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Objective: To characterize the spectra of mutations in non-muscle invasive bladder
cancer (NMIBC) and muscle-invasive bladder cancer (MIBC) in the Chinese population to
identify any mutational features and find potential therapeutic targets.

Materials and methods:We collected fresh bladder tumor samples from NMIBC (n = 9)
and MIBC patients (n = 11) along with adjacent normal bladder tissue specimen and
peripheral blood sample. Using whole exome sequencing (WES), we analyzed the
mutation spectra of those NMIBC and MIBC bladder cancer (BCa) specimen.

Results: Our results demonstrated that 95% of BCa patients (19/20) had varying degrees
of driver gene mutations, FGFR3 (45%), KMT2D (40%), PIK3CA (35%), ARID1A (20%),
EP300 (20%), KDM6A (20%), KMT2C (20%), and STAG2 (20%) were the most frequently
mutated genes in BCa patients. NMIBC and MIBC exhibited different genomic alterations.
FGFR3 (67%), PIK3CA (56%), and RHOB (44%) were the most frequently mutated genes
in NMIBC patients. Of note, RHOB mutation only occurred in NMIBC, whereas mutations
of KMT2D (55%), TP53 (36%) and KMT2B (27%) were frequently detected in MIBC, and
TP53 and KMT2B mutation only occurred in MIBC. The frequency of mutations in DNA-
damage repair (DDR) gene was higher in MIBC than that in NMIBC (91 vs 78%, 6.2 vs 2.4
gene mutations per patient). Copy number alterations (CNAs) occurred at more diverse
chromosomal locations in NMIBC, but the CNA burden was higher in MIBC [9.01
(2.07–31.51) vs 4.98 (0.99–9.73) mutations/Mb]., the trend of which was consistent
with the tumor mutation burden (TMB) [8.26 (4.63–21.84) vs 5.58 (3.87–9.58) mutations/
Mb]. Among the current set of single-base substitution (SBS) signatures including SBS 1,
2, 5, 13, and 40, we identified one differently expressed signature between NMIBC and
MIBC patients: SBS13.
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Conclusions: There were different gene mutational characteristics and signatures
between NMIBC and MIBC in the Chinese population. Frequency of DDR, CNA
burden and TMB were higher in MIBC. Our analysis revealed that several genes in
NMIBC did not overlap with those reported in MIBC, suggesting that a fraction of
NMIBC and MIBC likely developed secondary to different precursor lesions.

Keywords: mutated gene, muscle invasive bladder cancer, non-muscle invasive bladder cancer, whole exome
sequencing, comparative analysis

INTRODUCTION

Bladder cancer (BCa) is the most common malignancy of the
urinary tract, which occurred in 573, 278 patients (5.6/100,000)
and caused 212, 536 deaths globally in 2020, accounting for 3.0 and
2.1% of the total cancer incidence and mortality secondary to
malignancy, respectively (Sung et al., 2021). In China, the overall
incidence and mortality of BCa were about 5.8/100,000 and 2.37/
100,000 in 2015 and continued to increase in the recent years (Chen
et al., 2015). Urothelial (formerly transitional cell) carcinoma
accounted for approximately 90% of all BCa (Babjuk et al., 2017).

BCa was divided into non-muscle invasive bladder cancer
(NMIBC) (stage Ta or T1) and muscle-invasive bladder cancer
(MIBC) (stage T2, T3, or T4) according to pathologic tumor staging
which was based upon whether invasion into muscle was present.
NMIBC accounted for 70–80% of BCa both in China and Europe (Li
et al., 2015; Babjuk et al., 2017). In clinical practice, patients with
NMIBCs were treated with transurethral resection of the bladder
tumor (TURBT) followed by an intravesical instillation of
chemotherapy or Bacillus Calmette-Guerin (BCG) therapy.
Nevertheless, half of them can relapse and 5–20% of NMIBC will
eventually progress to MIBC despite of all the treatments (van den
Bosch and Alfred Witjes, 2011; Jordan and Meeks, 2019). MIBC
patients, who were treated with a systemic cisplatin-based
neoadjuvant chemotherapy followed by a radical cystectomy,
have a poor prognosis with less than 50% 5-year survival (Alfred
Witjes et al., 2017). Therefore, there was an urgent need to clarify the
related molecular tumorigenic mechanisms and develop novel
targeted therapies of MIBC and NMIBC.

Unlike many other types of cancer, NMIBC does not always
advance to MIBC. However, when this occurs, the prognosis is
even worse. This indicates that NMIBC and MIBC have different
molecular characteristics and were largely believed to develop
secondary to different molecular alterations, though there could
be connections between them (Audenet et al., 2018; Cao et al.,
2020). Historically, NMIBC was considered to evolve from
epithelial hyperplasia, whereas MIBC arose from dysplasia and
was associated with genetic instability (Jones and Droller, 1993).

