –0.7 to –0.5), respectively. In addi-
tion, subgroup analyses showed that more advanced
disease was associated with slower progression in
TFC and the chorea scores in TMS, but a more rapid
progression in the Mini-Mental State Examination.
These results suggest that interventions aimed at
slowing chorea progression may be better focused
on individuals with less advanced disease; however,
treatments seeking to demonstrate a symptomatic effect
on chorea may be best studied in those with prominent
chorea, who generally have more advanced disease. For
interventions aimed at cognition, disease-modifying
interventions could evaluate patients with HD in the
earliest symptomatic stages of the disease when deficits
begin to develop. Symptomatic interventions seeking
to improve, stabilize or slow down cognitive function
could include those with more advanced disease, where
the deficits and rates of decline are greatest.

A disease progression model using aggregated data
from a total of 1821 patients with HD in 11 random-
ized, double-blind, and placebo-controlled studies also
estimated similar progression rates of TMS and TFC,
6.0/year (95%CI, 5.6–6.4), and –0.60/year (95%CI, –
0.72 to –0.48), respectively.42 However, no obvious
progression in chorea was estimated in this analysis,
which is different from the result on chorea by Dorsey
et al.16 In addition to disease progression, Jin, et al42
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also estimated the placebo and symptomatic treatment
effects by interventions.

In contrast to modeling the disease progression rates
at population levels, Kuan et al43 developed models
to predict disease progression in individual patients
with HD. Forty-one of a total of 68 patients with
HD exhibited a linear progression, while the remaining
17 patients showed a quadratic disease progression.
Subgroup analyses also demonstrated that patients
with longer CAG repeats had earlier onset and more
rapid disease progression compared with patients with
shorter CAG repeats. Patients sharing similar clinical
profiles (age, CAG repeat length, and UHDRS) could
exhibit very different patterns of disease progression.
These results are consistent with the modeling results
by Langbehn et al44 using data from 2913 patients with
HD from 40 centers worldwide.

A more comprehensive nonlinear mixed-effect
modeling onTMS andTFCprogressionwas performed
with a larger number of participant-level longitudinal
data from 347 participants from CARE-HD (a
controlled clinical trial), 429 from COHORT, and
815 from REGISTRY.45 In this analysis, individual
baseline disease burden (a product of age and expanded
CAG repeat length) was incorporated as a continuous
variable and was a significant covariate on both the
progression rate constant and the baseline score in
the TMS model. The model is able to predict not
only population-level but also individual-level disease
progression, and can be used to guide patient selection
and enhance efficiency in clinical trials evaluating
disease-modifying therapeutics for HD by enrolling
patients with more rapid disease progression.

More recently, with the advancement of data an-
alytic tools, a disease progression model derived by
machine learning (ML) has been published using
pooled data from 4 observational studies (PREDICT-
HD,REGISTRY, TRACK-HD, andENROLL-HD).46

Analysis of transition times showed that the natural
history of HD can be described by 9 disease states
of increasing severity. “Early-disease” states 1 and 2,
which occur before motor diagnosis, lasted ≈16 years.
Increasing numbers of participants had motor onset
during “transition” states 3–5, which collectively lasted
≈10 years, and the “late-disease” states 6–9 also lasted
≈10 years. The annual probability of conversion from
any 1 of the 9 identified disease states to the next ranged
from 5% to 27%. The insights on disease states and
probabilities for progression through these states may
improve trial design and participant selection.

In the above disease progression modeling exam-
ples, different HD populations, different end points,
and different structure models were used to address
different objectives. It would be ideal thatmore compre-
hensive HD disease progression models can integrate

the individual CAG repeat length data, age, and larger
sample size data including all stages of patients with
HD with longer observation, using consistent UHDRS
item scores to assess more confidently the continuum of
HD disease progression, and influential factors and to
inform clinical trial design.

Disease Progression Modeling in DMD
Amodel-based clinical trial simulation (CTS) platform
has been developed to optimize the design of clinical
trials for DMD by the Cooperative International Neu-
romuscular ResearchGroup andDuchenne Regulatory
Science Consortium.47 Data from 15 clinical trials and
studies, 1505 subjects, and 27,252 observations were in-
tegrated. The nonlinear mixed-effects models captured
longitudinal changes in 5 clinical measures (NorthStar
Ambulatory Assessment, forced vital capacity, and the
velocities of the following 3 timed functional tests: time
to stand from supine, time to climb 4 stairs, and time
to walk/run 10 meters), including both early disease
when function improves as a result of growth and
development and later disease stages when function
declines. The models and the CTS platform can be used
to perform trial simulations to optimize the patient
inclusion/exclusion criteria, end point selection, sample
size optimization, treatment enrichment, and other trial
parameters, as well as dose selection by including drug-
effect models. The data sets and models have been
reviewed by the FDA and EMA; have been accepted
into the Fit-for-Purpose and Qualification for Novel
Methodologies pathways, respectively; and will be sub-
mitted for potential endorsement by both agencies. The
development of a DMD disease progression model and
the CTS platform has been a collaborative effort from
multiple sectors including academic research groups,
the pharmaceutical industry, regulatory agencies, and
nonprofit organizations. It is hoped that it will provide
a more efficient way of rare disease drug development.

