
 International Journal of 

Molecular Sciences

Article

X-ray Structure Elucidation of a Pt-Metalloporphyrin
and Its Application for Obtaining Sensitive
AuNPs-Plasmonic Hybrids Capable of Detecting
Triiodide Anions

Eugenia Fagadar-Cosma 1,* , Anca Lascu 1,* , Sergiu Shova 2, Mirela-Fernanda Zaltariov 2,
Mihaela Birdeanu 3, Lilia Croitor 1 , Adriana Balan 4, Diana Anghel 1 and Serban Stamatin 4

1 Institute of Chemistry Timisoara of Romanian Academy, Mihai Viteazu Ave. No. 24, 300223 Timisoara,
Romania; croitor.lilia@gmail.com (L.C.); dianaracanel@yahoo.com (D.A.)

2 Laboratory of Inorganic Polymers, “Petru Poni” Institute of Macromolecular Chemistry, Aleea Grigore Ghica
Voda No. 41A, RO-700487 Iasi, Romania; shova@icmpp.ro (S.S.); zaltariov.mirela@icmpp.ro (M.-F.Z.)

3 National Institute for Research and Development in Electrochemistry and Condensed Matter, P. Andronescu
Street, No. 1, 300224 Timisoara, Romania; mihaione2002@yahoo.com

4 3Nano-SAE Research Center, Faculty of Physics, University of Bucharest, Atomistilor Street, No 405,
077125 Măgurele, Romania; andronie@3nanosae.org (A.B.); serban@3nanosae.org (S.S.)

* Correspondence: efagadar@yahoo.com (E.F.-C.); ancalascu@yahoo.com (A.L.);
Tel.: +40-256-491-818 (E.F.-C.); +40-256-491-818 (A.L.)

Received: 22 January 2019; Accepted: 5 February 2019; Published: 7 February 2019
����������
�������

Abstract: The development of UV–vis spectrophotometric methods based on metalloporphyrins for
fast, highly sensitive and selective anion detection, which avoids several of the practical challenges
associated with other detection methods, is of tremendous importance in analytical chemistry. In this
study, we focused on achieving a selective optical sensor for triiodide ion detection in traces based on a
novel hybrid material comprised of Pt(II) 5,10,15,20-tetra(4-methoxy-phenyl)-porphyrin (PtTMeOPP)
and gold nanoparticles (AuNPs). This sensor has high relevance in medical physiological tests.
The structure of PtTMeOPP was investigated by single crystal X-ray diffraction in order to understand
the metal surroundings and the molecule conformation and to assess if it qualifies as a potential
sensitive material. It was proven that the Pt-porphyrin generated 1D H-bond supramolecular
chains due to the weak C-H···O intermolecular hydrogen bonding. The presence of ordered voids
in the crystal encouraged us to use PtTMeOPP as the sensing material for triiodide ion and to
enhance its potential in a novel AuNPs/PtTMeOPP hybrid by the synergistic effects provided by the
plasmonic gold nanoparticles. The spectrophotometric sensor is characterized by a detection limit of
1.5 × 10−9 M triiodide ion concentration and a remarkable confidence coefficient of 99.98%.

Keywords: Pt(II) metalloporphyrin; single crystal X-ray diffraction; UV–vis spectroscopy; AFM
microscopy; triiodide detection

1. Introduction

Iodine, which is the heaviest of the halogens elements, exists as a purple–black solid that
crystallizes in the orthorhombic system and can be easily sublimed. Concerning its importance
to life, iodine as a micronutrient is essential in the synthesis of thyroid hormones and in the in utero
neurological development of the human fetus [1]. Iodine deficiency of the mother can result in
infant congenital hypothyroidism and causes mental retardation of the fetus. The estimated average
requirement (EAR) of iodine in men and nonpregnant or lactating women was set by the World
Health Organization (WHO) at 95 mg/day [2,3]. The recommended daily allowance by WHO and
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the Food and Agriculture Organization of the United Nations (FAO) for healthy adults is 150 mg/day.
Nevertheless, much higher doses of iodine can be tolerated by healthy individuals without apparent
ill effects.

Iodine is concentrated by the human body predominantly in the thyroid gland [4] and in other
important storage tissues (especially for individuals who had their thyroid glands removed), such as
the salivary glands, gastric mucosa, breast tissues, choroid plexus, ovaries and sweat glands.

It is important to add that although iodine does not easily dissociate in water and it stays in its
diatomic form, it dissolves better in the present of KI because of its equilibrium with triiodide (I3

−),
which is 104 times more soluble in water [1].