In the recent years, next generation sequencing (NGS) has been
applied to analyze genomic alterations in BCa. BCa has been found
to exhibit a high frequency of somatic mutations compared to
other solid tumors (Knowles and Hurst, 2015; Pietzak et al., 2017).
Mutation of FGFR3 was identified as a driver mutation of NMIBC
(Al Hussain and Akhtar, 2013), while most of MIBC are
characterized by inactivating mutations involving major tumor
suppressors such as TP53, RB1, and PTEN (Cordon-Cardo, 2008).
Recently, there have been large-scale analyses that

comprehensively investigated the genes mutated in NMIBC and
MIBC by analyzing The Cancer Genome Atlas (TCGA) database
or performing NGS by other groups (The Cancer Genome Atlas
Research Network, 2014; Pietzak et al., 2017; Robertson et al.,
2017). However, the molecular profile and mutational
characteristics of NMIBC and MIBC at the genomic level in
Chinese Han population have not been extensively investigated.
As far as we know, there were only five studies investigating BCa
genomic alterations in the Chinese population (Gui et al., 2011;
Guo et al., 2013; Pan et al., 2016;Wu et al., 2019;Wang et al., 2020),
and none of them used WES instead of targeted NGS to
systemically compare the characteristics of gene mutations in
NMIBC and MIBC. In this study, using WES, we
comprehensively examined, analyzed and compared the
mutation spectra of nine NMIBC and 11 MIBC cases, including
the frequencies of DNA-damage repair (DDR), tumor mutation
burden (TMB), copy number alterations (CNA), and signatures.
Our study found genetic mutations unique to NMIBC or MIBC,
which may help to explore the pathogenesis and mechanisms, and
provide potential biomarkers and novel treatment targets for BCa.

MATERIALS AND METHODS

Patients and Samples
Fresh clinical BCa tissues were collected in accordance with the
Declaration of Helsinki 1975) and was approved by the ethical
committee of National Cancer Center. All patient names, initials,
or hospital numbers were not demonstrated in this study. The study
was conducted in patients with pathologically confirmed bladder
urothelial carcinoma, between January 2021 and June 2021 at the
Department of Urology at the National Cancer Center/National
Clinical Research Center for Cancer/Cancer Hospital. All patients
were Chinese Han people. The tumor staging was assessed according
to the Union Internationale Contre le Cancer (UICC) TNM
classification of malignant tumors 2017. And the grade was
assessed according to the WHO classification of 2004. A total of
nine fresh BCa tissues and their corresponding blood samples were
collected from NMIBC patients who underwent TURBT, while 11
fresh BCa tissues and their respective non-neoplastic bladder specimen
were collected from MIBC patients who underwent cystectomy.

Genomic DNA Extraction and Exon
Sequencing
DNA was extracted from tumor and blood samples. The tumor
content was evaluated by pathologists to ensure enough tumor
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cells. The DNA was isolated using the DNeasy Blood and Tissue
Kit (69504, QIAGEN, Venlo, Netherlands). We created targeted
capture pulldown and exon-wide libraries from native DNA
using the NadPrep® Hybrid Capture Reagents (for
Illumina®,1005101) and NadPrep® DNA Library Preparation
Kit (for Illumina®,1002103) E96, and then sequencing was
performed to produce 150 bp paired end reads by using an
Illumina NovaSeq platform with the average sequencing depth
of 100x for controls and 200x for tumors.

Sequence Data Quality Control
The shortreads (Raw data) were transformed from the original
fluorescence image files obtained from NovaSeq platform by base
calling. They were recorded in FASTQ format, including
sequencing data and their corresponding quality scores. Reads
with adapter contamination and low-quality/unrecognizable
nucleotides were excluded through quality control. Then,
downstream bioinformatics analyses were performed on clean
data. At the same time, percentage of reads with average
quality>20 and that of those with average quality>30,
sequencing error rate, the number of total reads, and GC
distribution were calculated.