Disease progression of DMD was also quantified
using magnetic resonance biomarkers of leg muscles
from a prospective observational study in DMD with
yearly follow-up for up to 6 years.48 Magnetic resonance
spectroscopy fat fractions and magnetic resonance
imaging quantitative T2 levels increased with DMD
disease duration and provided sensitive noninvasive
measures of DMD progression. The progression time
constants differed markedly between individuals and
across muscles. Modeling changes in these biomarkers
across multiple muscles can also be used to detect and
monitor the therapeutic effects of corticosteroids on
disease progression and to provide prognostic informa-
tion on functional outcomes.

Haber et al49 quantified the associations between
genetic mutations and loss of ambulation (LoA)
among male patients diagnosed with childhood-onset
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dystrophinopathy to understand the variation in DMD
disease progression. The results showed that mutation
type did not predict time to LoA. Controlling for cor-
ticosteroids, exons 8 (hazard ratio, 0.22; 95%CI, 0.08–
0.63) and 44 (hazard ratio, 0.30; 95%CI, 0.12–0.78)
were associated with delayed LoA compared with other
exon deletions. These findings suggest that mutation
information should be considered in clinical trials to
account for the phenotypic variability.

Statistical Analysis Approaches for Using
RWD in Rare Disease
RWD data can be used both prospectively and retro-
spectively. While the latter is common in drug develop-
ment, the prospective use of RWD in drug development
has been growing ever since the passage of FDA Reg-
ulatory Act50 and the issuance of guidance documents
from regulatory agencies.8,9 RWDcan be used in several
ways to inform the study design in drug development
for rare diseases.Widely accepted applications of RWD
include identification of study population, validation
of end point, planning inclusion and exclusion criteria,
and safety monitoring. However, a more appealing use
of RWD is informing the trial design prospectively (eg,
for control arm) to improve precision and save sample
size, especially in rare disease in which the patient
recruitment for a trial is time consuming due to the
nature of the disease. In this section, we provide a brief
overview of strategies and statistical methodologies to
leverage RWD in the design and analysis. We have cov-
ered here important frequentist and Bayesian statistical
methods.

Study designs and analyses withRWD for regulatory
purposes fall into 4 broad categories: (1) use of external
control; (2) evidence synthesis; (3) pragmatic trials; and
(4) using RWE to fulfill a postmarketing requirement
for safety and/or effectiveness.51 Detailed statistical
methodologies associated with categories 1 and 2 are
presented below. The example of STRIDE registry
data analysis36 mentioned in the Applications section
is a good example for category 4. Pragmatic trials
(3) inform a clinical or policy decision by providing
evidence for adoption of the intervention into real-
world clinical practice. There is an increased interest
in pragmatic RCTs recently due to the current needs
for rapid, affordable, and applicable research at the
policy and clinical levels. The Salford Lung Study is
an important example of pragmatic trials to evaluate
the effectiveness of a drug intervention.52 Patients with
chronic obstructive pulmonary disease or asthma were
randomized to compare continuation of the standard
therapy versus a once-daily combination of the inhaled
corticosteroid. However, the regulatory acceptance of
the RWE generated by pragmatic clinical trials is still

limited due to lack of rigorous collection standards,
absence of blinding, and evidence quality.

Use of External Control
The use of an external control has gained significant
attention in recent times due to its practical advantages,
including saving sample size, effective use of resources,
acceleration of drug development, ethical appeal, and
increased regulatory acceptance. It has been broadly
used in 2 settings. First, a control group in an RCT can
be augmented with control information from external
data resources. This is often referred to as a “partially
randomized control” design. Second, when there is no
control group in the trial, one can create a stand-
alone external control group solely from the available
external data for comparison. This is referred to as
a “synthetic control.” The latter is useful for rare
diseases in which single-arm trials predominate and
randomizing to control is often infeasible or unethical.
For either strategy, the key assumption is the similarity
between external control and current trial. This needs
to be thoroughly assessed along with the reliability and
validity, as discussed in the previous section.

A major concern about the use of external controls
is the potential mismatch of external control data and
current trial data, which can introduce biases in the
treatment comparison. Sources of bias include:

• Selection bias: Difference in the populations between
the clinical trial and the RWD.

• Unmeasured confounding: Key confounding data
may not be available in both data sets for appropriate
adjustment.

• Time bias: Significant time lag between the external
control data and trial data that involves change in
clinical practice as well as standard of care.

• Operational bias: Various sources of operation bias
are:
• Data collection: Difference in the manner current
study and RWD data are collected.

• Covariate measurement error: Same variable is
measured differently in the trial as compared with
RWD.

• Outcomemeasurement: Collection of outcome dif-
fers between external control sources and current
trial.

The potential for each of these biases must be ad-
dressed to support the validity of any decision making
from analyses involving external controls. With real-
world controls as compared with historical RCT con-
trols, there may be less concern with time bias, as data
are collected in a similar time frame. However, there is
a likelihood of issues with selection bias, unmeasured
confounding, missing data, and measurement errors
due to quality of RWD.
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A causal framework provides a general
guidance for designing, conducting, analyzing, and
interpreting clinical trials with external controls. How-
ever, the fundamental assumptions include ignorability
of treatment assignment, assuming no unobserved
difference between treatment and control, given the set
of confounders, and positivity.53 Ho et al54 described a
detailed road map for study design and analysis using
RWD. A similar framework is applicable while using an
external control group. There are many statistical and
computational methodologies available to allow use of
external control data with a tangible degree of dissim-
ilarity. A few main approaches are described below.

