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1. Introduction
A massive group of viruses, called coronaviruses, includes COVID-19. They are highly

dangerous pathogens for humans that initially affect the respiratory system and cause

hepatic, gastrointestinal, and neurologic disease. Mostly, they spreads to human, birds,

and wild animals. Outbreaks of two existing coronaviruses, severe acute respiratory

syndrome (SARS)-CoV and Middle East respiratory syndrome coronavirus, confirmed

contamination between animals and humans [1e4]. The World Health Organization

acquired notification from China about severe cases of respiratory infection that visited

the seafood market at Wuhan. Wuhan city underwent an outbreak of novel coronavirus,

called COVID-19 (also known as 2019-nCoV). Wang et al. [5] showed that COVID-19 was

derived from bats, identical to two bat-derived coronavirus strains. Therefore, the

origination of COVID-19 has not been confirmed and needs a closer examination.

Severe cases were identified in Wuhan city; hence, on Jan. 23, 2020, Wuhan was under

lockdown, in which people were not allowed to move outside and administrators

blocked all types of transport, including airports, trains, metros, and common buses to
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eliminate the spread of COVID-19. Furthermore, most cities in Hubei province had a

lockdown. Therefore, various kinds of cases were prevented in Chinese cities and 24

countries were affected, which were comparatively lower than Wuhan city [6e9]. The

Centers for Disease Control and Prevention (CDC) confirmed the transmission of

COVID-19 to humans.

Based on the CDC, COVID-19 is an airborne disease transmitted by close contact and

touching surfaces and things with viral particles, and partially from fecal transmission

[10e12]. The severe problem of COVID-19 is the isolation time, which is around 14 days,

as defined in Nguyen [13]; over those days, the virus might be spread. In addition, in Jin

et al. [14] and Wynants et al. [15] research reference based on Chinese community states

that the minimum isolation time would be 3 days that is for 24 days. Hence, cases of the

virus increases day by day especially in China. The spread of the virus seems to be highly

dangerous and needs strong protection to save the life and policies to make sure people

are unallowed to step out of house that has been executed in major cities in China,

specifically in Hubei province [16e19].

Zhao et al. [20] presented arithmetic methods to compute the actual value of COVID-

19 cases in Jan. 2020. The number of unpredicted cases was about 469 cases from Jan. 1

to 15, 2020. Also, after Jan. 17, 2020, the disease improved to 21-fold. Nishiura et al. [21]

employed a calculation technique to measure COVID-19 in Wuhan, China applies the

derived details of people who have displaced from Wuhan from Jan. 29 to 31, 2020.

Finally, it was concluded that the calculated value was higher and death rate was

0.3e0.6%. Tang et al. [22] used a numeric approach to determine the risk of spread for

COVID-19 and the computed value of confirmed cases in 7 days. The highest range may

be attained in 2 weeks. In Thompson [23], details of 47 patients were sampled to evaluate

the transmission of COVID-19 in a human-to-human module. The researchers revealed

that transmission was 0.4 and hospitalization was partial from tested data; transmission

may be around 0.012 [24] and also projected a computing technique to measure the

death rate due to COVID-19. The attained results for two diverse cases are 5.1% and

8.4%, respectively. In addition, the reproduction value for these two scenarios, the

computed outcome depicts that COVID-19 leads to a pandemic. Massive work has been

projected to detect the epidemic; for instance, DeFelice et al. [25] used a compartment

approach to predict spillover communication risk as well as human West Nile virus

(WNV) cases. Those technologies were applied to past information of WNY outbreaks on

Long Island, New York.

Ture and Kurt [26] compared various time sequence detecting methods to detect

hepatitis A virus infection. The researchers applied previous years of detail in Turkey to

sample four time series detection approaches. The results of the comparative task

showed that multilayer perceptron performs better than other techniques. Shaman and

Karspeck [27] used a detection approach according to the ensemble adjustment Kalman

filter for periodic outbreaks of virus. It computes the projected approach with the help of

data on influenza seasons in New York City for 6 years (2003e08).

Also, Shaman et al. [28] defined a regular prediction for viruses using susceptible-

infected-recovered-susceptible, Kalman filter, and influenza-like illness. Massad et al. [29]
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used an arithmetic approach to investigate and detect the infection of the SARS

epidemic. The reproduction values for two various groups, Hong Kong and Toronto,

were 1.2 and 1.32, respectively. This chapter presents an enhanced kernel support

vector machine (E-KSVM) to detect COVID-19 and acute respiratory distress syndrome

(ARDS). The E-KSVM model operates on three levels: preprocessing, feature extraction,

and classification. Once the images are preprocessed, Hough transform (HT) is applied

as a feature extractor and the E-KSVM model is employed as a classifier. The KSVM is

enhanced by the use of the particle swarm optimization (PSO) algorithm to tune the

parameters of KSVM. An extensive set of experimentation takes place on a chest X-ray

dataset and the classification of images takes place for three categories: normal,

COVID-19, and ARDS.