Reads Mapping and Detection of Somatic
Genetic Mutation
We used the BWA (Burrows-Wheeler Aligner) (Version: 0.7.12-
r1039) to align clean data to the human reference genome (hg19)
and get the Sequence Alignment/Map format (sam) file. For the
Binary Alignment/Map format (bam) file, the sam file was sorted
by samtools (Version: 0.1.19-44428cd) and then used GATK
(Genome Analysis Toolkit) to re-compare the reads in the
interval, calibrate and rearrange the alkali matrix quality
values. All bam files were used to call single nucleotide
polymorphism (SNP) and insertion/deletion (Indel) by
Strelka2 (version 2.9.10) (Sangtae et al., 2018). Polymorphisms
of somatic single-nucleotide variants (SNVs) and InDels
referenced in the 1,000 Genomes Project or Exome
Aggregation Consortium (ExAC) with a minor allele frequency
over 1% were removed to default filters. Those variants were then
annotated by the VEP (ensembl’s Variant Effect Predictor)
(version 104) software (Mclaren et al., 2016). For further
analysis, FACETS (version 0.5.14), unified analysis pipeline
and software were used for CNA analysis (Shen and Seshan,
2016), and GISTIC algorithm was used to infer recurrently
amplified or deleted genomic regions. Based on the frequency
and amplitude of amplification or deletion affecting each gene,
G-scores were calculated for genomic and gene-coding regions.
Genes with a significant excess of the number of non-
synonymous mutations relative to the estimated density of
background mutations were identified as significantly mutated
genes (SMG) using the MutSigCV algorithm (Lawrence et al.,
2013). Driver mutations were obtained from the “Catalog of
driver mutations” curated by Integrative Onco Genomics
(IntOGen) (Martínez-Jiménez et al., 2020) and The Cancer
Genome Atlas project (TCGA) (Bailey et al., 2018). We
focused in particular on the DDR pathway, because there were

many recent reports implicating alterations in this pathway as a
driver of tumor phenotype (Mouw, 2017). DDR gene list was
screened by referring to published literature (Knijnenburg et al.,
2018; Bellmunt et al., 2020). Mutation signature analysis was
performed to resolve the SNVs for each sample into a set of
characteristic patterns (signatures) to infer the contributions of
each signature across samples (Alexandrov et al., 2013). All SNVs
for each sample were projected onto the 30 previously described
COSMIC signatures to infer the mutational signature pattern of
each sample.

Statistical Analysis
The data were expressed as medians (Q1–Q3) for the continuous
variables and numbers (percentage) for the categorical variables.
The Kolmogorov-Smirnov test was used to test the distribution
pattern. The differences between continuous variables were
determined with the Mann-Whitney U tests. The categorical
variables were analyzed by χ2-test or Fisher’s exact test where
appropriate. A p-value of less than 0.05 (two-sided) was
considered statistically significant. The statistical analyses were
performed with SPSS version 22.0 software (SPSS Inc., Chicago,
IL, United States).

RESULTS

Patient Information
The clinicopathological characteristics of enrolled patients were
shown in Table 1. Among these 20 identified BCa patients, five
patients were female and 15 were male, aged 32–86 years 60% (12/
20) of these BCa patients were current or past smokers. Patients
were divided into two groups according to pathological results:
NMIBC (n = 9) and MIBC (n = 11). All NMIBC patients
underwent TURBT and patholpgical stage were T1 (n = 8) or
Ta (n = 1) with low grade; MIBC patients underwent laparoscopic
radical cystectomy (LRC, n = 6), laparoscopic partial cystectomy
(LPC, n = 4), or open partial cystectomy (OPC, n = 1), and
pathological stage were T2-3 (T2a:3, T2b:4, T3a:1, T3b:3) with
high grade except one case with low grade.

Mutated Driver Genes in NMIBC and MIBC
Cases
We identified 67 SMGs in the MIBC cases, and 10 SMGs in the
NMIBC cases, respectively. All detected mutations in MIBC and
NMIBC were summarized in Supplementary Tables S1, S2,
respectively. TMB was calculated as the number of
nonsynonymous protein-coding variants divided by the total
sequenced genome length. Although the difference was
insignificant, the trend that MIBC had a higher TMB than
NMIBC was evident [8.26 (4.63–21.84) vs 5.58 (3.87–9.58)
mutations/Mb, p = 0.26] (Figure 1A). Next, we mainly
focused on driver gene mutation profiles. Our analysis
produced a final list of 281 unique driver mutations affecting
146 different genes (Figure 1B), we noticed that 95% of BCa
patients (19/20) had different degrees of driver gene mutation.
FGFR3 (45%), KMT2D (40%), PIK3CA (35%), ARID1A (20%),
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EP300 (20%), KDM6A (20%), KMT2C (20%), and STAG2 (20%)
were the frequently mutated genes in BCa patients. Of note,
KMT2D, KDM6A, EP300, and KMT2C were histone
modification-related genes. NMIBC and MIBC displayed
different genomic alterations (Figure 2). FGFR3 (67%),
PIK3CA (56%), RHOB (44%), and CREBBP (33%) were the
most frequently mutated genes in NMIBC patients, whereas
mutations of KMT2D (55%), TP53 (36%), KMT2B (27%),
SPTA1 (27%), ERCC2 (27%), FAT1(27%), ERBB2 (27%),
FGFR3 (27%), GRIN2D (27%), HRAS (27%), NSD1 (27%),
and PDS5B (27%) were frequently detected in MIBC. It is
noteworthy that TP53, KMT2B, SPTA1, GRIN2D, NSD1, and
PDS5B were only frequently mutated inMIBC but not in NMIBC
patients, while RHOB and CREBBP mutations only occurred in
NMIBC but not in MIBC patients. Taken together, our
sequencing result indicated the prevalence of FGFR3, PIK3CA,
and RHOB mutations in NMIBC and KMT2D and TP53
mutations in MIBC, which could be developed as potential
biomarkers or therapeutic targets of two different types of BCa
in the Chinese population.