Test-Then-Pool Methodology. The availability of the
RCT controls allows in a sense for a check of the
validity of using the external control data. A “test-then-
pool” approach was proposed by Viele et al.55 After the
initial stage of finding relevant controls via propensity-
matching score methods, a statistical test of differences
in the outcome variables between the external and RCT
controls is performed. If the test is rejected, then no
pooling takes place. If the test does not reject the null
hypothesis of equal mean outcomes, then the external
controls are merged with the RCT controls for the
analysis. Though this approach is simple and pragmatic
in nature, it completely ignores the intrinsic variability
between and within different data sources. Moreover,
multiplicity adjustment is required to control the overall
type I error.

Propensity Score Method. Propensity score methods
are commonly used for causal inference on treatment
effects in observational studies. A 2-stage propensity
score study design proposed by Yue et al56 and Li et
al57 provides a paradigm for conducting a compar-
ative observational, nonrandomized study within the
premarket regulatory setting. The key assumption for
propensity score methods is that baseline covariates
explain all differences between external data sources
and the current trial. In the first-stage design, a subset
of the individual subjects is selected from the external
data sources, applying inclusion/exclusion criteria of
the current trial. In the second-stage design, a propen-
sity score for each of the enrolled subjects in the target
trial and the external subjects from the first stage
design is estimated, based on baseline information,
using logistic regression or ML techniques. Finally,
the propensity score is used to choose control subjects
such that they are comparable to the subjects in the
current trial. The last step includes methodologies
for the outcome analysis such as matching, inverse
probability treatment weighting, stratification, or using
the propensity score as a covariate. Propensity score
methods are applicable for randomized and single-arm

studies as well as observational studies. The overall goal
is to adjust for imbalance to the extent explanatory
factors are available in data. For example, the DMD
STRIDE registry data analysis used a propensity score
matching approach for analysis.36 However, such ap-
proaches do not take into account the possibility of
mismatch of outcome variable (eg, primary end point
variable) between external control and internal control
due to unknown confounders. Such a situation is not
uncommon in rare disease development as all disease
modifiers are often unknown due to lack of data.
Therefore, alternative methodological considerations
(eg, coarsened exact matching58) can be considered to
address this issue.

The second approach in this category is the propen-
sity score–integrated composite likelihood method.59,60

First, the propensity score model is used to preselect
a subset of external data comparable with the current
study in terms of observed covariates. Second, different
strata are formed on the basis of all available trial data
and selected external control data.Within each stratum,
the covariates are more balanced between the external
control and current study subjects. Finally, a composite
likelihood is constructed for the parameter of interest in
each stratum by discounting the external control data.
The parameter of interest for the trial is then estimated
as a weighted average maximum likelihood estimates
across all strata.

Another propensity score-based approach adapts
the proposals of Stuart and Rubin.61 The proposed
algorithm matches from multiple control groups (eg,
internal concurrent control arm in anRCT and external
control from RWD) with adjustment for differences
in observed covariates between groups. This algorithm
captures the additional otherwise unobserved differ-
ences between control groups. This approach differs,
as it does not assume that the outcomes (adjusted
for all covariates) are the same in the control arm
of RCT and external controls but allows for the out-
comes to differ and adjusts for observed differences.
This approach has 3 propensity-matching steps. First,
propensity matching is conducted to find a match for
RCT-treated patients with a concurrent control arm in
the RCT. Second, for the remainder of the RCT-treated
patients who are not yet matched in step 1, a match is
obtained from the external control group via propensity
scoring. Finally, this approach computes an adjustment
factor for the outcomes in the external data bymatching
and statistically estimating the difference in outcomes
between RCT and external controls.

Bayesian Hierarchical Model. Bayesian hierarchical
modeling is a methodology used to combine results
from multiple studies (or data sources) in which the
information is available on several different levels



S46 The Journal of Clinical Pharmacology / Vol 62 No S2 2022

using Bayesian methods. The Bayesian approach
provides a mathematically rigorous and principled
methodology for making decisions under arbitrarily
complex scenarios. Two common methods of the
Bayesian hierarchical model are commensurate power
and meta-analytic approaches. These approaches are
principally similar as they discount the external control
information via between-trial heterogeneity.

Meta-analytic approaches are the methods of choice
for evidence synthesis from clinical trials and have also
been applied to derive external control information.
The random-effects meta-analysis (MA) allows the
parameter of interest in the different external control
and current trial to be different. Therefore, taking
account of between-trial heterogeneity among the ex-
ternal control data source trials as well as heterogeneity
between the current trials. The main assumption of
meta-analytic approaches is “exchangeability” or “sim-
ilarity” between external control data and current trial
data.62–65 The method is flexible enough to adapt dif-
ferent types of source data, including individual subject
data and aggregate data from publications. At the plan-
ning stage, a random-effects MA is used to construct a
“pseudo-control” using the available relevant external
control data. Once the trial data are observed, statistical
inference on the difference between test and control
is straightforward, using all available data (from trial
and relevant external control) and Bayesian inference.
For example, in case of continuous end point, the
posterior distribution of difference between test and
control follows a normal distribution if the prior for
the control parameter is derived from RWD using a
meta-analytic approach and approximated by a normal
distribution.62 Therefore, all the inference related to
the difference can be done easily using a closed-form
formula. For more complex settings, Markov chain
Monte Carlo sampling is required.63

The degree of borrowing can be approximated by
the “effective sample size.”66–68 Depending on the type
of relevant source data, more complex meta-analytic
approaches may be needed, including meta-regression,
which use baseline covariate information to explain
part of the between-trial heterogeneity. Furthermore,
the methodology is further extended to handle possible
conflict between external control and concurrent
control of the current trial using mixture with a
weakly informative prior.63 This additional component
acknowledges the possibility of mismatch in outcome
between external data and the current trial, despite a
careful selection of the historical trials and provide
robust statistical inference comparedwith a nonmixture
prior.

