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Abstract: Owing to a sessile lifestyle in nature, plants are routinely faced with diverse hostile
environments such as various abiotic and biotic stresses, which lead to accumulation of free radicals
in cells, cell damage, protein denaturation, etc., causing adverse effects to cells. During the evolution
process, plants formed defense systems composed of numerous complex gene regulatory networks
and signal transduction pathways to regulate and maintain the cell homeostasis. Among them,
ubiquitin-proteasome pathway (UPP) is the most versatile cellular signal system as well as a powerful
mechanism for regulating many aspects of the cell physiology because it removes most of the
abnormal and short-lived peptides and proteins. In this system, the ubiquitin-conjugating enzyme
(E2) plays a critical role in transporting ubiquitin from the ubiquitin-activating enzyme (E1) to the
ubiquitin-ligase enzyme (E3) and substrate. Nevertheless, the comprehensive study regarding the
role of E2 enzymes in plants remains unexplored. In this review, the ubiquitination process and the
regulatory role that E2 enzymes play in plants are primarily discussed, with the focus particularly
put on E2′s regulation of biological functions of the cell.
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1. Introduction

Researchers have successfully extracted a small molecular protein (initially called APF-1 and later
renamed as “Ubiquitin”) from reticulocytes, and this protein is a key factor in ATP-dependent substrate
proteolysis and is universally present in many organisms [1–4]. Based on these experiments and later
research findings, the Nobel Prize in Chemistry was awarded to Aaron Ciechanover, Avram Hershko
and Irwin Rose in 2004, for their outstanding contributions to the discovery of ubiquitin-mediated
protein degradation [5]. From then onwards, an increasing number of researchers devoted themselves
to the ubiquitin-proteasome system (UPS). As a result, the cascade reaction process of this has been
basically elucidated at present. Previous studies have shown that the ubiquitin-proteasome system
regulates various biological functions of the plant as diverse as hormone responses (including auxin,
jasmonic acid, gibberellins, ethylene, and abscisic acid) [6–11], abiotic stress response [12–15], plant
growth and development [16,17], circadian rhythm [18], and plant immunity [19,20]. However,
the nonproteolytic functions and mechanisms of most key enzymes (over 1600 loci in Arabidopsis
thaliana genome) which are core components of the UPS (Ubiquitin-proteasome system) are still unclear,
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especially E3s (more than 1400 potential E3s are encoded in A. thaliana genome) and E2s (37 E2s are
encoded in A. thaliana genome) [8,21]. Therefore, it will be an important task for future research to
uncover the role of these enzymes.

2. Ubiquitin

Ubiquitin, a small protein of 76 amino acids acting as a tag in post-translational modification of
proteins, is absolutely conserved in vertebrates and higher plants, and only two or three amino acid
residues are different even among animals, plants, and fungi [22]. The high conservatism renders
ubiquitin interchangeable and universal in different species [23]. Ubiquitin is a β-grasp fold protein
consisting of a 3.5-turn α-helix, a short 310 helix against a five-strand mixed β-sheet and seven reverse
turns [24]. Ubiquitin possesses two hydrophobic surfaces. One surface consists of Ile44, Leu8, Val70,
and His68 [25], and the other focuses on Ile36 that can be recognized by HECT (Homology to E6-AP C
terminus) E3s, DUBs (Deubiquitinating enzymes), and UBDs (Ubiquitin binding domains) [26–28].
Ubiquitin contains seven lysine residues, including Lys-6, Lys-11, Lys-27, Lys-29, Lys-33, Lys-48, Lys-63
(K6, K11, K27, K29, K33, K48, and K63, respectively) [29,30]. Six of the seven Lys linkages (with
a preference for Lys-48>Lys-63>Lys-11>>>Lys-33/Lys-29/Lys-6) were detected in A. thaliana [31,32].
Any one of the seven lysine residues or N-terminal Met1 residues in ubiquitin is likely to be involved
in ubiquitin chain formation in vivo, and different ubiquitin linkages lead to the formation of different
types of ubiquitin chains and induce diverse molecular signals in the cell [29,33–36]. Different ways of
linking ubiquitin chains and substrates result in distinct fates of the substrates. It is well-known that
K48-linked chains are mediators signaling proteasomal degradation and have diverse functions in
the cell. For example, they respond to the abiotic/biotic environments [21,37,38]. Some researchers
found that K11-linked chains also served as targeting signal for proteasomal degradation in vitro
and in vivo [39]. Besides, it was observed in some studies that K63-linked chains not only served as
a targeting signal for protein degradation [40], but also had non-degradative functions, such as DNA
repair and NF-kb signaling, activation of protein kinases, and protein trafficking [37,41]. Lys-33-linked
chains might have nothing to do with protein degradation because they did not increase if the
proteasome was inhibited [37], However, Lys-33-linked chains were reported to have nonproteolytic
functions, such as, negatively regulating the activity of AMPK (AMP-activated protein kinase) [42].
However, the biological functions of ubiquitin-ubiquitin linkages composed of K6, K27, and K29 are
less understood. There is very limited information available on mechanisms and biological functions
of different polyubiquitin linkages in prior studies, so researchers must focus on the mechanisms and
action processes of polyubiquitination in the future.