Somatic Mutations in Male and Female
Cases
We observed Figure 1 and found that NMIMC and MIBC
accounted for 60 and 40% of both sex cases, respectively
(male: 9, 6/15; female: 3, 2/5), and the male and female cases
displayed different genomic mutations: FGFR3 (46.7%), KMT2D
(46.7%), PIK3CA (26.7%), EP300 (20%), ERBB2 (20%), FAT1
(20%), KDM6A (20%), STAG2 (20%), and TP53 (20%) were the
most frequently mutated genes in male patients, whereas
mutations of PIK3CA (60%), FGFR3 (40%), ARID1A (40%),

ERCC2 (40%), HRAS (40%), KMT2C (40%), RHOB (40%),
KMT2D (20%), EP300 (20%), ERBB2 (20%), FAT1 (20%),
KDM6A (20%), STAG2 (20%), and TP53 (20%) were
frequently detected in female cases. It is noteworthy that
GRIN2D, PDS5B, and SPTA1 were only frequently mutated in
male but not in female patients. Collectively, our sequencing
result indicated the prevalence of FGFR3 and KMT2D mutations
in male and PIK3CA, FGFR3, ARID1A, ERCC2, HRAS, KMT2C,
and RHOB mutations in female, which needs further validation
in large samples.

DDR Gene Alterations
It has been reported that there was an association between DDR
gene mutations and responses to platinum-based chemotherapy
(Teo et al., 2017) and immunotherapy treatment for BCa (Teo
et al., 2018). DDR gene mutations were identified in 17 patients
(85%) in this study (Figure 3A). They were seen at higher
frequency in the MIBC (10/11, 91%) compared with NMIBC
(7/9, 78%), besides, the average DDR mutation burden of MIBC
per patient was higher than that of NMIBC (6.8 vs3.1 mutations/
Mb, p < 0.05). ERCC2 and TP53 were the most frequently
mutated DDR genes in all BCa patients, with overall mutation
rates of 20 and 20%, respectively (Figure 3A). ERCC2 and TP53
variants were nearly all missense mutations (4/4, 100%; 3/4, 75%).
As shown in Figure 3B, DDR gene mutations evidently occurred
in MIBC patients. There were 50 DDR genes solely mutated in
MIBC patients (50/71, 70%), while 12 DDR genes only mutated in
NMIBC but not in MIBC patients (12/71, 17%).

Mutation Signature Analysis
SNV analysis showed that only the fraction of T > C
conversion was statistically significantly higher in NMIBC

TABLE 1 | Clinical information of MIBC and NMIBC patients in our study.

Category Number Gender Age T N M Grade Surgery Smoking
history

NMIBC (n = 9) Not-IN10 F 47 1 0 0 low TURBT never
Not-IN13 M 32 1 0 0 low TURBT never
Not-IN14 M 62 1 0 0 low TURBT 30 cigs/day for 30 years
Not-IN15 M 62 1 0 0 low TURBT 40 cigs/day for 50 years
Not-IN16 M 67 a 0 0 low TURBT 20 cigs/day for 40 years
Not-IN17 F 68 1 0 0 low TURBT never
Not-IN18 M 61 1 0 0 low TURBT 20 cigs/day for 20 years
Not-IN19 F 44 1 0 0 low TURBT Never
Not-IN20 M 60 1 0 0 low TURBT 20 cigs/day for 10 years

MIBC (n = 11) IN1 M 75 2a 0 0 high LRC 30 cigs/day for 50 years
IN2 F 75 2a 0 0 high LRC Never
IN3 M 79 3 b 0 0 high LPC 10 cigs/day for 20 years
IN4 M 66 2a 0 0 high LPC 20 cigs/day for 44 years
IN5 M 58 3 b 2 0 high LRC 20 cigs/day for 30 years
IN6 M 65 3 b 2 0 high LRC 20 cigs/day for 40 years
IN7 M 66 3a 0 0 high LPC 10 cigs/day for 40 years
IN8 M 54 2 b 0 0 high OPC 30 cigs/day for 30 years
IN9 M 86 2 b 0 0 high LPC Never
IN11 M 64 2 b 0 0 low LRC Never
IN12 F 54 2 b 0 0 high LRC Never