On the other hand, the triiodide ion that is generated when I2 and I- are both in solution (see
Equations (1)–(3)) is a good oxidizing agent for several reductants. Based on this property, triiodide
ions are used in pharmacology for the quantitative determination of ascorbic acid and hydroquinone
in drugs [5]; in controlling the environment or human health by monitoring chlorine and dissolved O2

in water [6]; in control of industrial processes by detection of copper and iron in ores [7]; and even as a
temperature radiation detector [8,9].

I2 + H2O→ HIO + H+ + I− (1)

3HIO→ 3H+ + IO3
− + 2I− (2)

I2 + I− → I3
− (3)

Thorough research on the evaluation of the required content of powdered supplements concluded
that the body easily converts iodide to iodine under normal circumstances, with dietary supplements
based on only iodide found to be equivalent to the ones consisting of both iodine and iodide [1].

Inductively coupled plasma mass spectrometry was reported to be a suitable method for the
determination of iodine from saliva. Sample preparations were based on centrifugation and the
direct analysis of supernatants or on microwave-induced combustion and microwave-assisted alkaline
dissolution [10]. The use of microwave techniques provided better results as they were able to quantify
iodine from a concentration of 0.022 µg/mL.

The detection of triiodide ion, which is the other form of iodide in aqueous media, was achieved using
a selective PVC membrane electrode containing 7,16-dibenzyl-1,4,10,13-tetraoxa-7,16-diaza-cyclooctadecane
in a wide concentration range (10−1–10−5 M) [11]. This electrode is also capable of quantifying ascorbic acid
and hydroquinone by potentiometric titration.

On the other hand, potentiometric sensors exhibiting very high selectivity for triiodide ions over
other anions, which could be used in a wide pH range of approximately 2–10, were reported using the
charge-transfer complex of iodine with (4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo-[8.8.8]hexacosane
(cryptand 222) as an electroactive ionophore and ortho-nitrophenyloctyl ether as a plasticizing agent.
Nernstian response to triiodide ions was reported [7] with detection limits of 6.3 × 10−7 and
7.9 × 10−7 M for cryptand 222 and its charge-transfer complex with iodine, respectively.

Several methods for the detection of halide ions have been reported [12,13] based on porphyrins
as sensitive materials. In a previous published paper [14], we presented a fast, sensitive and
reliable potentiometric method for the determination of iodide by using a PVC membrane
containing Pt(II)-5,10,15,20-tetra(4-methoxy-phenyl)-porphyrin (PtTMeOPP) as the ionophore and
different plasticizers, which were namely o-nitrophenyloctylether (NPOE) and dioctylphtalate (DOP).
The developed potentiometric sensor has relevance in the iodide medical monitored concentration
range with a detection limit of 9 × 10−6 M.

There are numerous methods of quantitative determination of iodide ions, with the best results
given by optical spectroscopy. The lowest detection limit (1 × 10−12 M) was obtained by using a
water-soluble cationic Pt-porphyrin measuring the phosphorescence quenching [15].

The porphyrin macrocycle has 12 functional positions (eight β and four meso) that are potentially
available to be functionalized with anchoring groups, which might be specifically tailored to be able to
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bind iodine [16], but the best approach to coordinate anions, such as iodide and triiodide, involves the
use of appropriate metalloporphyrins.

Platinum(II) metalloporphyrins have attracted much attention due to their intense absorption in
the visible region, high solubility in polymers and strong room temperature phosphorescence [17,18].
The retrieval of Cambridge Structural Database (CSD) [19] revealed 109 coordination compounds
built up from platinum metal atoms and porphyrin macrocycles, with only 27 of them representing
Pt(II) meso-substituted porphyrins. It might be emphasized that 24 results have been reported as
symmetrical A4-type porphyrins, with R=H, butyl, phenyl and their derivatives (Scheme 1a–j), two
A2B2 (Scheme 1 a/l and i/m) and only one A3B-type meso-substituted porphyrin (Scheme 1 a/k).
Only a few reports mentioned the formation of 2D and 3D coordination polymers, in which the
tetradentate porphyrin units are interconnected by the bridging metal ions and all of them contain the
carboxy-phenyl meso-substituent [20–22].
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Scheme 1. Selected substituents of Pt(II) meso-substituted porphyrins, whose structures were elucidated
by single crystal X-ray diffraction. There were 24 A4-type porphyrins (R1=R2=R3=R4=H; Bu; a to j);
2 A2B2-structures (R1=R3=a; R2=R4=l and R1=R3=i; R2=R4=m) and only one A3B-type meso-substituted
porphyrin (R1=R2=R3=a and R4=k).

