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Abstract

Background: Stripe rust, leaf rust, tan spot, and Karnal bunt are economically significant diseases impacting wheat
production. The objectives of this study were to identify quantitative trait loci for resistance to these diseases in a
recombinant inbred line (RIL) from a cross HD29/WH542, and to evaluate the evidence for the presence loci on chromosome
region conferring multiple disease resistance.

Methodology/Principal Findings: The RIL population was evaluated for four diseases and genotyped with DNA markers.
Multi-trait (MT) analysis revealed thirteen QTLs on nine chromosomes, significantly associated with resistance. Phenotypic
variation explained by all significant QTLs for KB, TS, Yr, Lr diseases were 57%, 55%, 38% and 22%, respectively. Marginal trait
analysis identified the most significant QTLs for resistance to KB on chromosomes 1BS, 2DS, 3BS, 4BL, 5BL, and 5DL.
Chromosomes 3AS and 4BL showed significant association with TS resistance. Significant QTLs for Yr resistance were
identified on chromosomes 2AS, 4BL and 5BL, while Lr was significant on 6DS. MT analysis revealed that all the QTLs except
3BL significantly reduce KB and was contributed from parent HD29 while all resistant QTLs for TS except on chromosomes
2DS.1, 2DS.2 and 3BL came from WH542. Five resistant QTLs for Yr and six for Lr were contributed from parents WH542 and
HD29 respectively. Chromosome region on 4BL showed significant association to KB, TS, and Yr in the population. The multi
environment analysis for KB identified three putative QTLs of which two new QTLs, mapped on chromosomes 3BS and 5DL
explained 10 and 20% of the phenotypic variation, respectively.

Conclusions/Significance: This study revealed that MT analysis is an effective tool for detection of multi-trait QTLs for
disease resistance. This approach is a more effective and practical than individual QTL mapping analyses. MT analysis
identified RILs that combine resistance to multiple diseases from parents WH542 and/or HD29.
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Introduction

Among biotic stresses, stripe rust (Yr) (Puccinia striiformis f. sp.

tritici), leaf rust (Lr) (P. triticina), tan spot (TS) (Pyrenophora tritici-

repentis), and Karnal bunt (KB) (Tilletia indica) are important

diseases that adversely affect yield and quality of bread wheat

(Triticum aestivum L.) throughout the world. Regional differences in

severity and incidence are pronounced for these diseases. Among

these, KB is very difficult to control once it is introduced into an

area and its potential impact on the grain industry remains high

because of quarantine against the disease. Direct and indirect

losses caused by KB in northwestern Mexico and in the northern

Texas State in the USA were projected at US S|7 million and S|25

million per year respectively [1–2].

The identification and introgression of broad genetic base

resistance in commercially grown wheat cultivars is the most cost

effective and environmentally safe means to manage wheat

diseases. Most single gene resistances against pathogens of wheat

as well as many other crops have proven to be non-durable [3–4].

Inheritance of resistance for Yr and Lr, diseases of wheat is both

qualitative and quantitative however for TS and KB are mainly

quantitative [5–9]. Analyses of QTL were reported in number of

studies for resistance to wheat pathogens [10–12]. Multiple disease

resistance (MDR) loci to many pathogens in wheat have been

identified [13–14]. Important example is the Lr34/Yr18/Pm38/

Bdv1 locus which confers resistance to leaf rust, yellow rust,

powdery mildew, and barley yellow dwarf virus. This locus

represents a single gene [15] and the gene has been cloned. QTLs

for Septoria tritici blotch (STB) Stagonospora nodorum blotch

(SNB), and Fusarium head blight (FHB), diseases of wheat has

been reported [16]. Defense related genes in wheat have been

reported not randomly distributed throughout the wheat genome,

but in clusters and/or in distal gene-rich regions of the

chromosomes [17]. MDR have also been reported in Arabidopsis,

maize and rice [18–20].