NMIBC: non-muscle invasive bladder cancer; MIBC: muscle invasive bladder cancer; F: female; M: male; TURBT: transurethral resection of the bladder tumor; LRC: laparoscopic radical
cystectomy; LPC: laparoscopic partial cystectomy; OPC: open partial cystectomy.
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FIGURE 1 | TMB and driver gene mutation profiles of bladder cancer. (A) TMB level in MIBC and NMIBC. Data were expressed as median (interquartile range) and
were statistically analyzed by Mann-Whitney U test; (B) The driver gene mutation profiles in 20 bladder cancer samples. TMB: tumor mutation burden; NMIBC:
non-muscle invasive bladder cancer; MIBC: muscle-invasive bladder cancer.
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FIGURE 2 | Percentages of NMIBC and MIBC cases with driver gene mutations assayed by WES. NMIBC: non-muscle invasive bladder cancer; MIBC: muscle-
invasive bladder cancer; WES: whole exome sequencing.
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FIGURE 3 | The DDR gene mutation landscape of bladder cancer samples.(A) WES analysis of the DDR mutated genes in 20 bladder cancer samples; (B)
Percentages of NMIBC and MIBC cases with DDR gene mutations assayed by WES. WES: whole exome sequencing; DDR: DNA-damage repair; NMIBC: non-muscle
invasive bladder cancer; MIBC: muscle-invasive bladder cancer; WES: whole exome sequencing.
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FIGURE 4 | The analysis of the SNV conversions in 20 bladder cancer samples. (A) Fraction of all types of SNV conversions in each sample of bladder cancer; (B)
Comparison of all SNV conversion types fractions between NMIBC andMIBC groups, data were expressed asmedian (interquartile range) and were statistically analyzed
by Mann-Whitney U test. SNV: single-nucleotide variants; NMIBC: non-muscle invasive bladder cancer; MIBC: muscle-invasive bladder cancer.
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than MIBC (p = 0.025), while the fraction of other five
conversions showed no difference between the two groups (T
> A, p = 0.77; T > G, p = 0.18; C > A, p = 0.55; C > G, p = 0.15; C
> T, p = 0.37) (Figure 4A,B). Mutation signature analysis was
performed to sort the SNVs for each sample into a set of
characteristic patterns (signatures) to infer the contributions
of each signature across samples. All SNVs for each sample were
projected onto the most recent 49 single-base substitution (SBS)
signatures (https://www.nature.com/articles/s41586-020-1943-
3). We focused on SBS 1, 2, 5, 13, and 40, which are the main
SBSs for bladder cancer (Alexandrov et al., 2020). Our analysis
demonstrated that three different mutation signatures were
confirmed between NMIBC and MIBC patients although the
signatures exist in all BCa samples: SBS 1 (deamination of 5-
methylcytosine related), SBS 2 (APOBEC related) and SBS 13
(APOBEC related) (p = 0.41, 0.066 and 0.025, respectively)
(Figure 5). MIBC type was significantly enriched for APOBEC
mutational signatures compared with NMIBC type, while
NMIBC type was enriched in its SBS one signature, although
not statistically significant. Collectively, these observations
suggested that APOBEC mutagenesis plays important roles in
the mutagenesis and evolving process of BCa, and that
deamination of 5-methylcytosine related mutation was
observed in a large fraction of NMIBC patients.

Copy-Number Alterations
CNAs included amplifications (amp) and deletions (del). The
distribution of CNAs’ locations between MIBC and NMIBC was

different. For MIBC, the locations were 1q23.3 amps, 11q13.3
amps, 4q35.2 dels, 6q22.1 dels, 9p21.3 dels, 11q23.3 dels, 13q14.2
dels (Figure 6A,B). For NMIBC, the locations were 1q21.1 amps,
2p11.1 amps, 6p11.1 amps, 10q11.21 amps, 12q15 amps, 1p36.33
dels, 1q44 dels, 2p12 dels, 5q31.3 dels, 7q11.1 dels, 8q23.3 dels,
9p21.3 dels, 9q34.3 dels, 10q26.3 dels, 11p15.4 dels, 11q11 dels,
11q 24.2 dels, 12q21.32 dels, 14q11.2 dels, 15q11.2 dels, 16q11.2
dels, 17p13.1 dels, 19p13.2 dels, 20q 13.33 dels (Figure 6C,D). It
was obvious that CNAs were observed at more locations in
NMIBC. However, the CNA burden of NMIBC was slightly
lower than that of MIBC [4.98 (0.99–9.73) vs 9.01
(2.07–31.51) mutations/Mb] (Figure 6E).