In the meta-analytic approach, the degree of
borrowing from external data depends on the “between-
trial data source heterogeneity parameter.” The

heterogeneity parameter requires special attention
while using this model in practice.62,69 When the
number of external data sources is small, it is not
feasible to estimate the between-trial data source
heterogeneity. Therefore, prior judgments are required.

Power Prior and Propensity Score–Integrated Power Prior.
The power prior is a useful class of informative priors
for external control data. The power prior discounts
the likelihood of the external control data directly
using a power parameter.70,71 This parameter controls
the amount of borrowing from the external control
while taking into account both the current study and
the external data source. The key assumption of power
prior is “equality” of parameter of interest between
external control data and the current trial. When this
“power parameter” is set to 0, no external data are used
in the analysis, whereas when the power parameter is
set to 1, no down-weighting occurs. In practice, the
power parameter is often thought of as the “proportion
of the external data” being used by the procedure. The
power parameter can be fixed or random. Adding a
prior on the power parameter will allow for uncertainty
in the analysis when the similarity between external
control and current trial is unknown. However, several
authors caution against the use of the prior for power
prior, as it violates the likelihood principle.72 Therefore,
normalization of the posterior distribution is required
for proper inference.73,74

However, rather than directly constructing the
power prior based on external data, one can use an
integrated propensity score–based method along with
prior power for practical application. Similarly to the
composite likelihood approach, trial data and external
control data are divided into homogeneous strata using
a propensity score. The power prior method is then
implemented in each stratum to obtain stratum-specific
posterior distributions, which are then combined to
complete the Bayesian inference for the parameters of
interest.75

Other notable methods to borrow external control
include the use of advanced ML methods like random
forests, neural networks, and cluster analysis. These
advanced analytical tools have enhanced many
aspects of drug development by identifying clinically
meaningful patterns from large, unstructured, and
heterogeneous data sources. These novel techniques
are powerful in exploring both linear and nonlinear
relationships between outcomes and large number of
covariates. Also, the use of these advanced techniques
allows better identification of the homogeneous strata
for composite likelihood and power prior application,
as described previously. For example, the EMA has
recently released a draft qualification opinion on their
3-step Prognostic Covariate Adjustment procedure for
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phase 2 and 3 trials.76 This procedure uses novel “digital
twins” technology to construct an external control.77

Currently, application of these methods is restricted to
exploratory analysis and requires separate statistical
analysis.

Evidence Synthesis
Evidence synthesis refers to a broader framework
that allows the use of RWD data of investigational
treatment and competitors for informed decision
making. MA and network MA (NMA) are commonly
used methodologies to combine different sources of
external data, especially in rare diseases for which
clinical trials are usually small. MA and NMA are
widely applied in drug development. These analyses
are usually planned prospectively. Flexible statistical
models are used to combine heterogeneous types
of data sources with summary-level and individual-
subject-level data. Both fixed-effects and random-
effects models are used for MA. In contrast to RCT,
RWD presents some unique challenges for MA due
to the difference in the data collection process among
different sources (eg, nonrandomized studies). Use
of data sources other than RCT generates a biased
treatment effect, which poses further challenges to
the interpretation of the MA estimates. One possible
solution is the use of generalized evidence synthesis
techniques.78 This is an extension of the standard
random-effects MA model incorporating a third level
in the hierarchy to account for heterogeneity between
study design types explicitly, as well as heterogeneity
between individual studies with the same design type.
In addition, several methods are available to assess
the impact of bias in MA. These include the informal
assessment of a funnel plot, statistical tests, and ad-
justment models and procedures. Additional sensitivity
analyses are also necessary to ensure robustness of the
result.

Indirect comparisons and NMA, an extension of
conventional MA, in which multiple treatments are
being compared using both direct comparisons of inter-
ventions within RCTs and indirect comparisons across
trials based on a common comparator. It is useful when
multiple potential treatments are available in a disease
area. NMAs are often used to synthesize evidence from
RCTs. Including RWD sources in NMA and decision
making is growing. Like standard MA, inclusion of
RWD in NMA needs careful consideration. Without
appropriate handling of the confounders, the treatment
effect will be biased and requires cautious interpreta-
tion. This is particularly useful for rare disease drug
development, as the evidence is often generated from
nonrandomized studies, which can introduce system-
atic bias. Generalized evidence synthesis methods79,80

can be useful to address this issue.