Quantitative resistance is controlled by minor genes with small

additive effect, and is more durable. For wheat rusts, adult plant
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resistance (APR) tends to slow the development of the disease

rather than providing immune reactions by preventing the disease

development. Genetic control of APR reaction has been reported

to be controlled by minor genes [21]. This is thought to result from

the host’s ability to lengthen the time required for the pathogen to

colonize and to reduce sporulation capacity of the pathogen.

Identification and genetic characterization of new sources of

resistance and their transfer to adapted genetic backgrounds is of

great importance for wheat improvement. The development of

molecular markers closely linked to resistance QTLs offers

alternative methods for selection of resistant germplasm, facilitates

effective pyramiding of resistance QTLs and offers the possibility

of selecting resistant genotypes in the absence of the pathogens

[9,15,22–26]. The availability of DNA markers provides an

additional means to determine gene uniqueness. Apart from their

indirect use in pyramiding resistance genes throughout marker

assisted selection, markers also help to verify findings of

conventional analyses, which become complicated when large

numbers of genes are already known. Such a situation is

encountered in the case of rusts of wheat where more than 160

resistance genes are named [27].

The objective of this research was to examine multi-trait or

multi-environment QTLs analysis, to identify chromosome regions

with MDR in wheat, and identify marker-phenotype associations

for diverse traits with a data set of RIL population in wheat.

Materials and Methods

Plant materials
The RIL population was developed following single-seed

descent of individual F2 plants to F6 followed by further

generations of advance using bulked samples. The population

comprised of 109 RILs derived from the cross WH542/HD29.

Both the parents are from Indian spring wheat pool. HD29 is

resistant to KB but susceptible to rusts and TS whereas WH542 is

susceptible to KB but resistant to rusts and TS. WH542 is sister

line of a widely adapted CIMMYT breeding line Kauz (Jupateco/

Bluejay//Ures).

Disease screening
RILs were grown in 1 m long pair row plots with row–to-row

and plant-to-plant distance of 23 cm ad 10 cm, respectively.

Likewise, parents were planted in four-row plots. The RILs and

the parents were grown in a completely randomized design with

three replications over five years. The RIL population was

screened for KB resistance during five years (2000-01, 2001-02,

2002-03, 2003-04 and 2004-05) as described by Singh et al. [9].

Correlation coefficients (r) among years were estimated on the

adjusted means of the RILs.

Field evaluations for Lr and Yr reaction were conducted at

Punjab Agriculture University, Ludhiana, India, during crop

season 2004-05. Parental genotypes were included as controls. The

HD29/WH542 RIL population was sown as 60 cm rows in the

field. A boarder row of susceptible infector wheat surrounded the

experimental material for uniform disease development. Uredin-

iospores of different rust pathotypes suspended in light mineral oil

were misted over spreader rows and the experimental rows using

an ultra low volume applicator. Rust susceptible spreader rows

served as inoculum source for epidemic development in addition

to infection from direct inoculation of the experimental rows.

Variation in adult plant rust response was recorded independently

in Yr and Lr trials. Disease severity on parents and the RILs was

scored according to the modified Cobb Scale where percentage of

rusted tissue was visually estimated according to Peterson et al.

[28]. Rusts response assessments were performed when the

susceptible parent reached 100% rust severity. RILs were also

evaluated against TS as described previously Singh et al. [29].

WH542 is resistant and HD29 moderately susceptible to race 1 of

P. tritici-repentis. The reactions of RILs, and the two parents to tan

spot were determined in greenhouse experiments as described

previously [29].

Marker genotyping
Leaf tissue was harvested from each RIL and the parents. Tissue

was ground in liquid nitrogen and genomic DNA was extracted

using the CTAB-DNA method as described Singh et al. [9].

Polymorphism between parents was assessed with PCR-based

DNA markers including SSRs and EST-STS markers (http://

wheat.pw.usda.gov/cgi-bin/westsql/map image.cgi). PCR condi-

tions, running and scoring gels as mentioned previously [29].