In comparison, the small ubiquitin-related modifier (SUMO) which contains approximately
100–115 amino acids is similar to ubiquitin. The SUMO emerges as an influential class of conjugation
of protein tags or a modifier to target proteins, and evidence proves that it plays a regulatory role in
transcriptional control, subcellular trafficking, and cell cycle [43–45]. SUMOylation is driven by three
components, which are heterodimeric SUMO-activating enzyme (E1), SUMO-conjugating enzyme (E2),
and the substrate recognition factor (E3) [46,47]. SUMOylation is a reversible process, and the SUMO
can be released from protein conjugates by SUMO proteases for SUMO recycling [45,48].

3. The Ubiquitin Enzymes and Ubiquitination Reactions

The ubiquitin-proteasome system/ubiquitin-proteasome pathway is a prevalent protein turnover
system that can degrade or modify proteins in eukaryotic cells. The system can modulate numerous
cellular processes, and is almost involved in all aspects of growth and development, so the modification
of ubiquitination may be more important than modification of phosphorylation. The UPS consists of
ubiquitin (Ub), ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), ubiquitin-ligase
enzymes (E3), 26S proteasome, DUBs and target proteins [49–51], and it involves two consecutive
processes. A chain of ubiquitin molecules selects and labels abnormal and short-lived peptides proteins
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and substrates at first, then the targets are broken down by the 26S proteasome, and finally the ubiquitin
molecules are recycled for a further ubiquitination cycle.

The covalent attachment of ubiquitin to specific target proteins is mainly accomplished by stepwise
enzymatic cascade reactions, and ubiquitin is attached to the substrates via the concerted action of
ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzyme (E2), and ubiquitin ligase (E3) [52–54].
The attachment of ubiquitin or ubiquitin chains to the substrate is a successive process (Figure 1). First,
an E1-ubiquitin thioester bond is formed between the C-terminal Gly carboxyl group of ubiquitin
and the active site Cys of the E1 enzyme by an ATP-dependent reaction. Then, the E1 transfers the
activated ubiquitin to the Cys residue of the E2 enzyme to form an E2-ubiquitin thioester-linked
intermediate by transesterification. Eventually the E2 transfers the ubiquitin to the substrate protein
by E3 [55]. Ubiquitin is conjugated to the target protein through an isopeptide bond between its
C-terminal glycine (Gly76) and the ε-amino group of a lysine residue [56]. There are three typical
ways of linking the ubiquitin with the substrate. The first is called mono-ubiquitination, which
refers to the modification of one site of the modification of a substrate by a single ubiquitin molecule.
The second is multi-mono-ubiquitination, which means adding several ubiquitin molecules repetitively
to distinct sites (multi-mono-ubiquitination). The third is called polyubiquitination (including linear
polyubiquitination and branched polyubiquitination), in which ubiquitin molecules are added to the
same site (polyubiquitination, including linear polyubiquitination and branched polyubiquitination)
of a substrate. In the second and third ways of linking, the previously attached ubiquitin serves as the
“acceptor” of subsequently added ubiquitin [51,54,57,58]. Of course, polyubiquitin chains linked by the
same Lys are homogeneous, while those linked by different Lys are heterogeneous or mixed ones [59,60].
Subsequently, the substrate complex tagged by the ubiquitin is degraded by the 26S proteasome
or executes nonproteolytic functions, such as some specific biological functions [41]. In most cases,
the modified protein (polyubiquitination) is recognized and degraded by the 26S proteasome, and the
ubiquitin or ubiquitin chain hydrolyzed and freed by deubiquitinating enzymes (DUBs) for further
conjugation cycles after being removed from the substrate protein [61] (Figure 1). Nevertheless,
the multi-mono-ubiquitination and mono-ubiquitination that can recruit binding partners, inhibit
interactions, alter protein localization, or regulate protein activities [51,62] are necessary for different
stages of the secretory/endocytic pathway when certain cargo proteins enter vesicles [51].