Data Quality Considerations in Using
Natural History and RWD
The intention to use RWD and more specifically
natural history data for the benefit of rare disease
drug development is certainly growing, along with
an increased scrutiny about the quality of RWD.
The question of whether the data are good enough
for decision making is often raised.81 It is important
to understand that quality must be evaluated in the
context of its intended use and cannot be assessed by
looking at data in isolation. Any evaluation of RWD
quality underpinning RWE must consider whether any
individual or combined data source has the information
to answer a given research question (ie, its information
value). Specific data quality issues that come to bear
when attempting to curate and integrate various rare
disease data sources include missing data, a lack of
core common data elements, no or incomplete data dic-
tionaries (eg, missing definition of scoring values, data
derivation formulas, or units), a lack of longitudinality,
and a lack of validated questionnaires.82 As various
stakeholders conduct individual landscape analyses on
available RWD sources, it would be important in the
rare disease effort to share these assessments particu-
larly in the context of data quality in the context of
intended use. Most of these issues are not unique to the
rare diseases data ecosystem but rather widespread is-
sues common to all patient-level data. Issues in quality,
completeness, and relevance of source data inevitably
lead to uncertainty in downstream findings.When these
data are used in applications for regulatory decision
making, uncertainties that cannot be addressed through
available evidence will translate into gaps in knowledge
that should be addressed in the design and conduct of
clinical trials for the intended indication.

Necessarily, rare outcomes raise issues in sampling
populations, particularly in elucidating factors that
influence the onset of diseases. At the same time,
characterizing disease progression after onset for rare
conditions requires identification of affected patients,
often from multiple data sources. Patient identification
also raises the issues of missing values and duplicate
data and the potential solution of using global unique
identifiers (GUIDs) to address the duplication issue.
A GUID is a 128-bit text string that represents an
identification. In general, organizations generate
GUIDs when a unique reference number is needed
to identify information on a computer or network.
A GUID can be used to identify hardware, software,
accounts, documents, and other items. A GUID in
the context of rare disease research is a computer-
generated alphanumeric code that is unique to each
research participant. A GUID protects personally
identifiable information and enables deidentified data
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from 1 person to be integrated and tracked over time
across multiple projects, databases, and biobanks.83,84

A GUID model is essential for the linking of study
data to other data sets, particularly registry data. As the
majority of registry data sources come from surveys,
there is also the issue of data integration with more
structured data sources (eg, clinical trial data).

Recently, some have suggested the establishment of
a framework for evaluating data appropriateness, often
referred to as “fitness for purpose” or the degree to
which the chosen data source aligns with the ability
to address the research question posed accurately
and reliably.85 As part of the Sentinel Initiative,86 the
FDA and other organizations are developing detailed
recommendations on standards-based approaches to
describing data and presenting data quality metrics.
There are some efforts to address the limitations of
natural history data more rigorously, but there are still
no universally accepted standards, and the variation in
data quality among natural history data sources contin-
ues to make the integration of such sources difficult.82

As such, integration is often rate limiting and a critical
initial step in the creation of drug development tools
to facilitate rare disease research and development.
This is an important area to continue to support, as
it will no doubt improve quality considerations for
data that are included in drug product registration
and fidelity in models and tools constructed from
them.

Currently, pharmaceutical sponsors seeking to use
these data to support registration do so at their own
risk, but also with the intention to expose the risk-
benefit for using such data given that the lack of data
among rare diseases is still the most pressing issue.
Good recommendations for use given the limitations
and risks are still valuable and often justify the use
given that the benefit outweighs the risk.86,87 For
their part, regulators remain open-minded and new
regulatory guidance by the FDA and the EMA on
using RWD suggests that they are receptive to receiving
well-characterized assessments and proposals.88–90

Even if all the metrics for evaluating RWD quality
were established and agreed upon, such criteria are un-
likely to be enough for every scientific research purpose.
Most RWD sources will be a good fit for some research
questions but not others. Data appropriateness needs to
be gauged by reviewing the strengths and weaknesses
of any data set under consideration in the context
of the research initiative, study design, budget, and
time available to assemble relevant information. Data
quality is not an absolute metric that can predict utility
in isolation. A quality assessment can be evaluated only
with full knowledge of the research question and im-
mediacy of the need of information. Only through the
optimal pairing of data source and research question

Figure 1. Harmonization of real-world and natural history source data
sets. EHRs, electronic health records; PROs, patient reported outcomes

parameters can you have confidence in delivering a
reliable conclusion.

Considerations and Examples in Using
Natural History and RWD for Regulatory
Decision Making
The 21st Century Cures Act13 was signed into law by
the US Congress on December 13, 2016. The Cures
Act is designed to bring new innovations and accelerate
medical product development more efficiently, thus
benefiting the patient. It added section 505F to the Fed-
eral Food, Drug, and Cosmetic Act, which mandates
the FDA to develop guidance for use of RWD/RWE
for regulatory decisions. As a result, the FDA issued a
framework for an RWE program in 2018 to support the
approval of a new indication for a drug and support or
stratify postapproval study requirement.11

It is well recognized that there has been rapid ad-
vancement in RWD collection and curation efforts. For
example, for a patient with a genetic cardiomyopathy,
health care data may be captured in a rare disease–
specific registry in addition to medical records, claims
data, laboratory data, genetic data, and other RWD
sources. While these data sources are often siloed,
harmonizing them can provide researchers a holistic,
longitudinal view into the disease’s natural history, the
patient’s health status, their interactions with health
care systems, and insights into a drug’s long-term safety
and effectiveness (Figure 1).