Genetic linkage maps were constructed with MAPMAKER

version 2.0 for Macintosh [30]. Markers within groups were

ordered at LOD 3.0.

QTL analyses
Mixture and Mixed models were used, for both data sets; multi-

environment QTL analysis (data set with KB evaluated in five

years, KB2001M, KB2002M, KB2003M, KB2004M, and

KB2005M) and multi-trait QTL analysis (with traits KB, TS,

Yr, and Lr). For the multi environment and multi-trait QTL

analyses the mixed models framework in the procedure

QMQTLSCAN implemented in the Genstat release 13 [31–32]

was used.

Mixed model for single trait multi environment or single
environment multi trait QTL analysis

The basic phenotypic model for a single trait multi environment

(or single environment multi trait) can be expressed as:

yij~mzEjzGizGEijzeij ð1Þ

where yij is the trait value of genotype i in environment (or trait) j,

Ej is the environmental (or trait) main effect, Gi is the genotypic

main effect, GEij is the genotype by environment interaction, and

eij are the random errors, assumed to be normally and

independently distributed with mean zero and homoscedastic

variance s 2.

When the additive effects of the molecular markers information

is considered the model becomes:

yij~mzEjz
X
f [F

xif
add cif

addzxadd
i aadd

j zGEijzeij ð2Þ

if both additive and dominance effects are specified the model is

yij~mzEjz
X
f [F

xif
add cif

addzxif
domcif

dom
� �

z

xadd
i aadd

j zxdom
i adom

j zGEijzeij

ð3Þ

where F is a set of cofactors (if cofactors are included in the model),

xif
add and xi

add are the additive genetic predictors of genotype i at

the cofactors position and at the tested position, respectively. The

associated effects are denoted by cjf
add and aj

add for cofactors and

tested position respectively. In model 3, xif
dom and xi

dom are

dominance genetic predictors of genotype i at the cofactor position

Multi-Trait and Multi-Environment QTL Analyses

PLoS ONE | www.plosone.org 2 June 2012 | Volume 7 | Issue 6 | e38008



and at the tested position, respectively, with associated effects

cjf
dom and aj

dom.

Genetic predictors are genotypic covariables that reflect the

genotypic composition of a genotype at a specific chromosome

location. The residual unexplained genetic and environmental

effects are modeled by the GEij term, which is assumed to follow a

multi-Normal distribution with mean vector 0 and a variance

covariance matrix S. The matrix S can either be modeled

explicitly (with an unstructured model) or by some parsimonious

model.

Both, the multi-environment and multi-trait QTL analyses can

be seen as particular cases of the more general mixed model for

multi-trait multi-environment (MTME) data [33].

Mixed model for multi environment (ME) or (multi trait,
MT) data using matrix notation

Following Malosetti et al. [33], consider a ME (MT) data set

consisting of I genotypes, evaluated in J environments (traits).

Define an N 6 1 vector y with N = IJ containing all the

observations sorted by environment (trait) within genotype. In the

linear model, random variables will be underlined. Given that the

interest is in the genetic variation within the population rather

than the genotypes themselves, we assume genotypes to be

random, whereas the environments (traits) as well as other design

factors are taken as fixed effects in order to minimize the

environment to environment mean differences. A general formu-

lation of a mixed model for the ME (MT) data is:

y~XbzZuze ð4Þ

The response trait is represented in vector y and it is modeled

by a set of fixed effects collected in vector b and random effects

collected in vectors u, and e. X and Z are design matrices

assigning the fixed and random effects, respectively to the

observations. Vector b contains the trait means within environ-

ments (traits) across genotypes. Vector u denotes the random

genotypic effects per environment (trait). Random genetic effects

are assumed to be normally distributed, u,N (0, G); with G being

the genetic (co)variance matrix. Finally, e is a vector of non-

genetic residuals associated with each observation and normally

distributed, e,N (0, R) with R being the residual variance. The

phenotypic (co)variance is given by

V y
� �

~ZGZ’zR ð5Þ

For a ME (MT) model given by (4) the G matrix has in its

diagonal the genetic variance of each trait-environment combina-

tion (i.e. s2
T1E2 for trait T1 in environment E2) and in its off-

diagonal the genetic covariance between each pair of trait-

environment combinations (sT1E2,T1E3 for trait T1 in environment

E2 with T1 in environment E3 or sT1E2,T4E5 for trait T1 in

environment E2 with T4 in environment E5) [33].