The family of E3 enzymes is large and diverse. Over 1400 E3s have been found in A. thaliana and
they can be divided into U-box domain, RING (Really interesting new gene), HECT (Homologous
to the E6AP carboxyl terminus) and Cullin–RING ligases (CRLs) [63,64]. CRLs are subdivided into
SKP1-Cullin-F-box (SCF) type, broad complex/tramtrack/bric-a-brac (BTB) type, DDB1-binding/WD-40
domain-containing proteins (DWD) type, and anaphase-promoting complex (APC) [21]. An E3 is
a protein or protein complex that conjugates to an E2 and a substrate. It can interact with the substrate
directly or through substrate recognition modules of seven types of E3 ligases via the adaptor and
target binding proteins (Figure 1). For example, the HECT enzyme transfers ubiquitin from an E2 to its
Cys residues before it binds to the target protein NH2 conjugate [65,66]. The RING/U-box enzyme acts
as a scaffold for the aggregation of an E2 and a substrate, directly transferring ubiquitin from an E2 to
a substrate; Cul-based RING enzyme transfers ubiquitin from E2 to the substrate that binds with an
accessory factor.
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Figure 1. The ubiquitin-proteasome system. The process of ubiquitination from activation to attachment
to the substrate is catalyzed by three major enzymes. The substrates labeled by ubiquitin are degraded by
the 26S proteasome or play a non-degradative role in other processes. Abbreviations: APC, Anaphase-
promoting complex; DUBs, Deubiquitinating enzymes; E1, Ubiquitin-activating enzyme; E2, Ubiquitin-
conjugating enzyme; E3, Ubiquitin-ligase enzyme; Cul-based, Cullin-RING box1-Ligase; HECT, Homology
to E6-AP C Terminus; Ub, Ubiqitin; SUMO, Small ubiquitin-related modifier; RBX1, RING-Box 1; RING,
Really interesting new gene; RBR, RING1-IBR(cysteine/histidine rich region)-RING2.

4. The Family of E2 Enzymes

The E2 enzyme is a key transfer site of ubiquitination, which interacts with E1 and E3 respectively.
There are two puzzling questions about the ubiquitin-proteasome system. One is why E2 enzymes are
present in all eukaryotes and the other is why we do not directly transfer ubiquitin from E1s to E3s.
Some researchers believed that an E2 enzyme could combine with different types of E3s that recognized
and selected distinct targets, and thereby played a decisive role in determining whether the labeled
protein would be degraded or involved in nonproteolytic processes. In other words, E3s mainly select
the substrate, while E2s determine the fate of the substrate [67]. Another possible and interesting
consideration is that E2s promote ubiquitination independent of an E3 ligase, such as UBC22 [68,69].