A crystallographically well-characterized cucurbit[n]uril-porphyrin host–guest complex
created between cationic tetrakis(4-pyridyl)porphyrin species of (H6TPyP)4+4Cl− and
tetramethyl-curcubit[6]uril (TMeQ[6]) has the capacity to adsorb iodine from solutions by the
diffusion of the iodine molecules into the supramolecular framework cavities [23].

Together with our previous application results [24–26], these observations stimulated our interest
to fully investigate the structure of Pt(II)-5,10,15,20-tetra(4-methoxy-phenyl)-porphyrin (PtTMeOPP)
by single crystal X-ray diffraction in order to understand the metal surroundings and the molecule
conformation and to assess if it qualifies as a potential sensitive material. The presence of ordered
voids in the crystal encouraged us to use PtTMeOPP as the sensing material.

Spherical gold nanoparticles (AuNPs) with diameters of 10–20 nm are considered to be ideal
partners for porphyrin-hybrid nanomaterials destined for sensing applications, due to their plasmonic
properties and large surface-to-volume ratio. Recently, we showed an increased electrocatalytic effect
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on the reduction of H2O2 onto glassy carbon electrode, which was modified with ordered layers of
AuNPs/Co(II) 5,10,15,20-meso-tetra(3-hydroxyphenyl)porphyrin [24].Other metalloporphyrins, such
as (5,10,15,20-tetraphenyl)porphinato manganese(III) chloride, were demonstrated to act as a single
mediator for dopamine sensing in the specific case of gold screen-printed electrodes [27]. The gold
hybrid of (5,10,15,20-tetratolyl)porphinato manganese(III) chloride was capable of electrochemically
detecting ascorbic acid with excellent confidence [28] and optically detecting β-carotene [25].
More complex systems based on gold nanoparticles and porphyrins impregnated in polymers were
successfully applied in the electrochemical detection of glucose [29].

Based on the already proven synergistic effects of gold nanoparticles on electro-optical properties
of metalloporphyrins and with the purpose to develop a better sensor with high relevance in medical
physiological tests, a hybrid of PtTMeOPP with AuNPs [30] was obtained and tested as a sensitive
material in the optical detection of triiodide ions. In addition, all of the materials were characterized
by AFM, TEM and STEM microscopy.

2. Results and Discussions

2.1. Structure of Pt(II)-5,10,15,20-tetra(4-methoxy-phenyl)-porphyrin (PtTMeOPP) Investigated by Single
Crystal X-ray Diffraction

The results of a single crystal X-ray study for compound (PtTMeOPP) are shown in Figure 1.
According to X-ray crystallography, the crystal has a molecular structure that is comprised of
PtTMeOPP complex units and DMF as solvate molecules in a ratio of 2:1. The Pt(II) atom occupies
a special position in the center of symmetry that is coordinated by four nitrogen atoms in a square
planar geometry. The metal–nitrogen bond distances of Pt1-N1 2.000(7) Å and Pt1-N2 2.017(7) Å are
in good agreement with those reported for similar Pt(II) complexes [20,31–35]. The dihedral angles
between the porphyrin nucleus and the aryl rings are 75.291(2)◦ (for C6>C11 ring) and 60.235(3)◦ (for
C18>C23 ring).
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Figure 1. X-ray molecular structure of PtTMeOPP with atom labelling and thermal ellipsoids at 50%
probability level. Symmetry code: i) 1−x, 2−y, 2−z.

The analysis of the crystal structure packing shows the presence of the 1D supramolecular
architecture, which was generated by the weak C-H···O intermolecular hydrogen bonding of porphyrin
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ligand as shown in Figure 2. The volume, which is occupied by solvent molecules as calculated by
PLATON [36], is 369.8 Å3 or 17.6% of the total unit cell volume for the simulated solvent-free network.
A partial view of the crystal packing is shown in Figure 3.Int. J. Mol. Sci. 2018, 19, x FOR PEER REVIEW  5 of 19 
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The analysis of the Cambridge Structural Database [19] reveals 114 examples of
meso-tetra(4-metoxyphenyl)-metalloporphyrins, but only one coordination compound of platinum
has been reported so far, which is namely dibromo-(5,10,15,20-tetrakis(4-methoxyphenyl)-
porphyrinato-k4N)-platinum(IV) grown from chloroform acetonitrile solvate [37].