Gene Mutation Characteristics in Smoking
and Non-smoking BCa Cases
There were 12 smokers (MIBC = 7, NMIBC = 5) and three non-
smokers (MIBC = 2, NMIBC = 1) among all male cases, while all
five female cases were non-smokers. In order to eliminate sex
bias, we compared gene mutations between smokers and non-
smokers only in men. The sequence results showed that PIK3CA
(4/12), EP300 (3/12), ERBB2 (3/12), KDM6A (3/12), STAG2
(3/12), TP53 (3/12), GRIN2D (3/12), SPTA1 (3/12) were the
most frequently and exclusively mutated genes in smokers
when compared with non-smokers, whereas mutations of
FGFR3 (2/3), KMT2D (2/3), and MACF1 (2/2) were
frequently detected in non-smokers. Our data demonstrated
that there was an evident trend that the average driver gene

FIGURE 5 |Mutation signature contribution analysis of NMIBC and MIBC samples based on SBSs 1, 2, 5, 13, and 40 for bladder cancer. Data were expressed as
median (interquartile range) and were statistically analyzed by Mann-Whitney U test. NMIBC: non-muscle invasive bladder cancer; MIBC: muscle-invasive bladder
cancer; SBS: single-base substitution.
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mutations of smokers per patient was higher than that of non-
smokers (12 (7–17) vs 7 (1–14) mutations/Mb, p = 0.24),
especially in MIBC subgroup (16 (11.5-21.3) vs 7.5 (1–14)
mutations/Mb, p = 0.25) (Supplementary Figure S1A,B). The
average DDR mutation burden of smokers per patient was
marginally higher than that of non-smokers [4.5 (1.8-11.3) vs
2.5 (0–5) mutations/Mb, p = 0.46] in MIBC subgroup
(Supplementary Figure S1C). Besides, our results showed an
evident trend that smokers had higher TMB burden than non-
smokers [7.6 (5.6-15.3) vs 5.8 (0.2-10.1) mutations/Mb, p = 0.37],
especially in MIBC subgroup [10.0 (6.8-23.9) vs 5.2 (0.2-10.1)
mutations/Mb, p = 0.43] (Supplementary Figure S1D,E).
Moreover, there was a trend that the average CNA burden of

smokers was higher than that of non-smokers [31.5 (8.0-70.8) vs
20.3 (9.0-31.5) mutations/Mb, p = 0.80] in MIBC subgroup
(Supplementary Figure S1F). Collectively, there was a trend
that smokers had higher driver gene and DDR mutation
frequency, higher TMB and CNA burden than non-smokers
in BCa patients, and this trend was more evident in MIBC cases.

DISCUSSION

The present study was the first to comparatively analyze
differentially expressed genes in NMIBC and MIBC in the
Chinese population by WES. Beyond confirming mutated

FIGURE 6 | The distribution of locations of CNAs and CNAs burden between MIBC and NMIBC. (A) The locations of amplifications in MIBC; (B) The locations of
deletions in MIBC; (C) The locations of amplifications in NMIBC; (D) The locations of deletions in NMIBC; (E)CNAs burden in MIBC and NMIBC, data were expressed as
median (interquartile range) and were statistically analyzed by Mann-Whitney U test. CNA: copy number alteration; NMIBC: non-muscle invasive bladder cancer; MIBC:
muscle-invasive bladder cancer.
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genes previously identified in BCa such as FGFR3, KMT2D,
PIK3CA, ARID1A, EP300, KDM6A, KMT2C, and STAG2, we
identified additional driver gene mutations that were implicated
in NMIBC and MIBC. Notably, we discovered that TP53,
KMT2B, SPTA1, GRIN2D, NSD1, and PDS5B were only
frequently mutated in MIBC patients, while RHOB and
CREBBP mutation only occurred in NMIBC. Furthermore, we
firstly detected five mutation signatures differently expressed
between NMIBC and MIBC patients. The current study
established a profile of variation in gene mutations between
NMIBC and MIBC, which might have potential clinical
implications with regard to providing novel targets for
treatment and exploring potential biomarkers to distinguish
these two types of BCa.