2. The proposed enhanced kernel support vector machine
model

Fig. 33.1 shows the working process of the E-KSVM model. The input image undergoes

preprocessing in which unwanted details and noise that exist are discarded. Then, fea-

tures in the preprocessed image are extracted by the HT. Then, the E-KSVM model is

executed to classify the feature vectors into appropriate classes: normal, COVID-19, and

ARDS.

2.1 Preprocessing

The images gathered from a database might have irregular data as well as background

noise. Here, the preprocessing phase is mostly applied to eliminate noise from

computed tomography (CT) images and develop noise-free images applicable for future

computations. Various morphological tasks have been processed to produce a mask.

Dilation and hole filling are core tasks in some references from a binary edge map of an

image under the application of a gradient driven threshold approach:

f ðx; yÞ¼
�
1 if Gðx; yÞ � GT

0 else
(33.1)

where GT is the gradient threshold that applies Otsu’s adaptive framework.

The binary image is dilated with the help of a diamond structuring component.

Then, the mask is improved with an actual image. The two predefined images depict

the mask produced by a gradient model and a label removed image. The key

objective of a dilation task in the binary image is to introduce a higher lung region to

compute in the further stage. The major step in future is to avoid the pectoral image

from CT images. Such muscles are composed with nearer intensity measures

compared with tumor intensity. Thus, the muscle had to be rejected from an image

to attain the effective feature extraction with the application of a maximization

approach, also termed segmentation models. As a result, it classifies data values
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according to the higher likelihood condition. The major constraint for maximization

determination is:

Lq¼LnðPðXqÞÞ (33.2)

The application of equation maximization provides a feasible way to compute the

maximum likelihood function. To eliminate the pectoral muscle and maintain the

remaining lung region, four intensity class segmentations were processed on CT images

under the application of maximum estimation.

FIGURE 33.1 Workflow of enhanced kernel support vector machine (E-KSVM) model.
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2.2 Feature extraction using Hough transform

Hough transform is defined as the feature extraction method applied in digital signal

processing to evaluate shape parameters from corresponding boundary points. Hence,

HT has been used to detect random shapes. Normal parameterization is provided by:

x cos qþ y sin q ¼ r (33.3)

HT is referred as a tolerant space in edges and is free from noise, which is a derivation

of arbitrary transform. It provides points from a diverse angle. Canny edge prediction is

applied in the preprocessed image before employing the HT. In addition, it projects an

optimal edge prediction filter to split the edges with the application of the first derivative

of a Gaussian. These operations are used to decrease the preprocessing duration and

offer a reliable data source that withstands geometrical as well as ecological modifica-

tions to calculate HT. It applies measures for every edge point (X, Y) for the image

estimated from the given function. In addition, nonanalytical space is estimated in Eq.

(33.5) with a particular batch of boundary points. For shape q, it is named P in Eq. (33.6):

r¼Xi cos qþ Yi sin q (33.4)

B¼fXBg (33.5)

p¼fXo; s; qg (33.6)

For each XB, r is calculated and it stored as function 4. The value for r for each pixel X

of gradient function 4ðXÞ in an image is calculated in Eq. (33.8) and is stored in the

accumulator:

r¼Xo � XB (33.7)

AðX þ rÞ (33.8)

Under the application of an accumulator, HT results in preprocessed CT images. Then,

some features are selected from the transform image. Only the effective features should be

selected; inefficient features might decrease the efficiency of the classification model.

Here, the work intensity features were chosen and the application of these features results

from the complexity of interpretation. It has the well-defined masses, speculated mass, ill-

defined mass, architectural distortion, asymmetry, and so on. The intensity features

applied for mean, variance, entropy, and standard deviation are highly effective.

2.3 Particle swarm optimizationekernel support vector machine
classifier

2.3.1 Support vector machine classifier
Many enhanced methods in SVM are deployed and the KSVM is a well-known and

productive technique. Therefore, the merits of KSVM are that it can be processed from

diverse scenarios for natural language processing, biomedical, and computer visibility;

there are few tunable parameters; and training often employs quadratic optimization.
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Thus, the main aim is to remove the combined local minimum depicted by alternate

statistical learning models such as neural networks.

2.3.1.1 Principles of linear support vector machines

Let the p-dimensional training dataset of size N be:

fðxn; ynÞjxn ˛Rp; yn ˛ f�1; þ 1gg; n¼ 1;. ;N (33.9)

where yn is either �1 or 1 implies the class 1 or 2. Each xn is a p-dimensional vector.