2.2. Thermogravimetric Analysis

The TGA analysis of the PtTMeOPP porphyrin (Figure 4) reveals that up to 200 ◦C there is a loss
of weight of around 10% due to the loss of water. In this case, we presume that it is accompanied by
residual small solvent molecules. In the range of temperatures from 350 to 550 ◦C, the carbon oxidation
with a loss of around 66% weight is clearly identified. In the final stage, at around 1000 ◦C, the sample
experiences a loss of 24% compared to its initial mass, which is a value that is very consistent with the
fraction of metal weight from the molecular weight of platinum porphyrin.
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2.3. AFM Investigations

The purpose of the topographic analysis of the surfaces performed by AFM investigation was
to show if important changes occur when the AuNPs/PtTMeOPP hybrid material is formed from
the initial AuNPs and PtTMeOPP and if the morphology also changes after treatment with I3

− ions,
especially with regard to the self-aggregation and organization of the Pt-porphyrin.

The AuNPs particles, which are shown as the triangular-shaped particles in the shadow map, are
uniformly oriented and have a similar size in the nano domain (Figure 5a). The size distribution of
AuNPs, which was investigated by AFM, is also presented in the Figure 5a. It can easily be seen that
the majority of the particles (more than 70%) have sizes around 11–15 nm, which is consistent with
sizes measured from STEM images of the same AuNP nanoparticles (Figure 6a).

For the first time, the shadow map of PtTMeOPP reveals rhombohedral geometries with a greater
size of approximately 200–400 nm, which can aggregate both in H- and J-types (Figure 5b). The height
distribution is in the range of 15–25 nm.

The hybrid nanomaterial shows a completely different morphology of the surface, which is
characterized by straw-type large aggregates that are unevenly distributed (Figure 5c).

After treatment of the AuNPs/PtTMeOPP hybrid material with I3
− ions (Figure 5d), the

architecture of the aggregates is transformed again into triangles with larger dimensions compared
to the case of only AuNPs. This geometric feature is due to J-type aggregates (edge-to-edge stacked)
together with H-type sandwich organization, which forms multi-layers of highly oriented triangular
bricks. This type of surface is also specific to porphyrins and their hybrids [38,39] as we previously
specified. It becomes clear from AFM images that after triiodide ion detection, a different structured
material was generated.
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2.4. Transmission Electron Microscopy (TEM) and Scanning Transmission Electron Microscopy
(STEM) Investigations

Our purpose was to obtain AuNPs with sizes around 15–20 nm in diameter that have a spherical
or ovoidal shape and are not aggregated, which can be seen in STEM image from Figure 6a. These are
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considered to be the best for optical sensing due to their plasmonic behaviour (as can be further seen
in Figure 7). It is well-known that highly aggregated systems jeopardize the sensing properties of
any material [40] due to the fact that the aggregation of cross-linked nanoparticles is nondirective
and the suspension of these aggregates is unstable due to the increased particle size and decreased
repelling force.
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A comparison of the images recorded for the AuNPs/PtTMeOPP hybrid material (Figure 6b) with
those obtained for the same hybrid after treatment with triiodide ions (Figure 6c) highlights significant
differences. The AuNPs/PtTMeOPP hybrid material is compact and not structured, displaying uniform
ovoidal architectures that are slightly larger than of AuNPs (Figure 6b, TEM detail).

After exposure to the triiodide ion solution, the novel AuNPs/PtTMeOPP material became
reorganized into globular clusters (Figure 6c) with greater dispersion, mimicking a dandelion plant.
All these results are in agreement with AFM results and also with the spectroscopic UV–vis obtained
data (see Section 2.5.2). Thus, these results provide evidence for the generation of a new intermediate
compound during detection.

The UV–vis superposed spectra of Pt-metalloporphyrin, gold colloid, I3
− solution and sensitive

AuNPs/PtTMeOPP hybrid material are displayed in Figure 7.

2.5. UV–Vis Spectrophotometric Detection of Triiodide Ion I3
− Using as Sensitive Material

AuNPs/PtTMeOPP Hybrid

2.5.1. Obtaining the AuNPs/PtTMeOPP Hybrid Material

To a solution of gold colloid (3.6 mL, c = 4.5 × 10−4 M), portions of 60 µL of 2 × 10−5 M
PtTMeOPP solution in THF were successively added at room temperature under vigorous stirring
for 3 min. The UV–vis spectra were performed for each addition. The plasmonic band suffers both
the widening of the absorption domain from 520 to 540 nm and a hypochromic effect due to the
increasing concentration of PtTMeOPP. The equilibria processes that occur during the generation of
the AuNPs/PtTMeOPP hybrid are proven by the existence of clearly illustrated isosbestic points at
450 and 545 nm (Figure 8).
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adding PtTMeOPP solution in THF to the gold colloid solution.