The FDA recently issued a guidance on RWD
regarding the use of registries to support regulatory
decision making.8 The guidance highlighted that use of
RWD including data collected directly from the registry
and additional data linked from other RWD sources
such as insurance claims, electronic health records
(EHRs), laboratory data sources, blood bank, and/or
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medical device outputs can be used to support the de-
velopment of disease natural history studies. However,
data relevance and reliability need to be considered
when assessing data sources. This guidance coupled
with guidance on EHR and medical claims data can
serve as a foundation for using RWD to build natural
history studies for rare disease.91

Examples of FDA Approvals in Rare Diseases Based
on RWE in Supporting Effectiveness
As of February 2, 2019, research showed that there were
≈26 orphan drugs that were approved with at least 1
source of RWD.92 All these approvals have RWD/RWE
described in Section 14 of the drug label. For most la-
bels, theRWEwas descriptive and presented in tables or
figures and the statistical analysis was typically simple.
With rare diseases, the use of natural history and/or
RWD as the control in single-arm clinical studies is the
most common historical use of non-RCT data when it
comes to regulatory approvals. The intent of a natural
history study is to follow the progression of a patient’s
disease in the absence of treatment for the entire course
of the disease from onset until its outcome, such as
death, disability, or recovery. In this type of single-arm
clinical trial, all subjects receive the same treatment.
Subsequently, the results of this treatment are then
compared against the natural history progression of
the disease.93 There were several notable observations.
Patients in the treatment arm of the clinical trials
were matched to historical control patients. Statistical
models were used to adjust for differences in baseline
covariates between the historical control cohort and the
treated clinical trial arm, that is, Cox regression.

The acceptance of using natural history data is
especially critical when there is no approved treatment
for diseases in which the patient’s condition continues
to worsen due to lack of medical intervention. In such
situation, it is logical to use natural history data due
to the challenge in recruiting an adequate number of
patients to conduct an RCT and the ethical issues
related to the administration of placebos that do not
provide any benefits to the patients.94 Following are 6
examples of FDA approvals for rare disease indications
that used natural history and/or RWD. They are listed
in reverse chronological order by approval year, starting
with the most recent approval. Two of the examples,
Brineura and Defitelio, provide details on the basis for
the statistical analysis that was used in the submissions
and the labels.95 The other examples consist of shorter
excerpts highlighting the type of natural history or
RWD data that was used.

Case 1: Besremi
In 2021, the FDA approved Besremi (ropeginterferon
alfa-2b-njft) for treatment of adults with polycythemia

vera (PV) using clinical trial data and natural history
data. Given the statistical issues in ropeginterferon alfa-
2b-njft clinical studies, understanding of the natural
history of PV and that spontaneous remissions do not
occur randomly in this disease, the high unmet medical
need, and the rarity of the disease, the review team
evaluated the effectiveness of ropeginterferon alfa-2b
from the Safety Study of Pegylated Interferon Alpha
2b to Treat Polycythemia Vera (PEGINVERA; a phase
1/2) study and the published studies on the natural
history of the disease. In addition, the review team
evaluated the objective change from baseline for the
hematology laboratory parameters in the active treat-
ment group from the PROUD-PV (a randomized phase
III study comparing hydroxyurea to ropeginterferon
alfa-2b) as mechanistic and confirmatory evidence
to establish substantial evidence of effectiveness for
ropeginterferon alfa-2b in the treatment of patients
with PV without symptomatic splenomegaly.96

Case 2: Brineura
Brineura (cerliponase alfa) was approved by the FDA
onApril 27, 2017. The indication is for a form of Batten
disease, neuronal ceroid lipofuscinosis type 2 (CLN2).
The target population is pediatric patients aged ≥3
years. The incidence of CLN2 is between ≈0.56 and
4 patients per 100,000 live births in the United States
and Europe, and thus CLN2 is considered an orphan
rare disease. The efficacy claim was based on the
comparison of data from a single-arm clinical study
with historical controls.94,97,98

The sponsor initially proposed a primary analysis
that uses a 1-sample t-test aimed to compare pa-
tient data to their baseline value instead of a control
arm. However, the FDA recommended using histori-
cal control data obtained from the DEM-CHILD (a
treatment-oriented research project of neuronal ceroid
lipofuscinosis disorders as a major cause of dementia
in childhood) database, which consists of patients with
CLN2. This DEM-CHILD database was created to
provide a tool for experimental therapy studies.99 The
FDA statistics review discussed the fact that the CLN2
rating scales used in the DEM-CHILD database and
the current studywere different, that is, slightly different
assessment scales, different assessment frequency/times,
and different methodologies for data collection. Fol-
lowing quantitative evaluation of the comparability of
the rating scales, it was advised to change the score and
the definition of a responder in the single-arm trial.100

For the natural history cohort, a subset of 69
patients with similar eligibility criteria to the clinical
study was initially selected from the DEM-CHILD
database. A further 27 patients were then excluded
due to insufficient assessments and overlap with the
participants in the Brineura clinical study.
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The Brineura single-arm study recruited 24 patients,
and the natural history cohort consisted of 42 sub-
jects. The FDA requested analysis based on matched
pairs. Matched pairs are defined as exact matching on
baseline motor score, age ±3 months, and genotype
(0, 1, or 2 key mutations). Six patients in the single-
arm study could not be matched to the natural history
cohort on the basis of this criterion.101 If there was >1
match, further matching variables were considered in
the following order: detailed genotype, sex, and age of
first symptom. The result of the effectiveness analyses
that are reported in the label was based on this matched
subset of 17 pairs.