We identified 77 SMGs in the 20 BCa cases (67 in MIBC, and
10 in NMIBC). In our study, we demonstrated that FGFR3 (45%),
KMT2D (40%), PIK3CA (35%), ARID1A (20%), EP300 (20%),
KDM6A (20%), KMT2C (20%), STAG2 (20%) and TP53 (20%)
were the most frequently mutated genes in BCa patients, which
included three well-known BCa genes (TP53 (Cordon-Cardo
et al., 1994), FGFR3 (Jebar et al., 2005), PIK3CA (Platt et al.,
2009)). Data from TCGA Research Network showed that TP53
(49%), MLL2 (27%), ARID1A (25%), KDM6A (24%), PIK3CA
(20%), EP300 (15%), CDKN1A (14%), RB1 (13%), ERCC2(12%),
FGFR3 (12%), STAG2 (11%) were the most frequently mutated
genes in BCa (The Cancer Genome Atlas Research Network,
2014). Data of 103 China BCa samples downloaded from
International Cancer Genome Consortium (ICGC) database
showed that TP53 (27.2%), KDM6A (24.3%), FGFR3 (16.5%),
HRAS (15.5%), ERBB2 (13.6%), CREBBP (12.6%), ERCC2
(12.6%), ARID1A (11.7%), and XIRP2 (10.7%) were the top
mutated genes (Wang et al., 2020). One recent study
conducted by Wang T et al. performed targeted NGS in 32
BCa samples showed that FGFR3 (31.3%), KMT2D (18.8%),
TP53 (12.5%), ARID1A (12.5%), AKT1 (12.5%), KDM6A
(9.4%), STAG2 (9.4%), and LRP1B (9.4%) were the most
frequently mutated genes in Chinese BCa patients (Wang
et al., 2020). Wu S. et al. (Wu et al., 2019) found FGFR3,
TP53, PIK3CA, ZFP36L1, HRAS, and KDM6A were
frequently mutated in Chinese BCa patients. Generally
speaking, these previous investigations are consistent with our
results and complement one another.

In addition, we observed frequent mutations in chromatin-
remodeling genes, including the histone demethylase gene
KDM6A (NMIBC 22%; MIBC 18%), chromatin-remodeler
gene ARID1A (NMIBC 22%; MIBC 18%), histone lysine
methyltransferase genes KMT2B (NMIBC 0%; MIBC 27%),
KMT2C (NMIBC 22%; MIBC 18%), KMT2D (NMIBC 22%;
MIBC 55%), and the histone acetyltransferase gene EP300
(NMIBC 22%; MIBC 18%). These somatic mutations in
chromatin-remodeling genes indicated that altered epigenetic
regulation of chromatin and post-translational modifications
might be a major driver mechanism in BCa. Gui Y, et al.
identified genetic aberrations of the chromatin remodeling
genes (including EP300 and ARID1A) in 59% of the 97
subjects with MIBC (Gui et al., 2011). Besides, KDM6A (Chen
et al., 2021), KMT2C (Baker et al., 2020; Hirotsu et al., 2020), and

KMT2D (Baker et al., 2020; Baker et al., 2021) were believed to
play important roles in bladder carcinogenesis and attracted more
attention in the recent years. However, there was no report on the
relationship between KMT2B mutation and BCa. Our study was
the first to demonstrate that KMT2Bmutation occurred in 27% of
MIBC only, not in NMIBC, suggesting that KMT2Bmight trigger
the evolution from NMIBC to MIBC.

It is well known that NMIBC often harbor mutations in
FGFR3 and the Ras gene family, and MIBC usually have
defects in TP53 and RB1 in high-grade tumors (Gui et al.,
2011), which further confirmed our findings. It was
noteworthy that several mutations (TP53, KMT2B, SPTA1,
GRIN2D, NSD1, and PDS5B) were only found in MIBC but
not in NMIBC patients. It is noteworthy that TP53 mutation
frequency in MIBC was 36.4% (4/11) in our study. We also
analyzed the sequencing data of 103 Chinese BCa samples
download from ICGC database and found that TP53 mutation
frequency was 26.3% (10/38) for NMIBC, and 27.7% (18/65) for
MIBC. Targeted NGS results given by Wang T et al. showed that
TP53 mutation frequency was 25% (4/16) for NMIBC, and 0% (0/
16) for MIBC in 32 Chinese BCa patients (Wang et al., 2020).
Meanwhile, we also checked frequently mutated genes in BCa
samples from TCGA cohort, and identified that TP53 mutation
frequency was 46.96% (193/411) for MIBC. It is evident that the
prevalence of TP53mutations in Chinese Han is much lower than
that in Europeans. The varied distribution of this important
tumor suppressor may be due to ethnic differences.