After analyzing the optical properties (Figure 8), we used the following method to prepare the
sensitive AuNPs/PtTMeOPP hybrid material: a total of 3 mL of the AuNPs solution (c = 4.5 × 10−4 M)
was mixed with 0.5 mL of the PtTMeOPP solution (c = 2 × 10−5 M) in THF and stirred in ultrasonic
bath to produce the hybrid material that had a violet color in the solution. As observed, the
obtaining AuNPs/PtTMeOPP hybrid material is also certified by the two supplementary bands,
one hipsochromically and one bathochromically located in comparison with the Soret band of
the Pt-metalloporphyrin. However, both manifest a hyperchromic effect, which is consistent with
literature [30].

2.5.2. Detection of Triiodide Ion I3
− Using As Sensitive Material AuNPs/PtTMeOPP Hybrid

The method performed for triiodide ion detection is described as follows. Well-defined portions,
each consisting of 0.05 or 0.1 mL of the triiodide ion solution (c = 9.43 × 10−8 M), were added
to 3 mL of AuNPs/PtTMeOPP hybrid material solution. After they were all added, the mixture
was vigorously stirred at room temperature for 50 seconds and the UV–vis spectra were recorded.
The corrected concentrations of triiodide ion in the mixtures are provided as follows: 1.54 × 10−9 M,
3.04× 10−9, 4.50 × 10−9, 5.90× 10−9, 7.26× 10−9, 8.59× 10−9, 9.87× 10−9, 11.11× 10−9, 12.32 × 10−9,
13.50 × 10−9, 15.75 × 10−9, 17.87 × 10−9, 19.89 × 10−9, 21.80 × 10−9, 23.62 × 10−9, 25.35 × 10−9,
27.00 × 10−9, 28.56 × 10−9, 30.06 × 10−9, 31.50 × 10−9, 32.86 × 10−9, 34.18 × 10−9, 35.43 × 10−9,
36.64 × 10−9, 37.80 × 10−9, 38.91 × 10−9, 39.98 × 10−9, 41.00 × 10−9, 42.00 × 10−9 and 42.95 × 10−9.
The intensity of absorption function of these concentrations is shown in Figure 9. The sensing process
is based on the formation of an intermediate compound, which was proven by the change in the shape
of the hybrid and by the presence of the isosbestic point around 720 nm. Besides, a blind test to see
the influence of only dilution on the UV–vis behavior of the AuNPs-Pt(II)porphyrin hybrid, which
showed a limited and chaotic response, additionally proves that the proposed system for detection of
triiodide ion is not due to dilution.
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Figure 9. Overlapped UV–vis spectra after successive additions of I3
− solution to AuNPs/PtTMeOPP

hybrid solution. In detail: the dependence of the intensity of absorption of the plasmonic band read at
520 nm on the increase in triiodide ion concentration.

When the I3
− concentration was in the range from 1.55 × 10−9 to 4.3 × 10−8 M, the dependence

between the intensity of absorption of the plasmonic band read at 520 nm and the increasing
concentration of triiodide ion was perfectly linear, which was characterized by an excellent correlation
coefficient of 99.98% (Figure 9).

Both the processes of AuNPs/PtTMeOPP hybrid generation and triiodide I3
- ion detection are

accompanied by a significant change in color that encouraged us to further investigate their potential
as colorimetric sensors (Figure 10a).
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Figure 10. (a) Color changes for: PtTMeOPP (1); AuNPs (2); AuNPs/PtTMeOPP hybrid (3);
AuNPs/PtTMeOPP hybrid treated with I3

− ion (4); (b) color change with an increase in I3
− ion

concentration from 10−7 to 10−2 M.

The spectacular changes in color (Figure 10b), might be explained by the already proven nonlinear
absorption coefficients of triiodide ion observed at the formation of clusters between I3

− and water
molecules [9].

2.5.3. Detection of Triiodide ion I3
− Using As Sensitive Material AuNPs/PtTMeOPP Hybrid in

Phosphate Buffer

Our final purpose will be to use this method to detect triiodide ions in medical/biological
samples. As these samples usually contain a high level of salt, which may disturb the
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AuNPs and cause aggregation, we also studied the behavior of AuNPs/PtTMeOPP hybrid in a
phosphate-buffered solution.