Case 3: Defitelio
Defitelio (defibrotide sodium) was approved by the
FDA onMarch 30, 2016, for the treatment of adult and
pediatric patients with hepatic veno-occlusive disease
(VOD), also known as sinusoidal obstruction syn-
drome. These patients have renal or pulmonary dys-
function following hematopoietic stem-cell transplan-
tation (HSCT).102 Defitelio is the first FDA-approved
therapy for this rare and life-threatening liver disease.
Per the US label, the efficacy assessment was approved
on the basis of 1 pivotal single-arm study, a pediatric
clinical study, and an expanded access study.

The pivotal study was conducted as an open-label,
historically controlled, multicenter study.103 There were
2 cohorts: a defibrotide cohort with 102 subjects and a
historical control cohort with 32 subjects. Subjects in
the historical control cohort consisted of 6867 subjects
undergoing HSCT from 35 medical centers. These
subjects received the best supportive care. The primary
end point was the percentage of patients who were still
alive 100 days after HSCT.

As described in theMedical Review,104 the historical
cohort was selected by a medical review committee.
Two independent hematologists monitored the process
by reviewing the subjects’ medical charts. Confounding
effects from the potential prognostic factors were ad-
justed by the following method. A propensity score was
performed for the primary and selected supportive and
sensitivity efficacy analyses. For everyone, a propensity
score for cohort membership (Defitelio cohort vs his-
torical control cohort) was calculated using a logistic
regression, with “cohort membership” as the outcome
and 4 baseline prognostic factors of survival as the
independent variables. Patients were then categorized
into quintiles or quartiles based on this propensity
score. The strata created by quintiles/quartiles were
used to perform stratified treatment difference analysis.
Although the selectionwas rigorous, the FDA reviewers
still had concerns that the historical control cohort
versus the clinical trial patients may not consist of the
same underlying patient population.105

Furthermore, the time frame was different for the
2 cohorts. For the defibrotide cohort, the overall time
frame from the earliest date of HSCT to the latest
date of HSCT was 2 years, while the overall time
frame spanned 12 years for the historical control co-
hort. Additionally, many of the potential prognostic
factors that might confound the evaluation of temporal
effect were not collected. To address the concerns, the
medical review committee subsequently reviewed the
source data and reduced the historical control patients
from 86 to 32. The resulting smaller sample size led
the FDA statistical reviewer to question the sponsor’s
interpretation of the primary efficacy results, as the
behavior of propensity score methodology is not well
established for small sample sizes.

Therefore, in the current US label for this product,
there is no detail about the source of this historical con-
trol cohort, and no statistical comparison of the pivotal
study with this historical control is presented. The 100-
day survival for the historical cohort is presented as a
range. To accommodate, an expanded access program
was also included in the label.103 This was for pediatric
patients with hepatic VOD. In this study, the 100-day
survival after HSCT was evaluated to be 45% for 351
patients who had received an HSCT and developed
hepatic VOD with renal or pulmonary dysfunction.

Case 4: Vimizin
In 2014, the FDA used RWD generated from studies
of related diseases to approve Vimizin (elosulfase alfa),
an enzyme replacement therapy (ERT), as the first
approved treatment for Morquio syndrome. Morquio
syndrome is one of a class of mucopolysaccharidoses
(MPSs), a group of rare inherited disorders caused by
the lack or inability of lysosomal enzymes to break
down certain carbohydrates. Vimizin was the fourth
ERT to receive approval for the treatment of an MPS
disorder, although the prior treatments were each ap-
proved for different MPS disorders. The FDA relied
on regulatory histories of the other MPS ERTs, as
well as historical data from other lysosomal disorders,
along with a single-arm trial of a small premarket
population,106 with comparison to historical controls,
which included data from the Morquio A Clinical As-
sessment Program (MorCAP) natural history study.107

Case 5: Carbaglu
In 2010, the FDA relied solely on historical studies
to approve Carbaglu (carglumic acid) for treating
hyperammonia caused by N-acetylglutamate synthase
deficiency, a rare genetic disorder that can be fatal or
cause permanent central nervous system damage in
infants soon after birth if not detected and treated
quickly. The FDA relied on a retrospective review
of 23 N-acetylglutamate synthase–deficient patients



Liu et al S51

who received Carbaglu for a median of ≈8 years.
The clinical observations in the 23-patient case series
were unblinded and uncontrolled and preclude any
meaningful formal statistical analyses of the data.
However, short-term efficacy was evaluated using
mean and median change in plasma ammonia levels
from baseline to days 1–3. Persistence of efficacy was
evaluated using long-term mean and median change
in plasma ammonia level. Carbaglu reduced blood
ammonia levels within 24 hours and brought them to
normal levels within 3 days.108,109