From breeders’ point of view, the covariance matrix is of special

interest as it reflects the magnitude and pattern of relationships

between genetic effects. Random genetic effects across a set of

environments will not be independent if there are genes/QTLs

with effects across those environments; similarly genetic effects for

different traits are not independent if genes/QTLs for different

traits are linked or pleiotropic. The effect of genes/QTLs across

environments (traits) will often not be equal in size, and sometimes

not even in sign, leading to heterogeneous genetic variances. The

model for covariance matrix should reflect these relationships and

the heterogeneities in genetic variation.

A QTL model arises from Eq. 4 by including the effect of a

putative QTL as follows:

y~XbzXQTLazZuze ð6Þ

The extra term in the model is composed of a design matrix

XQTL, which is derived from molecular marker information (a

further description of this key matrix will follow), and a vector of

fixed QTL effects (a). In an ME (MT) model, vector a contains the

additive genetic QTL effects for all the environments (traits). The

random genetic effects are collected in vector u and result from the

effects of QTLs outside the tested region, that is, the genetic

background. Genetic background effects are assumed normally

distributed: u,N (0, G). Note that G represents the part of the

genetic (co)variance that is not explained by the QTL.

The extension from a single QTL model to a multi QTL model

is straightforward and is given by

y~XbzSQXq
QTLaqzZuze ð7Þ

The QTL section includes the additive effects of all detected

QTLs in the genome. The values of the Wald statistics or the

associated tail probabilities, P, expressed as -log10 (P), serve to

produce plots analogous to the usual LOD score profiles in QTL

mapping. By plotting the -log10(P) along the chromosomes, we

identified putative QTLs at those positions for which peaks in the

profile exceeded a threshold value. We used a Bonferroni-based

multiple test control threshold, using the estimation of the effective

number of tests along the genome proposed by Li and Ji [34]; as

shown by the authors in simulation data, this test is efficient and

accuracy and it provides an alternative to the permutation test We

control the genome-wide alpha level at 0.05, which corresponded to

a point-wise alpha level of 0.05 divided by the effective number of

tests along the genome. For our data the threshold found and used

was 3.38, which corresponds to a point wide alpha equal to 0.00042

QTL mapping: scanning and testing procedure
The mixed model strategy used consisted of three steps. In the

first step, a phenotypic mixed model was fitted to genotype by

environment data, where the aim was to identify a variance

covariance model. At this stage, no marker information was

included in the model; this includes model 1 or model 4. Some

variance covariance structures that can be used are:

(i) Compound symmetry

cov(eij ; eij� )~s2
GzGE when j~j�,

otherwise cov(eij ; eij� )~s2
G

(ii) Heterogeneous compound symmetry

cov(eij ; eij� )~s2
GzGEj

when j~j�,

otherwise cov(eij ; eij� )~s2
G

Multi-Trait and Multi-Environment QTL Analyses
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(iii) First-order analytic factor + heterogeneity

cov eij ; eij�
� �

~l1jl1j�zs2
dj when j~j�,

otherwise cov eij ; eij�
� �

~l1jl1j�

(iv) Second-order analytic factor + heterogeneity

cov eij ; eij�
� �

~l1jl1j�zl2jl2j�zs2
dj when j~j�,

otherwise cov eij ; eij�
� �

~l1jl1j�zl2jl2j�

(v) Unstructured

cov eij ; eij�
� �

~s2
Gj when j~j�,

otherwise cov eij ; eij�
� �

~s2
Gjj�

The simplest model, (i), is the compound symmetry model that

requires the (residual) genetic variance, s2
GzGE , to be the same in

all environments, and the (residual) genetic covariance be constant

across all pair of environments. Somewhat less simple is the

heterogeneous compound symmetry model (ii) that allows the

genetic variance to differ between environments, while retaining

the property of constant covariance across all pairs of environ-

ments. The most flexible, model (v), the unstructured model, gives

each environment its own genetic variance and each pair of

environments its own genetic covariance. Almost as flexible as

model (v), but requiring less parameters are models (iii) and (iv).