The buffered solution was obtained as follows. To 3.5 mL of the AuNPs/PtTMeOPP hybrid
(pH = 6.65), 6 drops of phosphate buffer (HI 70007 pH = 7.01) from Hanna Instruments were added to
reach a pH of 7.01. To 3 mL of the AuNPs/PtTMeOPP hybrid that was buffered to a pH of 7.01, 0.05-mL
portions of I3

− solution in water (c = 9.8 × 10−8 M) were added successively. Each mixture was stirred
for 50 sec and the UV–vis spectra were recorded. The overlapped UV–vis spectra that were recorded
after treating the phosphate-buffered AuNPs/PtTMeOPP hybrid with I3

− solution are presented in
Figure 11. As shown in Figure 11, the position of the peak in phosphate buffered AuNPs/PtTMeOPP
hybrid solution became bathochromically shifted to 674 nm. It is well-known that the addition of
triiodide anion to several types of phosphates [41] generates better absorption phenomena, resulting
in the widening of the absorption bands. This is the main reason why the iodine/triiodide system is
also added in the formulation of dye based photovoltaic cells. Nevertheless, the detection occurs in
the same way as before, with very good confidence index of 99.31%. The dependence of the intensity
of absorption read at 674 nm and the I3

− concentration is represented in Figure 11.
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AuNPs/PtTMeOPP hybrid with I3

− increased concentrations from 1.54 × 10−9 to 3.15 × 10−8 M.
Dependence of the intensity of absorption read at 674 nm and the I3

− concentration.

From this experiment, it is clear that our proposed method can be used to detect triiodide ions
with very good confidence in salted biological systems.

2.5.4. Interference Study

The effect of common interfering ions, such as Cl−, NO3
−, NO2

−, SCN−, HCOO−, CH3COO− and
salicylate anion, were assessed and presented in Figures 12 and 13. A total of 0.5 mL of mono-anionic
salt solutions in water (KCl, KNO3, NaNO2, NaSCN, HCOONa, CH3COONa and sodium salicylate)
with a determined concentration of c = 1.35 × 10−5 M was added to 3-mL fresh portions of the hybrid
solution. Besides, due to the fact that this method is destined to be used in biological tests, two other
interferences, a lipid and an amino-acid, which were namely dilaurylphosphite and N-phenylantranilic
acid (NPAA), were tested at the same concentration of 10−5 M and dissolved in toluene. In the case of
dilauryl phosphite, the changes in the shape of the spectrum are due to the hydrophobic interactions
between dilauryl phosphite, which is a surfactant agent and Pt-porphyrin component in the hybrid
that can be also considered as a surfactant agent, generating H and J-type aggregates [42,43].
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Figure 13. The graphical representation of the differences in absorption intensity produced by several
ions interfering with the AuNPs/PtTMeOPP hybrid at concentrations that are 1000-fold higher
than I3

−.

This concentration represents a 1000-fold increase compared to the KI3 detected concentration
domain. From Figures 12 and 13, it can be concluded that the proposed UV–vis spectrophotometric
method possessed good selectivity toward I3

− determination.
In addition, the response of the hybrid material to triiodide ions after its reaction with a few

potential biological interfering species was measured in order to test if the material is blocked by
other anions, as described in the published paper [44]. The selected mixtures were triiodide-dilauryl
phosphite, triiodide-NPAA and triiodide-salicylate, which were realized by stirring together 3-mL
fresh portions from the hybrid solution with 0.2 mL of the triiodide solution with a concentration of
10−8 M and 0.2 mL of each interfering ion with a concentration of 10−6 M. As shown in Figure 14,
the AuNPs/PtTMeOPP hybrid material is not blocked by amino acids, such as NPAA; lipids, such as
dilauryl phosphite and not even salicylate anion, although each interference ion concentration in the
mixture was more than 100 times higher than that of the triiodide anion.
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2.5.5. Preliminary Mechanism Investigations for I3
− Detection

Based on the excellent results, we wanted to see which components of the hybrids are
responsible for the triiodide ion detection. After that, we comparatively tested AuNPs alone and the
Pt(II)-porphyrin alone (Figure 15).
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In case of only using the sensitive material AuNPs colloid, it can be concluded that the I3
− solution

produces only a dilution phenomenon with no other changes in optical behavior. This behavior can be
explained by the well-known negatively charged surface of AuNPs that prevents enough proximity
for the triiodide anions to be detected [45].