Case 6: Myozyme
In 2006, the FDA approved Myozyme (alglucosidase
alfa), an ERT, for the treatment of Pompe disease, a rare
inherited lysosomal storage disorder. The approval was
based on a clinical study that used a historical cohort
of untreated individuals as a benchmark. The sponsor
demonstrated efficacy with respect to the infantile-
onset form of the disease using a single-arm open-
label clinical study of 18 patients conducted between
2003 and 2005. The efficacy was assessed by comparing
the treated group over a period ranging from 52 to
106 weeks to a historical cohort of 61 untreated pa-
tients born between 1982 and 2002 who were identified
through a retrospective medical chart review (only 1
of whom was still alive) using improved ventilator-free
survival as the primary efficacy end point. The patients
with untreated infantile-onset Pompe with similar age
and disease severity were diagnosed by age 6 months.110

All 6 cases led to regulatory approvals by using
natural history from various databases as the external
study control (cases 1–4 and 6), and/or using RWD
(case 5). The external control patients were carefully
selected to closely match the demographic and disease
status to the patients in the treated arm. Among these
cases, extensive statistical analyses were conducted to
support the approvals. With increasing experience and
expanded databases, it is anticipated that the use of
natural history data andRWDwill becomemore widely
used and continue to support the approval of rare
disease indications.

Limitations in Using Natural History
and RWD
Data Access and Availability
Many sources are accessible with a fee (insurance
claims, EHRs, hospital charge master, etc). However,
some RWD sources are not accessible to researchers
such as registry and laboratory data. As shown in the
above case examples of FDA approvals in rare diseases,
the published natural history data and results allowed
decision making by sponsors and regulators. Building

public-private consortia and federated data networks
may further improve data accessibility. Successful ex-
amples include the Rare Disease Cures Accelerator–
Data and Analytics Platform from the Critical Path
Institute111 and European Health Data and Evidence
Network of the Innovative Health Initiative.112 Some
RWD are not routinely collected outside of clinical
trials. For example, as a measure of functional motor
abilities in ambulant children with DMD, the North
Star Ambulatory Assessment is commonly used in
DMD trials as a clinical end point to assess treatment
efficacy. However, such measure is not routinely col-
lected in clinical practices, making it difficult to assess
real-world disease progression after innovative treat-
ment (eg, gene therapy, exon skipping, and readthrough
therapies). Missing data are a common occurrence in
RWD. For example, genetic and laboratory data may
not be available in EHRs and claims without linking to
specific genetic and lab sources.

Data Linkage Across Databases
In the United States, individuals, particularly patients
with rare diseases, seek care withmultiple providers and
laboratories, and may change insurance plans often.
To construct a complete, longitudinal patient journey
without data gaps using RWD (see Figure 1) for a
natural history study, it is necessary to link a variety of
data sources generated through a patient’s interactions
with the health care system. However, data linkage is
often not available due to privacy concerns in using
personally identifiable information to link data sources.
New technology such as tokenization and GUID as
described in the Data Quality section, long used by the
financial industry, may be used to connect siloed data
sources in a privacy-preserving way.

Structured and Unstructured RWD
The most commonly used RWD are from structured
fields of EHR or billing systems. However, using struc-
tured data (eg, diagnosis, procedure, and drug codes)
to construct key study variables such as exposure, end
points, and covariates are often challenging. Validity
of these variables from RWD must be scrutinized for
use in regulatory decision making. For example, the
FDA’s Sentinel Initiative has led a series of validation
assessments of health outcomes of interest.86 Some
variables can be reliably identified using structured data
with high positive predictive values,113 while others
may not.114–116 Unstructured data often contain clinical
information such as disease severity, tumor stages,
health behaviors, pathology report, and imaging, which
may be important prognostic factors that need to be
considered in analysis. However, unstructured data are
usually not available or very difficult to extract from
medical records, leading to risk of confounding and
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bias of analysis if not addressed. Artificial intelligence
may be leveraged to process unstructured data and
advances in ML and natural language processing could
be used to extract unstructured data elements, build al-
gorithms for outcomes identification, and assess image
and laboratory results.

Other Limitations
As the RWD and natural history data are from a
practical clinical setting, the patient pool may include
a more heterogeneous population than what would
be included in an RCT, which could affect the data
collection and interpretation. Because of the difficulties
associated with patient finding in rare diseases, the
sample sizes of these types of studies may be small,
leading to a limited ability to draw firm conclusions
from the data gathered. Pooling data from different
studies and more advanced analytical techniques may
be necessary to better understand the rare diseases and
evaluate treatment effects.

Conclusions and Future Directions
The scarcity of patients with rare diseases can pose
several challenges toward their understanding as well as
the development of drugs for their treatment. Natural
history data and RWDprovide significant value toward
the understanding of disease progression, patient pop-
ulations, novel biomarkers, genetic relationships, and
treatment effects. However, the utility of these data
in rare diseases can be limited by their heterogenic-
ity, quality, and accessibility. A few initial regulatory
guidelines have been published to provide directions to
overcome these limitations. Collaboration across regu-
latory authorities, researchers, patients/caregivers, and
drug developers on the application of natural history
data and RWD is critical to expedite understanding of
a rare disease and foster development of new drugs for
it. Standardized data collection and data quality can
further facilitate data sharing/pooling. Finally, the use
of quantitativemodel-based approaches such as disease
progression modeling, artificial intelligence and ML,
and advanced statistical approaches in natural history
data and RWD will enhance disease understanding
and guide more efficient clinical study design in drug
development, which is particularly valuable in rare
diseases.
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