The factor analytic model with one and two multiplicative terms,

with l1j and l2j environment specific multiplicative parameters

and s2
dj a residual heterogeneity [39]. Because in this study the

number of environments (traits) and genotypes are relatively small,

we used directly the most flexible variance covariance unstruc-

tured model.

In the second step we performed a repeated genome scan for the

detection of environment-specific QTL effects. The first genome

scan for QTL corresponded to simple interval mapping [35], in

which a putative QTL is moved along the genome and at each

position; a test for environment-specific QTL is performed. The

mixed model that we used to test for environment specific QTL

contained marker related information (genetic predictors) in the

fixed part of the model, combined with the variance-covariance

structure between environments identified in the previous

phenotypic analysis (model 2 or model 6).

The third step consists in a second scan, where the genetic

predictors of identified QTL of the first scan were used as

cofactors. This second scan was performed by multi environment

composite interval mapping. Jiang and Zeng [36] proposed a

comparable procedure in a mixture model context. Also in this

third step of our procedure, for the identified QTL positions in the

last genome scan, we fitted a multi QTL model using a backward

selection procedure in order to obtain the final significant QTLs

and the estimation of their effects in each of the environments

(model 2 or model 7).

Mixture model for multi environment (ME) and multi trait
(MT) data

The mixture model framework is similar to the mixed model

framework established in Eqs. 4 to 7, the difference is that the term

Zu is not included, whereas all the other terms are considered as

fixed effects, except the residuals. That is, the model without

including marker information is:

y~Xbze ð8Þ

where the mean of each of the terms is the same as in eq. 4 . The

model including a putative QTL, becomes:

y~XbzXQTLaze ð9Þ

and finally the model including multiple QTLs will be:

y~XbzSQXq
QTLaqze ð10Þ

For this approach we have used the software QTL Cartogra-

pher [37], specifically the JZmapqtl option which implements

simple interval and composite interval mapping for multiple

environments (traits). JZmapqtl can jointly analyze more than one

environment (trait). It is best used when one suspects that two

environments (traits) are correlated. JZmapqtl creates a number of

different output files depending on the number of environments

(traits) in the joint analysis. There will be one file per environment

(trait) that has estimates for the parameters for that environment

(trait) and there will be one other file that contains the results of the

joint likelihood ratio. One special case of G 6E analysis has been

incorporated into JZmapqtl, namely the situation where a set of

genotypes is raised in more than one environment. The value of

the trait in each environment is treated as a separate trait for the

common genotype.

We used the stepwise regression analysis option with 0.05 alpha

level in both, input and output, for selecting the putative QTLs to

be used as cofactors later in the joint composite interval mapping

(JZmapqtl option). In this last option we used a windows size of

30 cM for blocking the markers effects, others than the position

being tested on the same chromosome.

In Cartographer it is possible to perform the permutation test

[9] with the aim of estimating experiment specific threshold values

for each individual environment (trait) and for the joint analysis.

The threshold values were determined using 1000 permutations.

Other software used for QTL analysis
Also we have performed the QTL analyses employing a

program package written in FORTRAN language, which has

been routinely used in CIMMYT from several years. These

programs are very similar to QTL Cartographer software.

