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Abstract: Organic light-emitting diodes (OLEDs) with tunable emission colors, especially white
OLEDs, have rarely been observed with a single emitter in a single emissive layer. In this pa-
per, we report a new compound featuring a D–A–D structure, 9,9′-(pyrimidine-2,5-diylbis(2,1-
phenylene))bis(3,6-di-tert-butyl-9H-carbazole) (PDPC). A nondoped OLED using this compound as a
single emitter exhibits unique voltage-dependent dual emission. The emission colors range from blue
to orange–red with an increase in voltage, during which white electroluminescence with a Commission
Internationale De L’Eclairage (CIE) coordinate of (0.35, 0.29) and a color render index (CRI) value of
93 was observed. A comparative study revealed that the dual emission simultaneously originates
from the monomers and excimers of the emitter. This study provides insight into understanding the
multimer-excited mechanism and developing novel color-tunable OLEDs.

Keywords: electrochromic; emission color; excimer; organic light-emitting diodes; white OLEDs

1. Introduction

Organic light-emitting diodes (OLEDs) have many applications in displays and light-
ing due to their high efficiency, flexibility, and ultrathin thickness [1–3]. In particular, the
application of color-tunable OLEDs is of wide-ranging demand in the fields of decoration,
smart lighting, cultivating vegetables, wearable sensing equipment, etc. [4–8]. In general,
three types of strategies have been proposed for color-tunable devices [9]: The first strategy
involves the combination of two or three materials with different emissions, including de-
ploying tandem structures that contain sub-OLED arrays and share one electrode [4,10–12].
The complicated structure and fabrication cost of this device, however, discourage this op-
tion. One alternative is to deposit multiple emitters in a single cell, by either layer-by-layer
doping or co-doping [6,13–15]. Despite their facilitated fabrication, the device obtained
from the latter method suffers from the asynchronous color aging of the emitters. The
device with a single emitter can be a solution to this deficit.

Concerning single emitters, dual-emission capability is their fundamental requirement,
meaning the compound can emit both emissions in different excited states. In addition,
for better discernibility of color change, the variation trend of the emission intensities
of the two peaks should be in distinctive pace with the alteration in the voltage. in
addition to the emission of monomers, the emission of multimers is one of the methods
for generating a lower-energy emission. Mazzeo et al. reported an A–D–A structure with
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double dimesitylboyl groups connected by a centering terthiophene [16]. This compound
exhibited an emission in the blue region with an additional red-shifted peak, while the
author attributed the latter peak to the formation of dimers. However, the maximum
external quantum yield (EQE) was 0.35%, and the turn-on voltage was around 9 V.

In this paper, we present a new compound, 9,9′-(pyrimidine-2,5-diylbis(2,1-phenylene))
bis(3,6-di-tert-butyl-9H-carbazole) (PDPC), featuring a donor-acceptor-donor (D–A–D)
structure. Employing this compound as a single emitter, a single OLED cell with a single
undoped emissive layer exhibited voltage-dependent dual emission. As the voltage in-
creased, the emission color ranged from blue to orange–red. A comparison between the
nondoped and doped OLEDs revealed that the red peak resulted from the multimerization
of the emitter molecules. The maximum EQE was 0.81%, and the turn-on voltage was
5.19 V. The wide color range observed revealed that the electroluminescent (EL) emission
varied from blue (CIE1931 = (0.17, 0.20)) to orangish red (CIE1931 = (0.50, 0.39)). In addition,
white electroluminescence with a CIE coordinate of (0.35, 0.29) and a CRI value of 93 was
observed.

2. Materials and Methods
2.1. General Information

All reaction experiments were performed under a N2 atmosphere using standard
Schlenk techniques, unless specified. The organic materials investigated in this study were
synthesized by the procedures described below, in which the starting materials (all solvents
and reagents) were purchased from commercial sources and were used as received without
further purification. (For detail: Argon: Linde plc, Dublin, Ireland; 2,5-dibromopyrimidine,
palladium(II) diacetate, 2-fluorophenylboronic acid, 3,6-di-tertbutyl-9H-carbazole: Bide
Pharmatech Ltd, Shanghai, China; K3PO4·3H2O, silica gel, Cs2CO3, tetrahydrofuran: China
National Pharmaceutical Group Co., Ltd. (Sinopharm), Beijing, China; glycol, NaCl,
petroleum ether, ethyl acetate, dichloromethane, dimethylformamide (DMF), deuterated
dimethyl sulfoxide (DMSO-d6): Shanghai Titan Scientific Co., Ltd., Shanghai, China.)