Each E2 contains a core UBC domain composed of about 150–200 amino acid residues, in which the
cysteine is an active site for the formation of thioester linkages [54,70]. The UBC domain has a structural
conservation rate of 35% in different species [71], consisting mainly of four α-helices, an anti-parallel
β-sheet and a short 310 helix [72–74]. Almost all UBC domains contain a conserved His-Pro-Asn
tripeptide (HPN) located at about the tenth residue at the N-terminal of the Cys residue [2,75]. Aspartic
acid in HPN catalyzes the formation of the isopeptide bond, histidine is essential for the structure, and
proline promotes stable transition of these amino acid residues [75,76]. According to the location of the
additional fragment in the UBC domain, the family of E2 enzymes can be categorized into four classes.
Class I is present only in the UBC domain; class II is present in both N-terminal and UBC domain; class
III is present in both C-terminal and UBC domain; and class IV is present in N-terminal, C-terminal and
UBC domain [67]. E2 enzymes belong to the polygenic family, and the number of members varies from
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a dozen to dozens in different species. 20 E2 enzymes have been found in Caenorhabditis elegans [77],
40 in A. thaliana [68], 14 in Saccharomyces cerevisiae [78], 37 in human [67], 48 in rice [79], 75 in maize [80],
72 in banana [81], 43 in Vitis vinifera [82], 34 in Carica papaya [83], 59 in tomato [84], 40 in Dimocarpus
longan Lour. [85], and 57 in potato [86].

The ubiquitin E2 variant (UEV) is similar to the E2 enzyme in both sequence and structure, but it
cannot form a thioester linkage with ubiquitin because of the lack of the catalytic cysteine residue [87,88].
The first UEV gene was initially defined as MMS2, which was obtained from budding yeast cells
and associated with the error-free DNA-damage tolerance (DDT) pathway [87,89]. Although UEVs
cannot conjugate with ubiquitin, UEV proteins form a stable heterodimer with E2s to facilitate the
ubiquitination of a target protein [68,90,91]. It is clear that UBC13 usually combines with a heterologous
UEV to form a complex which plays a critical role in DNA repair. The heterodimer-coupled E3 Rad5,
for instance, can functionally remedy the corresponding ubc13 mutants’ defect in PRR (post-replication
repair, also known as error-free DNA-damage tolerance) [87,92,93] (Figure 2A). The newly discovered
expression of OsUEV1s is also capable of functionally rescuing the yeast mms2 mutant from death
caused by DNA-damaging agents [94]. Much more importantly, the stable heterodimer formed
by UBC13 and a UEV (from yeast or mammalian cells) is essential for assembly of Lys63-linked
polyubiquitin chains [91,93,95]. 4 AtUev1s, 4 OsUev1s, and 3 BdUev1s have been found in A. thaliana,
rice and Brachypodium distachyon, respectively [94,96,97]. COP10 is a type of UEV, which is essential
to protein degradation [98]. Besides, COP10 plays a vital role in photo-morphogenesis and response
against UV-B [90]. It remains unknown whether UEVs have other independent biological functions or
play a role in regulating biological processes together with E2 or E3 enzymes. Therefore, this will be
the direction for research in this field shortly.
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Figure 2. The role of UBC13 in DNA damage responses and UBC13′s other functions. (A) UBC13
is involved in post-replication repair (PRR). (B) UBC13 participates in different biological processes
by mediating Lys63-linked ubiquitination. Abbreviations: Aux/IAA, Auxin/indole-3-acetic acid;
DDT, DNA damage tolerance; ERAD, ER-associated degradation; Mms2, A Ubc E2 variant; PRR,
Postreplication repair; PCNA, Proliferating cell nuclear antigen; RGLG1/2, An E3 ligase; RNF5, RING
finger protein 5; Rad5, An E3 enzyme; Rad6, An E2 enzyme; Rad18, An E3 enzyme; Suv, Fni3
(Fen-interacting protein, Fen is the host protein kinase) cofactor S. lycoperiscum Uev; Siz1, An E3 ligase;
Srs2, A helicase; TLS, Translesion DNA synthesis; Ubc9, An E2 enzyme.
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5. Functions of E2 Enzymes

The E2 enzymes are one of the key parts of the ubiquitin-proteasome system, having special
significance and functions (Table 1).