The maximum-margin hyperplane that divides class 1 from class 2 is task of SVM. In

general, the hyperplane is described as provided in Eq. (33.10):

WX �b ¼ 0 (33.10)

where , shows the dot product and w is a normal vector. There is a requirement to

choose wandb to improve the margin from two parallel hyperplanes. Hence, two hy-

perplanes can be represented as:

WX �b ¼ �1 (33.11)

This task has been assumed to be an optimization issue. It is the main aim is to

enhance the distance from two parallel hyperplanes, which refers to removing data

falling into a margin. With the application of easy numerical knowledge, the issue can be

expressed as:

min

w;b
kwk (33.12)

s:t:ynðwxn �bÞ� 1; n ¼ 1;. ;N

Specifically, kwk has been replaced with:

min

w;b

1

2
kwk2 (33.13)

s:t:ynðwxn �bÞ� 1; n ¼ 1;.N

2.3.1.2 Soft margin

Practically, there is a lack of hyperplanes that divides the methods effectively. To solve

the issue, a soft margin approach was used that selects a hyperplane to divide accessible

instances with the limitation of an increasing distance of closer samples. A positive slack

variable xn is established to choose the degree of misclassifying sample xn. Then, the

optimal hyperplane that isolates the data might be attained by using Eq. (33.14):

min

W ; x;b

1

2
kwk2 þ P

XN
n¼1

xn (33.14)

s:t:

�
ynðwxn � bÞ � 1� xn

xn � 0;
n¼ 1;. ;N
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where P represents the error penalty. Therefore, the optimization is developed as a

trade-off for a big margin as well as tiny error penalty. The restraint optimization

problem can be resolved under the application of a Lagrange multiplier:

min

w; x;b

max

a; b

(
1

2
kwk2 þP

XN
n¼1

xn �
XN
n¼1

an½ynðwxn � bÞ� 1þ xn� �
XN
n¼1

bnxn

)
(33.15)

The min-max problem is hard to predict; thus, the dual form model is applied to deal

with such a problem.

2.3.1.3 Dual form

Eq. (33.14) might be equated as:

max

a

XN
n¼1

an � 1

2

XN
n¼1

XN
m¼1

amanymynK ðxm; xnÞ (33.16)

s:t

8><
>:

0 � a � C;

XN
n¼1

anyn ¼ 0;
n¼ 1;. ;N

A benefit of the dual form is the absence of slack variables, xn, along with constant C,

which exists from the shortcomings of Lagrange multipliers.

2.3.2 Kernel support vector machine
Linear SVM is composed with limitations on the linear hyperplane, which is capable of

dividing complex realistic data. To normalize in the form of nonlinear hyperplane, the

main objective is applied to SVM. The final method is scientifically the same; each dot

product is replaced with a nonlinear kernel function. The KSVM allocated the maximum-

margin hyperplane from a converted feature space. The transmission may be nonlinear,

and converted space may be highly dimensional. Although the classifier is a hyperplane

from a high-dimensional feature space, it can be nonlinear in an imaginative input

space. For a single kernel, the least variable is required to develop a kernel as flexible and

to modify it for practical data. It is applied with an radial basis function (RBF) kernel

because it is efficient for producing a remarkable outcome. The kernel is expressed as:

kðxa; xbÞ¼ exp

�
� kxa � xbk

2s2

�
(33.17)

Now, Eq. (33.17) would be used in Eq. (33.18) to attain the consequent training

function of SVM in Eq. (33.19):

max
a

XN
b¼1

ab � 1

2

XN
b¼1

XN
a¼1

aaabyaybkðxa; xbÞ (33.18)

max
a

XN
b¼1

ab � 1

2

XN
b¼1

XN
a¼1

aaabyaab exp

�
� kxa � xbk

2s2

�
(33.19)
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2.3.3 Particle swarm optimizationekernel support vector machine
The PSO technique has been used to process parameter optimization. Also, it is a global

optimization method accelerated from the behavior of bird flocking or fish schooling. It

is a simple to model and provides rapid execution. PSO computes the searching task by

using a set of particles maximized for each iteration. To derive the best solutions, all

particles have to be shifted in the direction of preceding best ðpbestÞ and best global ðgbestÞ
positions in the swarm:

pbestm ¼pmðk�Þ (33.20)

st:fitnessðpmðk�ÞÞ¼ min

k ¼ 1;. ; t
½fitnessðpmðkÞÞ�;

gbest ¼pm� ðk�Þ (33.21)

s:t:fitnessðpmðk�ÞÞ¼
min

m ¼ 1;. ;p

k ¼ 1;. ; t

½fitnessðpmðkÞÞ�

where m is a particle index, P implies the particle number, k denotes a round index, t

refers to the iteration value, and p is a position [30]. The extension of velocity and po-

sition of particles are carried out by applying Eqs. (33.22) and (33.23):