2.2. Preparation of 2,5-Bis(2-fluorophenyl)pyrimidine

Under an argon atmosphere, 2.38 g (10 mmol) of 2,5-dibromopyrimidine, 0.112 g
(5 wt%) of palladium(II) diacetate (preheated in an oven at 80 ◦C for 3 h), and 7.99 g
(3 equiv., 30 mmol) of K3PO4·3H2O (dried in an oven overnight at 150 ◦C) were mixed
with 15 mL of glycol in a 100 mL Schlenk flask, and the solution was stirred for 10 min.
Then, 4.20 g (3 equiv., 30 mmol) of 2-fluorophenylboronic acid was added into the solution.
Following this, 3 purges and-refills of argon were performed. The solution turned into a
yellowish-orange color. The mixture was heated at 80 ◦C for 24 h. After the reaction cooled
to room temperature, the mixture was poured into a beaker with 150 mL of water, and the
precipitate was obtained by vacuum filtration. The final product was purified by column
chromatography filled with silica gel. The eluent was adopted by gradually increasing the
content of ethyl acetate in petroleum ether, until ca. 10%. The half-substituted byproduct
was separated, and a reaction similar to that one mentioned above was stoichiometrically
adopted to obtain the fully substituted product. Scheme S1 diagramed the procedure. Total
yield: 1.04 g, 38.8%. 1H NMR (400 MHz, DMSO-d6) δ 9.18 (d, J = 1.5 Hz, 2H), 8.10 (td, J = 7.8,
1.9 Hz, 1H), 7.78 (td, J = 7.8, 1.8 Hz, 1H), 7.63–7.53 (m, 2H), 7.47–7.36 (m, 4H). 13C NMR
(101 MHz, DMSO-d6) δ 161.86, 161.32 (d, J = 4.7 Hz), 160.64, 159.33, 158.18, and 156.84 (d,
J = 3.8 Hz), 132.51 (d, J = 8.6 Hz), 131.77, 131.36 (d, J = 8.3 Hz), 130.82 (d, J = 2.8 Hz), 126.91,
125.71 (d, J = 9.3 Hz), 125.46 (d, J = 3.6 Hz), 124.63 (d, J = 3.7 Hz), 121.72 (d, J = 13.4 Hz),
116.67 (dd, J = 57.2, 22.0 Hz). The original graph for 1H and 13C spectra can be found in
Figure S1 and S2.Element analysis: calcd. for C16H10F2N2: C 71.64, H 3.76, and N 10.44;
found: C 71.60, H 3.81, and N 10.43.
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2.3. Preparation of 9,9′-(Pyrimidine-2,5-diylbis(2,1-phenylene))bis(3,6-di-tert-butyl-9H-
carbazole) (PDPC)

Before 0.537 g (2 mmol) of 2,5-bis(2-fluorophenyl)pyrimidine was added, 1.34 g
(4.8 mmol, 2.4 equiv.) of3,6-di-tertbutyl-9H-carbazole, 1.96 g (6 mmol, 3 equiv.) of Cs2CO3,
and 10 mL of DMF were stirred for 30 min in a 100 mL Schlenk flask under an Ar atmo-
sphere. The solution was refluxed for 16 h after all the reactants mingled. The color of
the solution turned from brown to yellow after heating. The cooled mixture was poured
into a beaker with 150 mL of water, and the precipitate was obtained by vacuum filtration.
The final product was collected through the recrystallization of the mixed solution of
dichloromethane and ethyl acetate. Scheme S2 diagramed the procedure. Total yield: 1.25 g,
79.4%. 1H NMR (500 MHz, chloroform-d) δ 8.03 (dd, J = 12.8, 1.9 Hz, 4H), 7.97 (s, 2H), 7.72
(dd, J = 7.8, 1.6 Hz, 1H), 7.58–7.50 (m, 3H), 7.50–7.40 (m, 3H), 7.24 (ddd, J = 8.3, 6.1, 1.9 Hz,
4H), 7.12 (dd, J = 7.8, 1.7 Hz, 1H), 6.92 (d, J = 8.6 Hz, 2H), 6.80 (d, J = 8.5 Hz, 2H), 1.41
(s, 18H), 1.39 (s, 18H). 13C NMR (101 MHz, chloroform-d) δ 163.57, 155.21, 142.96, 142.30,
and 139.46 (d, J = 33.0 Hz), 136.43, 135.92 (d, J = 22.9 Hz), 133.70, 131.79, and 131.15 (d,
J = 16.7 Hz), 130.50, 130.06, 129.72, 129.16, 128.85, 127.87, 123.81, and 123.51 (d, J = 9.0 Hz),
123.19, 116.56, 115.89, and 109.02 (d, J = 14.0 Hz), 34.78, 32.10 (d, J = 6.6 Hz). The original
graph for 1H and 13C spectra can be found in Figure S3 and S4. Element analysis: calcd.
for C56H58N4: C 85.45, H 7.43, and N 7.12; found: C 85.39; H 7.43, and N 7.09.