The second case was involved using PtTMeOPP alone as the sensitive material, following the
same procedure for the spectrophotometric detection. In this case, the detection of triiodide ion is
characterized by a narrow range of concentration domain and a decrease in the confidence coefficient
from 99.98 to 99.57%. Besides, as shown in Figure 15, the sensitivity is significantly diminished.

Thus, from the comparatively performed studies, we can conclude that the best detection in
terms of concentration range, detection limit and sensitivity is provided by AuNPs/PtTMeOPP hybrid.
Regarding the contribution of the components, only the porphyrin is responsible for the chemical
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detection of the triiodide ion, but the AuNPs component of the hybrid contributes to better accuracy,
enhanced sensitivity and lower limit of detection.

3. Materials and Methods

3.1. Chemicals

Anisaldehyde was acquired from Roth (Karlsruhe Rheinhafen, Germany) while propionic acid and
propionic anhydride were obtained from Merck (Darmstadt, Germany). Chloroauric acid tetrahydrate
was purchased from Roth (Karlsruhe, Germany) while sodium citrate and THF were acquired from
Merck (Darmstadt, Germany). The phosphate buffer (HI 70007 with pH = 7.01) was acquired from
Hanna Instruments Inc. (Highland Industrial Park, Woonsocket, RI, USA).

The I3
− complex anion was prepared by mixing solutions of potassium iodide and molecular

iodine. Solutions with a known concentration of I3
− were obtained by selecting the concentrations of

I2 and I− to enable the shift to the right of the reaction (Equation (3)) [9].
The porphyrin base, 5,10,15,20-tetra(4-methoxy-phenyl)-porphyrin, was obtained in our

laboratory by Adler method [46].

3.2. Synthesis

3.2.1. Synthesis of Pt(II) 5,10,15,20-tetra(4-methoxy-phenyl)-porphyrin

The synthesis of PtTMeOPP was realized as previously reported [14] by classical metalation
reaction of 5,10,15,20-tetra(4-methoxy-phenyl)-porphyrin base with excess water soluble complex
PtCl2(PhCN)2 using a large excess (ten times more) of CH3COONa × 3H2O in order to capture
the chloride ion and characterized by UV–vis, FT-IR and 1H-NMR spectroscopy. This avoids major
acidification of medium and decomposition of complexes. This simple change offers better yield in a
significantly shorter time of synthesis.

3.2.2. Single Crystal Preparation of Pt(II) 5,10,15,20-tetra(4-methoxy-phenyl)-porphyrin
(PtTMeOPP)/DMF (2:1)

PtTMeOPP was recrystallized by using the CH3OH/CHCl3/DMF solvent mixture. About 5 mg
of PtTMeOPP was dissolved in the above-mentioned solvent mixture that contained 1 mL of CH3OH,
0.5 mL of CHCl3 and 5–6 drops of DMF. The mixture was transferred into a 57 × 16 mm glass tube.
The slow diffusion of 1 mL of diethyl ether into the solvent mixture of PtTMeOPP over a period of
7 days allowed us to obtain rhomboid red brown X-ray-quality single crystals of PtTMeOPP/DMF
(2:1). The crystals were filtered off, washed with methanol/diethyl ether 2:1 and dried in air at
room temperature.

3.2.3. Synthesis of AuNPs

The method for the synthesis of the gold colloid can be considered to belong to green chemistry
and was adapted from literature [26,47]. A total of 0.025 g of HAuCl4·3H2O (6.35 × 10−5 mol)
was dissolved in 83 mL of distilled water and brought to reflux in a 150-mL round bottomed flask.
After this, 8.75 mL (1 wt %) solution of trisodium citrate (0.087 g, 2.97 × 10−4 mol) in distilled water
was added once. The mixture was stirred vigorously and refluxed until the initially yellow solution
turned black and then dark red. The molar ratio of gold salt:sodium citrate was 1:5.