5.1. Abiotic Stress Response

VrUBC1 is a ubiquitin-conjugating enzyme gene from mung bean, and responds to dehydration,
high salinity and abscisic acid (ABA) treatment. VrUBC1-overexpressed plants are more sensitive to
abscisic acid-mediated stomatal closure and have more tolerance to drought stress, indicating that
VrUBC1 is a positive regulator under osmotic stress in A. thaliana [99]. OgUBC1 is a ubiquitin-conjugating
enzyme gene from wild rice, triggered by salicylic acid in leaves [100]. Tobacco with overexpression of
NtUBC1 exhibits increased resistance to cadmium (Cd) compared to WT [101]. A significantly increased
expression of LeUBC1 under the conditions of heat shock and cadmium chloride (CdCl2) indicates
that LeUBC1 can respond to these two stresses [102]. AhUBC2 is a ubiquitin-conjugating enzyme gene
in peanuts, which can respond to PEG6000, high salinity, abscisic acid (ABA) and low temperature.
Higher levels of P5CS1, RD29A, and KIN1 under a normal condition, and a higher level of proline
under both soil-drought stress and control conditions are found in 35S:AhUBC2 transgenic plants,
suggesting that the constitutive expression of AhUBC2 improves water-stress tolerance by activating
an ABA-independent signaling pathway [103]. The GmUBC2 from soybean is the yeast homolog Rad6,
capable of improving salt and drought tolerance, and it is involved in the regulation of ion homeostasis,
osmolyte synthesis, and oxidative stress responses in A. thaliana [104]. Similarly, the increased
expression of CmUBC in transcript level in melon plants under drought and salinity stresses indicates
that CmUBC can respond to physiological water stress [105]. The Rad6 gene of Hevea brasiliensis shares
a similarity of over 96% with OsRad6 in rice and AtUBC2 in A. thaliana, and its expression can be
markedly induced by the latex stimulator ethephon (ET) and methyl jasmonate (MeJA) [106]. RCE1
from A. thaliana is homologous with the human UBC12 gene, and its conjugation with the ubiquitin-like
protein RUB1 that combines with AtCUL1 affects the functions of SCF E3s and thus influences the auxin
response [107,108]. A study showed stable and high expression of OsUBC13 under different biotic and
abiotic stresses, suggesting OsUBC13 as a housekeeping gene [109]. Recent research has shown that
UBC13 is a key regulator of A. thaliana response to low temperature [110] (Figure 2B). UBC18 can interact
with ethylene response factor 1 (ERF1), and the differences in abundance of ERF1 between UBC18
mutants and UBC18 overexpression lines are caused by ubiquitination. Down-regulation of UBC18
leads to increased ERF1 and proline accumulation. Besides, UBC18 negatively regulates responses to
drought and salt stresses [111]. AtUBC32, AtUBC33, and AtUBC34 can interact with PUB19, a negative
regulator of the drought stress response. Repression of AtUBC32, AtUBC33, and AtUBC34 expression
in both single and triple mutant lines can promote abscisic acid-mediated stomatal closure and improve
tolerance to drought stress, indicating that AtUBC32, AtUBC33, and AtUBC34 play a negative regulatory
role in drought stress through mediation of the abscisic acid [112]. AtUBC32, AtUBC33, and AtUBC34
belong to group XIV UBCs, and UBC32-GFP is located in ER membranes [113]. UBC32 can interact
with the RING ligase DOA10B (At4g32670) which is remarkably similar to yeast Doa10 (Degradation of
Alpha2). UBC32 mutants are extremely sensitive to paraquat treatment compared with overexpression
plants, suggesting that UBC32 is an essential ERAD component and plays an important part in the
response to oxidative stress and salt stress [114]. Although changes in expression of UBC genes in
A. thaliana and rice are not induced by cold stress treatment [103], some reports have found that the
UBCs gene in other species have responses to cold and heat stresses [80,82]. UBC24 (pho2) is regulated
by microRNA399 (miR399) to control inorganic phosphate (Pi) homeostasis and Pi translocation and
remobilization [115–118].
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Table 1. Ubiquitin-conjugating enzymes with different known functions a.