2.4. Characterization
1H NMR and the spectra were recorded with a Bruker Avance III 400 MHz NMR

spectrometer (Bruker Co., Billerica, MA, USA) with DMSO-d6 as a solvent. The chemical
shifts are given in parts per million with reference to tetramethylsilane (TMS, δ = 0 ppm).
The peak multiplicities are reported with the notation s (singlet), d (double), t (triplet),
q (quartet), and m (multiplet). The elemental analyses (C, H, and N) were implemented
with an Elementary Vario EL III elemental analyzer (Elementar Analysensysteme GmbH,
Langenselbold, Germany). The thermogravimetric analysis (TGA) of the samples was
performed with a METTLER TOLEDO TGA/DSC 1 STARe System (Mettler Toledo In-
ternational Inc., Columbus, Oh, USA) with a heating rate of 10 ◦C/min under nitrogen.
The UV–visible absorption spectra were determined with a PerkinElmer Lambda 365
spectrophotometer (PerkinElmer, Waltham, MA, USA) under ambient conditions. The
steady-state photoluminescence and phosphorescence spectra at 300 K were measured us-
ing a Hitachi F-7000 (Hitachi Limited, Tokyo, Japan). The photoluminescence spectra at 77 K
and time-resolved photoluminescent-decay experiments (lifetime) were performed with
an Edinburgh Analytical instrument FLS980 (Edinburgh Analytical Instrument Limited,
Livingston, UK), equipped with a xenon arc (450 W) and pulsed flash lamps. The delayed
emission spectra in solution were recorded with an Ocean Optics MX2500+ (Ocean Insights,
Inc., Orlando, FL, USA), equipped with a xenon arc lamp (450 W). The cyclic voltammetry
(CV) analysis was performed on a CHI840D Electrochemical Analyzer (CH Instruments,
Inc., Bee Cave, TX, USA), in which dichloromethane and 0.1 mol/L of tetrabutylammonium
hexafluorophosphate were adopted as the solvent and electrolyte, respectively. The work,
counter, and reference electrodes were glassy carbon, platinum wire, and Ag/AgNO3,
respectively. The solution was pretreated with five-minute degassing by N2 before the CV
test. The highest occupied molecular orbital (HOMO) was estimated as follows: HOMO =
−[Eox − EFc/Fc+ + 4.8] eV.

2.5. Device Fabrication and Characterization

Glass substrates precoated with 120 nm of indium tin oxide (ITO) with a sheet resis-
tance of 15 Ω per square were successively cleaned in an ultrasonic bath of deionized water,
acetone, and isopropanol for 15 min. Then, the ITO glass substrates were dried with Ar2
steam and treated with UV-ozone for 15 min. The organic materials for the other functional
layers were spin-coated onto the ITO-coated substrates at a rate of 1 Å s−1 under a high vac-
uum level (<2 × 10−5 Pa) using thermal evaporation in a vacuum chamber. Then, the Liq
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and Al were successively deposited at a rate of 0.1 and 5 Å s−1, respectively. The EL spectra,
current efficiency (CE), power efficiency (PE), EQE, current–voltage–luminescence(C–V–L),
and CIE of the OLEDs were recorded with an integrated optoelectronic performance test
system with a calibrated spectra radiometer (TOPCON SR-UL1R) (Topcon Engineering Co.,
Ahmedabad, India) and Keithley 2400 source meter (Tektronix Co., Beaverton, OR, USA).
All the measurements were conducted in a nitrogen-filled glove box at room temperature.