3.3. X-ray Crystallography

X-ray diffraction measurements were obtained using an Oxford-Diffraction XCALIBUR E CCD
diffractometer (Abingdon, Oxfordshire, United Kingdom) equipped with graphite-monochromated
MoKα radiation. Single crystals were positioned at 40 mm from the detector and 235 frames were
measured for 50 s over 1◦ scan width. The unit cell determination and data integration were carried
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out using the CrysAlis package of Oxford Diffraction [48]. The structures were solved by direct
methods using Olex2 [49] software with the SHELXS structure solution program and refined by
full-matrix least-squares on F2 with SHELXL-2015 [50] using an anisotropic model for non-hydrogen
atoms. All H atoms were introduced in idealized positions (dCH = 0.96 Å) using the riding model.
The co-crystallized DMF molecule and one of the 4-methoxy-phenyl branches became disordered
over two positions (50/50% and 60/40% occupancy, respectively). The molecular plots were obtained
using the Olex2 program. The solvent accessible voids (SAVs) were calculated using PLATON [36].
The crystallographic data and refinement details are shown in Table 1, while bond lengths are
summarized in Table S1. Supplementary data is also containing checkCIF/PLATON report. CCDC
1883498 contains the supplementary crystallographic data for this contribution. These data can
be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html (or from the Cambridge
Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44)-1223-336-033; or
deposit@ccdc.ca.ac.uk).

Table 1. Crystal data and details of data collection.

Compound (PtTMeOPP)/DMF (2:1)

empirical formula C49.5H40N4.5O4.5Pt
Fw 964.95

T [K] 180
Crystal system monoclinic

space group P21/c
a [Å] 14.1668(15)
b [Å] 9.6654(5)
c [Å] 15.5836(10)
β [◦] 99.744(8)

V [Å3] 2103.0(3)
Z 2

ρalcd [g·cm−3] 1.524
µ [mm−1] 3.388

Crystal size [mm] 0.15 × 0.1 × 0.02
2Θ range 4.98 to 50.052

Reflections collected 8329
Independent reflections 3712 [Rint = 0.0544]

Data/restraints/parameters 3712/9/241
R1

[a] 0.0495
wR2

[b] 0.1214
GOF [c] 1.029

Largest diff. peak/hole/e Å−3 1.33/−0.82
a R1 = Σ||Fo| − |Fc||/Σ|Fo|. b wR2 = {Σ[w(Fo

2 − Fc
2)2]/Σ[w(Fo

2)2]}1/2. c GOF = {Σ[w(Fo
2 − Fc

2)2]/(n − p)}1/2,
where n is the number of reflections and p is the total number of parameters refined.

3.4. UV–Visible Spectral Studies

UV–visible spectroscopy was investigated on a V-650—JASCO spectrometer (Pfungstadt,
Germany) using 1-cm wide quartz cuvettes.

3.5. AFM, STEM, TEM Imaging

Atomic force microscopy (AFM) images were obtained on Nanosurf®EasyScan 2 Advanced
Research AFM microscope (Liestal, Switzerland) in non-contact mode. The samples were deposited
from solvent mixtures (THF/water) onto pure silica plates.

STEM images were recorded on a Titan G2 80-200 TEM/STEM microscope (FEI Company,
Eindhoven, The Netherlands). The probes were prepared on TEM copper grids (200 mesh), which
were coated with a carbon film. The analyzed compounds and the materials were drop-casted from

www.ccdc.cam.ac.uk/conts/retrieving.html
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THF-water mixtures onto the grids and the images were registered at 200 kV using TEM Imaging &
Analysis v. 4.7 software.

3.6. Thermogravimetric Analysis

TGA was conducted on Mettler Toledo STARe System (TGA/SDTA Mettler Toledo,
Schwerzenbach, Switzerland) in air. A weighed crystalline sample was placed into an alumina
crucible and heated in a static atmosphere of air at a rate of 10 K/min in the temperature range of
298–1273 K (25–1000 ◦C).

4. Conclusions

The planar structure of Pt(II)-5,10,15,20-tetra(4-methoxy-phenyl)-porphyrin (PtTMeOPP) was
elucidated by single crystal X-ray diffraction. The crystal structure packing shows the presence of the
1D supramolecular architecture generated due to weak C-H···O intermolecular hydrogen bonding
and π-π stacking interactions between adjacent phenyl rings. The presence of ordered voids in the
crystal encouraged us to obtain and use a hybrid of PtTMeOPP with AuNPs. Furthermore, we tested
it as an optical sensing material for triiodide ion detection in traces, which is an investigation that is
highly relevant in medical physiological tests. A highly sensitive and selective optical sensor for the
detection of I3

− anions was developed, which had a detection limit of 1.5 × 10−9 M concentration
and a confidence coefficient of 99.98%. The mechanism of detection might be explained both by the
planarity and hydrophobicity of the Pt(II)-porphyrin, which offers enough room to intercalate I3

−

anions between the π-π stacking 1D supramolecular chains. This takes advantage of the available
voids and the well-known ability of the Pt metal to bind new anionic ligands.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/1422-0067/20/3/
710/s1.
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