In addition to TP53, the above identified mutated genes
specific to MIBC should be further investigated to clarify the
underlying mechanisms responsible for MIBC. Previous studies
paid less attention on genetic mutations in NMIBC, and our
results showed that FGFR3 (67%), PIK3CA (56%), RHOB (44%),
and CREBBP (33%) were the top mutated genes in NMIBC. As
FGFR3 and PIK3CAmutations were also found inMIBC, but at a
low frequency, we speculated that these tumors progressed from
NMIBC. More importantly, we found mutations in the Ras
superfamily GTPase member RHOB only occurred in NMIBC
but not in MIBC patients, suggesting that these NMIBC with
RHOB mutation may not progress to MIBC. Moreover, a
combination of RHOB and other frequently mutated genes
could form a multi-gene panel utilized for NMIBC diagnosis
and risk stratification.

As for the comparison of somatic mutations betweenmale and
female BCa cases, we found that both PIK3CA and FGFR3 were
the top mutated genes in both sexes. The KMT2D mutation was
significantly more common in males than in females (46.7
vs 20%).

KMT2D is located at 12q13.12 (Froimchuk et al., 2017) and
encodes a histone H3 lysine 4 (H3K4)-specific methyl transferase
(Bögershausen et al., 2016). KMT2Dmutation may partly explain
the different BCa incidences of men and women in China (M: F =
3.4:1) (Pang et al., 2016). Besides, our data showed that KDM6A
mutation frequency in males was the same as in females (20%).
KDM6A is located at Xp11.3, encoding a histone H3K27-specific
demethylase and escapes X chromosome inactivation (Greenfield
et al., 1998; Hong et al., 2007). It is reported that KDM6A
mutations were more common in females than males in
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NMIBC (Hurst et al., 2017). However, our data did not show that
trend, which could be attributed to small sample size. Although
men’s bladder cancer is more common, women’s prognosis is
worse even after environmental factors have been corrected
(Nakayama et al., 2019). Although this is due to the difference
in hormones betweenmen and women, it may also be the result of
the protective effects of two functional copies of KDM6A in
females.

DDR mutation has long been implicated in both
carcinogenesis and prognosis of urothelial carcinoma.
Polymorphisms in various DDR genes such as ERCC2 have
previously been associated with the development of urothelial
carcinoma (Stern et al., 2009). Our study found that DDR gene
mutations such as ERCC2 and TP53 were seen at higher
frequency in MIBC than NMIBC (91 vs 78%). It was reported
that there was a strong positive correlation between DDR gene
mutation and TMB in urothelial carcinoma (Nassar et al., 2019).
Our results showed an evident trend that MIBC had a higher
TMB than NMIBC, which confirmed the association between
DDRmutation and TMB. We supposed that DDR gene mutation
set forth a driver for mutations, or maybe high TMB reflects more
opportunity for mutation in the set of DDR genes.

Smoking is a significant modification risk for BCa, and almost
half of men and one-quarter of women with BCa are believed to be
attributed to smoking (Ploeg et al., 2009). Smoking may cause
several genetic mutations, such as destroying DNA and reducing
repair activity (Lee et al., 2018). Our data indicated that there was a
trend that smokers had higher DDR mutation frequency and TMB
or CNA burden than non-smokers in BCa especially MIBC
patients, although not statistically significant which may be
caused by small sample size. Our sequencing results showed that
mutations of important DDR gene (including TP53, ERCC2) and
driver gene (including KDM6A, SPTA1) occurred frequently in
smokers rather than non-smokers, which was consisted with the
previous research (Hayashi et al., 2020). We assume that smoking
may firstly cause DDR genemutation and the loss of repair function
further causes driver gene mutation and more TMB.

To examine the mutation spectrum, we applied nonnegative
matrix factorization and identified three different mutation
signatures between NMIBC and MIBC patients in the main
SBSs for bladder cancer: MIBC (SBS 2, 13); NMIBC (SBS 1).
Our study showed that the main endogenous mutation signature
in MIBC was SBS 2 and 13 (attributed to APOBEC enzyme
activity), which, coupled with the process of DNA repair, yielded
both C-to-T and C-to-G mutations (Roberts et al., 2013).
APOBEC enzymes were reported to be part of the innate
antiviral immunity and cancer mutagenesis (Swanton et al.,
2015). SBS 1, a clock-like mutational signature, is closely
associated with age at diagnosis and persisted throughout the
patient’s life (Jiang et al., 2021). There was a trend that SBS1
occurred more frequently in NMIBC in our study, indicating
SBS1 played important roles in the triggering step of BCa
carcinogenesis. Furthermore, our data indicated that SBS 2
and 13 could be potential therapeutic targets for the treatment
of BCa, because these signatures were positively correlated with
stage and tumor burden, suggesting they may be involved in the
progression of BCa. Moreover, our results showed that CNAs

occurred at more locations on chromosomes in NMIBC than
MIBC, suggesting that NMIBC and MIBC might develop
secondary to different molecular mutations.
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