2.6. Calculation

The ground and excited states, adopting density functional theory (DFT) and time-
dependent DFT (TD-DFT), were performed with Gaussian 09 software (ver. D.01, CT,
USA) [17]; the cube files for the independent gradient model based on the Hirschfeld
partition (IGMH), HOMO and the lowest unoccupied molecular ortibal (LUMO), and elec-
tron/hole distributions were generated from Multiwfn [18], and graphically visualized via
Visual Molecular Dynamics (VMD, ver 1.9.4a, Champaign, IL, USA) [19]. The PBE/6–311(g)
level for considering dispersion corrections was adopted for both ground and excited states.
The molecular configuration for the ground-state calculation was taken from a crystalline
structure, and vertical excited states were adopted for the calculations thereafter.

3. Results and Discussions
3.1. Single Crystal X-ray Diffraction (SC-XRD)

The compound PDPC crystallized in a P21/c space group, as depicted in Figure 1. The
general information and bond parameters for the refinement results of the crystal diffraction
were tabled in Table S1 to S3. The asymmetric unit consisted of a whole target molecule with
two dichloromethane solvent molecules. While refining the structure, the residual densities
on the central pyrimidine ring remained unbalanced wherever the nitrogen atoms were
denoted on either side (see Figure S5a,b in Supporting Information). Given the approximate
atomic numbers of C and N, which may result in a similar diffraction intensity together
with the symmetric skeleton of PDPC, we postulate that both orientations—either in the
form displayed in Figure S5a or Figure S5b—evenly distributed in the crystal structure
(Figure S5c). The fluctuation of density residues vanished on the pyrimidine ring after the
operation, supporting the hypothesis that the two positions may coexist in the crystal.
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Figure 1. (a) The asymmetric unit of the crystalline structure of PDPC. Hydrogen atoms are omitted
for clarity; (b) the chemical structure of PDPC, in which the acceptor part is tinted green, while the
donor counterpart orange.

Owing to the steric hinderance of the ortho-position between the carbazole derivative
group and central heterocyclic ring, the configuration of the molecule in the crystal folded
to form an N-shape, in which the dihedral angle bended over 89◦ (Figure 2a). Another
mirror-inverted molecule was stacked on the former one with a rotation angle of ca. 58◦

between the two carbazole planes of different molecules, capping on one of the joint phenyl
rings of the first molecule, which connected the bis(tert-butyl)carbazole group with the
central pyrimidine ring. Abundant intermolecular interactions, such as a substantial C-H



Nanomaterials 2022, 12, 2333 5 of 12

. . . π secondary bond, were also found in this stacking configuration, the distance of which
was measured to be between 2.72–2.83 Å (Figure 2b). A macroscopic view of the crystal
revealed zig-zag tunnels walled by carbazole units. These tunnels were filled with solvent
CH2Cl2 molecules, as illustrated in Figure 2c,d. To obtain a clear vision, a translucent blue
plane was inserted where the central pyrimidine rings lie. Furthermore, the steric tert-butyl
groups on carbazole rendered extra stability to the tunneling structure.
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Figure 2. (a) The dihedral angle between the central pyrimidine plane and carbazole plane in PDPC;
(b) intermolecular interactions between adjacent molecules and their surrounding solvent molecules,
in which the PDPC molecules are colored as red and cyan; (c,d) the PDPC molecules packed in space,
viewed in the c and a directions. The blue plane indicates the horizon where the central pyrimidine
rings stand. The hydrogen atoms in subfigures (a,c,d) were omitted for clarity.

3.2. UV Diffuse Reflection Analysis

The UV–Vis diffuse reflection spectrum was obtained using the crystalline powder of
PDPC. As shown in Figure S6a, the absorbance of the sample revealed the bandgap of the
sample to be 2.64 eV, which agrees with the photoluminescence spectra illustrated in the
following section. The high energy level of the bandgap can be attributed to the twisted
structure of the molecule that prevented planar components in the molecule from further
conjugation.

3.3. Thermogravimetric Analysis (TGA)

The TGA curve is exhibited in Figure S6b. The slight decrease in weight before 200 ◦C
could be attributed to the evaporation of the residue solvent molecules, while the sharp
drop between 400 and 500 ◦C indicated the decomposition of the compound where the
decomposition temperature was estimated to be around 450 ◦C.