E2 Enzyme Species General Functions Description Reference

NtUBC1 Nicotiana tabacum Cadmium tolerance [101]
LeUBC1 Lycopersicon esculentum Heat shock, cadmium chloride [102]
VrUBC1 Mung Bean Salinity/ABA (abscisic acid)/drought stress [99]
AtUBC1 Arabidopsis thaliana Regulate flowering time [119]

OgUBC1 Rice Salicylic acid/resistant to Botrytis cinereal and
UV-B radiation [100]

Ubc2/Rad6p Yeast and plants

Virus replication/DNA repair/ERAD
(ER-associated degradation)/histone
ubiquitination/Flowering time/salt and
drought-tolerance

[67,106,120–122]

AhUBC2 Dehydrated peanut plants Water-stress tolerance [103]
GmUBC2 Soybean Salt and drought tolerance/ion homeostasis [104]
TaU4 wheat Defense against Septoria [123]
Ubc7 - ERAD [124]

OsUBC13 rice Biotic and abiotic stresses/error-free PRR
(postreplication repair) [109]

AtUBC13 A.thalianaArabidopsis
thaliana Error-free DDT (DNA-damage tolerance) [125,126]

ShUbc13 Sterkiella histriomuscorum DNA damage response [127]
Fni3 / S1-Ubc13-2 Solanum lycopersicum Plant immunity [128]
RCE1 (UBC12) Arabidopsis thaliana Auxin response [107]
UBC18 Arabidopsis thaliana Drought and salt stress responses [111]
UBC21/PEX4 Arabidopsis thaliana Root development [129]

UBC22 - Strong E3 (Ubiquitin-ligase enzyme)
independentactivity to form ubiquitin chains [68,130]

UBC24/PHO2 Arabidopsis thaliana Phosphate (Pi) homeostasis [116]
TaUBC28 wheat Spike development [131]
AtUBC32 Arabidopsis thaliana Drought/oxidative/salt stress/ERAD [112,113,132,133]
AtUBC33 Arabidopsis thaliana Drought stress [112]
AtUBC34 Arabidopsis thaliana Drought stress [112]

a. The table includes some functions of the UBC genes that have been discussed in this paper.

5.2. Plant Immune Responses

Fni3, Lys-63-linked ubiquitination, is a homolog of the UBC13-type ubiquitin-conjugating enzyme.
A decreased expression of Fni3 or the ubiquitin E2 variant Suv can affect Fen-mediated immunity and
cell death caused by several other resistance (R) proteins and their cognate effectors (Figure 2B). This
study suggests that Fni3/Sl-Ubc13-2 and Suv positively regulate plant immunity [128]. By knocking
down the Group III E2 genes in Nicotiana benthamiana via VIGS (gene silencing), it is found that these
genes are necessary for plant development, immunity-associated ROS production, and suppression of
immunity-associated PCD (programmed cell death) by AvrPtoB [134,135]. Besides, knocking down the
expression of TaU4 gene which encodes a ubiquitin-conjugating enzyme 4 in Triticum aestivum by VIGS
can slow down the development of disease symptoms and reduce Septoria sporulation (Mycosphaerella
graminicola, commonly known as Septoria), indicating that TaU4 is a negative regulator for defense
against the phytopathogen Septoria in wheat [123]. The group III E2 genes act together with SlPUB13 on
the ubiquitination of FLS2 in vitro and regulate FLS2-mediated immune signaling [136]. Heterologous
expression of the OgUBC1 in A. thaliana defends plants from UV-B-mediated cell damage and enables
them to resist Botrytis cinerea [100].

5.3. Plant Growth and Development UBC13 Catalyzes Non-Canonical Lys63-Linked Ubiquitin Chains

A. thaliana carrying UBC13 mutants can display strong phenotypes and is unable to grow root
hairs in case of iron deficiency. Especially, A. thaliana containing UBC13A and UBC13B mutants have
a significantly reduced root-hair density. Therefore, it is concluded that UBC13A/B is involved in
epidermal cell differentiation and iron deficiency responses [117,137]. UBC13A/B mutants of A. thaliana
can influence primary and lateral roots [137,138] (Figure 2B). A VIGS analysis showed that SlUBC32
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and SlUBC41 were implicated in the regulation of fruit ripening [139]. UBC22 is the sole member
of subfamily X, and can catalyze the assembly of ubiquitin chains in the absence of E3 in vitro [68].
Silique length and the seed numbers are significantly decreased and nearly 90% of the ovules are
aborted after knocking out UBC22 gene mutants in A. thaliana, indicating that UBC22 is required for
the development of female gametophytes [140]. The RING finger protein TaRF1 can interact with
TaUBC28, which potentially plays a role in spike development of wheat [131]. UBC21 is better known
as PEROXIN 4 (PEX4). Pex4/ubc21 mutants have reduced root elongation because of their resistance
to indole butyric acid (IBA), while the major auxin indoleacetic acid (IAA) processed from IBA can
significantly promote the root growth of pex4 mutants [129]. There are two E3 homologs (HUB1
and HUB2) and three RAD6 homologs (UBC1, UBC2, and UBC3) in A. thaliana [120]. As reported
by researchers previously, HUB1 and HUB2 were involved in regulating seed dormancy, leaf and
root growth [141,142]. The ubc1 and ubc2 mutants displayed an early-flowering phenotype, and
they worked together with HUB1 and HUB2 to control the flowering time of A. thaliana [141,143,144].
Similar studies involving AtUBC1/AtUBC2 and HUB1/HUB2 also have shown that these four genes
mediate the H2B ubiquitination, thereby activating FLC expression and repressing flowering of the
plant [119].