Vmðt þ 1Þ¼wvmðtÞ þ c1r1ðpbestmðtÞ�pmðtÞÞ þ c2r2ðgbestðtÞ�pmðtÞÞ (33.22)

pmðtþ 1Þ¼pmðtÞ þ Vmðtþ 1Þ (33.23)

where V is the velocity. Inertia weight w used to manage global exploration and local

exploitation. r1 and r2 are uniformly distributed with random parameters from the range

of ð0; 1Þ c1 and c2 are acceleration coefficients. At this point, particle encoding is operated

with variables C and s in Eq. (33.22).

2.4 Cross-validation

This work employs the computation of fivefold cross-validation to attain the best trade-

off from processing complexity as well as reliability evaluation. The whole dataset is

divided into five mutually unique subsets with same size, which have four subsets for

training; the last subset is used to test the model. It has been iterated around five times;

hence, each subset is applied in testing. The five fold (FF) of the PSO model to select the

classifier accuracy is:

fitness¼ 1

5

X5

i¼1

���� ys
ys þ ym

���� (33.24)

where ys and ym are the number of effective classification and misclassification,

respectively. PSO is implemented for a higher FF function.
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3. Experimental validation
The dataset holds a set of 30 images, including 10 images each for the COVID-19 [31],

ARDS, and normal categories. Some sample images in the three categories are shown in

Fig. 33.2.

Table 33.1 provides a comparative analysis of models. Fig. 33.3 depicts a comparative

analysis with respect to sensitivity and specificity. The random tree (RT) method requires

a lower sensitivity and specificity of 72.34% and 69.04% whereas the SVM approach

attains a better sensitivity and specificity of 70.58% and 73.49%. However, the E-KSVM

FIGURE 33.2 (A) COVID-19 images; (B) acute respiratory distress syndrome images; (C) normal images.

Table 33.1 Result of analysis of various methods.

Method Enhanced kernel support vector machine Support vector machine Random tree

Sensitivity 72.34 70.58 68.30
Specificity 75.20 73.49 69.04
Accuracy 74.01 73.10 68.93
F score 73.94 72.76 66.77
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method has attained an efficient sensitivity and specificity of 72.34% and 75.20%,

respectively.

Fig. 33.4 shows a comparative analysis by means of accuracy. The RT model requires

an accuracy of at least 68.93% and the SVM model accomplishes a slightly moderate
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FIGURE 33.3 Comparative analysis of various methods. EKSVM, enhanced kernel support vector machine; SVM,
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accuracy of 73.10%. Therefore, the proposed E-KSVM model has effective results and

obtained a higher accuracy of 74.01%.

Fig. 33.5 shows a comparative analysis with respect to the F score. The RT model

requires a lower F score of 66.77% and the SVM model accomplishes a slightly gradual F

score of 72.76%. Hence, the projected E-KSVM approach has a productive outcome with

the best F score of 73.94%.

Table 33.2 and Fig. 33.6 show the computation time analysis of the proposed and

existing models. The RT model requires a maximum computation time of 9.362s,

whereas the E-KSVM and SVMmodels reached a minimal computation time of 8.039 and

7.310s, respectively.

From these figures and tables, it is apparent that the EK-SVM model outperformed all

earlier models regarding the successful identification of COVID-19 and ARDS. Therefore,

it can be effectively used as a proper diagnosis tool in actual hospitals.
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FIGURE 33.5 F score analysis of existing methods. EKSVM, enhanced kernel support vector machine; SVM, support
vector machine.

Table 33.2 Computation time analysis of various methods.

Methods Enhanced kernel support vector machine Support vector machine Random tree

Computation time (s) 8.039 7.310 9.362
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4. Conclusion
This chapter presents an E-KSVM model for the detection of COVID-19 and ARDS. The

input image was preprocessed to eliminate unwanted details and noise. Then, the fea-

tures in the preprocessed image were extracted by HT. Finally, the E-KSVM model was

executed to classify feature vectors into appropriate classes: normal, COVID-19, and

ARDS. A detailed experimental analysis was performed on a chest X-ray dataset and

confirmed that the E-KSVM model has the ability to detect the disease effectively. The

simulation outcome indicated that the E-KSVMmodel attained a maximum sensitivity of

72.34%, specificity of 75.20%, accuracy of 74.01%, and F score of 73.94% with a minimum

computation time of 8.039s. In future work, the experimental outcome can be further

increased using deep learning concepts.
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