3.4. Photoluminescent Properties

To investigate the excited-state properties of the material, the photoluminescent and
electroluminescent properties of PDPC were measured. Figure 3 shows the photophysical
properties of PDPC in the neat film and the 20% doping in BCPO (the structure is shown in
Figure S11). The spectra of PDPC in a tetrahydrofuran solution were tested as a comparison.
The photoluminescent spectra exhibited a nearly identical peak between the neat film and
solution samples. However, a blue shift of around 15 nm of the emission peak was observed
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in the doped film sample. This was likely due to the dispersion of the PDPC molecules,
which decreased the stacking and interactions between the PDPC molecules. The transient
decay spectra of the films revealed the long lifetime of the photoluminescence, leading to
35.00 µs in doped film and 17.86 µs in neat film. Moreover, the lifetime of the neat film
nearly halved compared with that of the doped film, indicating the concentration-induced
quenching of the nondoped film. The time-resolved spectra of neat film was proven to
have a thermally activated delayed fluorescent (TADF) characteristic, in which the spectra
monitored during the first 10 ns remained unchanged after 100 µs. The spectra are depicted
in Figure S7.

1 
 

  
(a) (b) 

 
Figure 3. (a) The photoluminescence spectra; (b) the transient decay curve of PDPC film.

The photophysical parameters were quantified, and the results are collected in Ta-
ble 1 to provide further insights. The parameters were calculated based on the previous
report [20]. According to the results, the PLQY of the doped film surpassed that of the neat
film by a small margin. The mediocre quantum yield could be explained by the competitive
nonradiative transition that suppressed the transition rate of the excitons. The inspection of
the decay rate for the films unveiled the faster prompt fluorescence of the doped film, which
may have resulted in a higher-efficiency S1 → S0 emission. In addition, the long-lived
delayed fluorescence and small kRISC for both films lea to the conclusion that the TADF
properties may not be distinct.

Table 1. Photophysical parameters of PDPC in 20% doped and neat films.

Film λPL
(a)

(nm)
ΦPL

(b)

(%)
τPF/τDF

(c)

(ns/µs)
kPF

(d)

(108 s−1)
kDF

(e)

(104 s−1)
kr

S/ knr
S (f)

(108 s−1)
kRISC

(g)

(104 s−1)

Doped 466 52 1.12 (h)/35.00 8.93 2.86 4.64/4.29 2.86
Neat 484 46 2.23 (h)/17.86 4.48 5.60 2.06/2.42 5.60

(a) Maximum of the photoluminescent spectrum; (b) photoluminescence quantum yield (PLQY); (c) prompt and
delayed fluorescence; (d) rate constant of prompt fluorescence; (e) rate constant of delayed fluorescence; (f) rate
constant of radiative and non-radiative transitions for S1 state; (g) rate constant of the reverse intersystem crossing
between S1 and T1 state; (h) transient decay spectra were plotted in Figure S8.

We also tested the luminescence and life of crystalline powder PDPC, as shown in
Figure S9. The product exhibited blue emission with a maximum of around 460–480 nm
under an excitation of 380 nm. The peak was fitted and four Gaussian bands were found, the
peaks of which were located at 461, 483, 505, and 524 nm. The correspondent transient decay
curves (Figure S9b) of these subpeaks were almost identical, suggesting these emissions
may have stemmed from different vibrational levels of the same excited state. The fitting
results for each decay curve are presented in Table S4.
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3.5. Theoretical Calculation

To theoretically investigate the interactions between the adjacent molecules, the inde-
pendent gradient model based on the Hirschfeld partition (IGMH) method was adopted,
and the results are visualized in Figure 4a [21]. The region filled with meshes indicated
that there were interactions between molecules on both sides. The individual molecules
are identically colored for clarity. According to the results, most of the interactions occur-
ring between the molecules were attractive interactions, which are facilitative in forming
multimers.
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the dimer: (e) HOMO (turquoise)/LUMO (red) and (f) HOMO-1 (purple)/LUMO+1 (blue).

The calculation for a separated molecule revealed a charge-transfer (CT) state for the
S1 state, in which the transition was mostly owing to the transfer from HOMO to LUMO
(Figure 4b,c). When observing the dimeric configuration, we found a degenerated S2 state,
in which the energy levels of S1 and S2 in the dimer were slightly lower than that in the
monomer, while the oscillator strengths of the two degenerated S states almost remained
as in the single molecule (Figure 4d). A further investigation into the frontier orbitals of
the dimers unveiled that the distributions of LUMO and LUMO+1, the orbitals that sub-
stantially contribute to S1 and S2, resided on the acceptor segments of both molecules and
conjugated as a whole, supporting the postulation that multimers were formed (Figure 4e,f).
The information on the specific values are detailed in Table S5.