5.4. Error-Free DNA-Damage Tolerance and Repair

To date, UBC13 is the only E2 known to be able to catalyze K63-linked polyubiquitin chain
assembly in eukaryotes [93,145,146]. In most cases, the K63-linked polyubiquitin chain assembled
combines with a UEV (e.g., MMS2) as a cofactor [93,95,147]. Evidence is accumulating to suggest that
the UBC13-MMS2 complex is involved in DTT (also known as DNA post-replication repair) and DNA
repair [147–150] (Figure 2A). DNA radiation repair pathways are mainly divided into nucleotide excision
repair, homologous recombination repair, and the damage tolerance pathway initially. Interestingly,
the damage tolerance pathway is different from the other two major pathways as it does not remove or
repair the original lesion but bypass the lesion [151]. It is now clear that PRR includes two branches,
namely the error-prone (mutagenesis) branch and the error-free branch [87,152,153]. The error-prone
branch is also called DNA translation synthesis (TLS), which is mediated by non-essential DNA
polymerases including Polη (Rev3+Rev7), Polζ, and Rev1. By contrast, the error-free branch is
mediated by the current model Ubc13-Mms2 [92,154,155]. These two independent sub-pathways
typically rely on RAD6 and RAD18 [149,156], which are recruited to the stalled replication fork by
RPA to facilitate mono-ubiquitination of the proliferating cell nuclear antigen (PCNA). Rad6 from
Saccharomyces cerevisiae is a ubiquitin-conjugating enzyme (E2), which is proven to play a role in DNA
repair, damage-induced mutagenesis, and sporulation [157,158]. In fact, for the former, PCNA encoded
by Pol30 at the K164 is mono-ubiquitinated by the Rad6-Rad18 to promote TLS, while for the latter,
mono-ubiquitin-POL30 is further poly-ubiquitinated by the Mms2-Ubc13-Rad5 complex to facilitate
error-free damage tolerance [159,160]. Besides, the PCNA can also be modified by the SUMO at K164
under the catalysis of the E2-E3 complex Siz1-Ubc9 [159,161]. The DNA helicase Srs2 enters the stalled
replication forks under the mediation effect of the SUMOylated PCNA, suppressing the redundant
and harmful homologous recombination [162–164].

6. Concluding Remarks and Future Perspectives

E2 enzymes are the intersection between E1 and E3 enzymes and determine the ubiquitination
of specific target proteins by tagging different types of E3 enzymes. This review elaborates on some
of the reported functions of E2 enzymes. Since the direct interaction between E3 enzymes and
substrates results in the substrate ubiquitination, previous studies mainly focused on the mechanisms
and functions of E3 enzymes. E3-mediated substrate degradation has always been the concern of
research, but E2 enzymes that play a crucial role in this mechanism have not gotten much attention.
The present model of ubiquitination only expounds the process of Ub transferring. The findings on
the driving mechanism of E2 enzymes recognizing diverse E3 and specific substrates are very limited.
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Moreover, it is wondered whether E2 enzymes have other biological functions independent of the
ubiquitin-proteasome system, such as regulating other signaling pathways to regulate the expression
of downstream genes through signaling pathways. Much more importantly, only a few studies have
investigated the role of E2 enzymes, especially in plants. Therefore, future research should focus on
clarifying above important issues and explore new concerned research directions.
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