3.6. Electroluminescent Properties

In order to examine the electroluminescent (EL) performance of the emitters, we
fabricated nondoped and 20 wt%-doped OLEDs, the configurations of which [22,23] are
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depicted in Figure 5a. The energy level of PDPC was determined by CV analysis, the result
of which is plotted in Figure S10b, and the bandgap was calculated from a Tauc plot that is
shown in Figure S10c. The chemical structures of the used materials are drawn in Figure
S11. The emission colors of the nondoped PDPC device drastically varied with increasing
voltage, from blue, through pinkish white, to orange–red (Figure 5b). The EL spectra
revealed two distinct bands peaking at around 460 and 590 nm (Figure 5c). The scatter-line
figure referring to the maximum values of these peaks were projected on the left side wall
of the 3D graph. When the voltage increased from 4 to 18 V, the intensities of both emission
bands gradually increased, with varied intensity ratios. For instance, the blue-emission
band dominated from 3 to 12 V, while the orange–red emission band was strengthened
to be the predominant component at higher voltages (15–18 V). When the intensity of the
latter emission peak surpassed its blue counterpart at 14.5 V, the device emitted a nearly
white spectrum with a CIE 1931 coordinate of (0.35, 0.29) and a color rendering index
(CRI) value of up to 93. As a comparative study, a device with an emitting layer of 20%
PDPC, doped in BCPO, was fabricated, and the results are presented in Figure 5d. In
contrast to the nondoped device, the doped device emitted blue light with indiscernible
color change over a wide range of operating voltages. The EL spectra of the doped devices
were voltage-independent and contained only one blue-emission band corresponding to
the blue-emission band observed in the EL spectra of the nondoped device. The enlarged
photos are displayed in Figure S12, and the parameters are listed in Table S6.
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The key parameters for the electroluminescent performance of the doped and non-
doped PDPC are compared in Figure 6. The lower turn-on voltage of the doped device (3.62
V) than that of the nondoped (5.19 V) indicated the efficient hole and electron injection of
the former. In addition, the maximum EQE, PE, and CE for the doped device outperformed
those of the nondoped device, which we attributed to the efficient separation of the excitons
in doped devices, stemming from the dilution of PDPC that inhibited the concentration
quenching. However, the maximum luminance of the nondoped device was over twice
as much as that of the doped device. Based on the above-mentioned EL curves, it seemed
plausible that the emission from the red region contributed to the high intensity of the
luminance. However, both devices suffered from apparent efficiency roll-off. This could
have been the result of the long-lived delayed fluorescence lifetimes (17.86 and 35.00 µs)
and slow RISC rates (2.86 × 104 and 5.60 × 104 s−1).
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Thus, the orange–red emission band appearing only in the nondoped device could be
attributed to the emission of excimers, as illustrated in Figure 7 [24–26]. In the nondoped
device, the PDPC molecules were highly aggregated, leading to the possibility of forming
excimers with a stabilized emissive state at a high-enough voltage. With an increase in
voltage, the excitons’ recombined emission on the excimers sharply increased, resulting
in a gradually redshifted emission color. The nondoped device failed when the voltage
was higher than 16.5 V. However, when the emitter molecules were well-dispersed into the
host BCPO, the formation of excimers was completely suppressed, with the only emission
coming from the monomers.
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4. Conclusions

We designed and synthesized an organic molecule featuring a D–A–D structure with
two ortho-substituted 3,6-di-tert-butyl-9H-carbazoles as donors and a central pyrimidine
as the acceptor. The compound exhibited blue emission peaking at 454 nm under UV
light. Using this compound as a single emitter, the nondoped OLED showed a unique
voltage-dependent EL with emission colors spanning from blue to orange–red. The EL
color of the nondoped device varied from blue to orange–red with an increase in voltage,
during which a pinkish-white light with a CIE coordinate of (0.35, 0.29) and a CRI value
of 93 was observed. We inferred from experimental and theoretical investigations that
the electro-induced orangish-red emission stemmed from the excitation of multimers,
which were formed via intermolecular interactions. Despite the TADF characteristics of the
compound, the long-lived decay, small kRISC, and competitive knr against kr altogether lead
to the concentration quenching of the exciton, which may be attributed to the depressed EL
efficiencies. This study provides insight into the multimer-excited mechanism and may
help to develop novel color-tunable OLEDs.
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