However, one advantage of the CIMMYT programs compared

to the other software is that it is easier to control the genetic

background or cofactors. Similar to JZmapqtl in Cartographer,

first we run a simple interval mapping looking for the putative

QTLs to be used as cofactors in composite interval mapping. Then

we run restricted composite interval mapping with a window size

greater than the largest chromosome, for detecting possible ghost

or new QTLs, determining the final cofactors set. Finally run a

second composite interval mapping with the final cofactors found

previously and a window size of 30 cM. The threshold value was

established using a fixed criterion, based on a chi-square

Multi-Trait and Multi-Environment QTL Analyses
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distribution with degrees of freedom depending on the number of

environments (traits) analyzed simultaneously.

Similar to QTL Cartographer, in the CIMMYT programs the

output generates the marginal as well as the joint likelihood ratio

profiles, additive estimates, and the QTL by Environment

Interaction, so it is possible to obtain the marginal and joint

graphs. Also using this programs it is possible to calculate the R2

values or the phenotypic proportion of variance explained by each

QTL found in each individual environment (trait).

We compared the results obtained using the different approach-

es and these provide similar outcome in terms of QTL detection.

We present the results obtained in the last strategy, within a

mixture model framework, because they allow to draw the

marginal and the joint likelihood profile together, as well as to

obtain the estimates of additive and proportion of phenotypic

variance explained by each QTL in each environment (trait).

The threshold value was determined using 1000 permutations

[38]. In the tables we are reporting the values corresponding to the

peak for the joint profile, as well as the peaks for the marginal traits

profiles. Therefore, often in the figures one significant peak for

joint profile could be no significant for some marginal trait profile,

so in the table the LOD appear with values lower than the

threshold; usually LOD value of the peak for the marginal traits

are slightly shifted from the peak of the joint analysis.

Results and Discussion

The objectives of this study were to map QTLs for four different

diseases of wheat and to identify chromosomal regions harboring

resistance to the multiple diseases in a mapping population using

multi-trait-analysis. The RIL population HD29/WH542 was

analyzed for quantitative resistance for four different pathogens:

P. striiformis f.sp. tritici (Yr), P. triticina (Lr), P. tritici-repentis (TS), and

T. indica (KB). Evaluation of disease resistance in the RIL

population exhibited continuous distribution for KB, TS, and Lr

diseases. Fig. 1 show the frequency distributions for KB, TS, Yr,

and Lr diseases and resistance was hypothesized to be quantita-

tively inherited for all except Yr, as described in earlier reports [8–

9,29]. The parental lines, HD29 and WH542, differed for

response to all disease traits evaluated, except for Yr. Despite

intermediate adult plant reaction to Yr for both the parents, the

RIL population segregated for this disease (Fig. 1) indicating

genetic independence of Yr resistance genes carried by these

parents. Results revealed significant variation (P,0.001) among

genotypes and genotype-by-environment interactions for all traits

(data not presented). KB was found to be significantly negatively

correlated with TS (Table 1), this is the reason why in the putative

QTLs found generally both profiles were similar, the negative

correlation can be observed in the opposite sign for the additive

effect for most of the QTLs. KB resistance did not show any

significant correlation with Yr and Lr. Similarly Yr and Lr were

significant, but negatively correlated, and again this correlation

can be observed in the similar profiles for the putative QTLs 3, 5,

and 9 and except the first QTL in all the other chromosomes they

shown opposite signs for the additive effects. TS and Yr were also

significantly and negatively correlated, which was reflected in the

additive effects opposite sign for eleven out the thirteen putative

QTLs found.

Table 2 shows the genotypic and phenotypic correlations for

KB across the five years. It is interesting to note that the genetic

and phenotypic correlations were very similar in value, and all the

years were positively correlated, indicating the consistency of their

values. Their positive correlation was reflected in the additive

effect sign for the three putative QTLs detected, where except two

out 18 additive effects all were negative (HD29), both for the

marginal and joint profile. Particularly in the couples of years 2001

with 2002 and 2003 with 2004 were highly correlated.

Multi-trait QTL
In majority of mapping studies, data were recorded for several

traits, and analyzed independently for each trait [5]. Thus, it is not

possible to distinguish between pleiotropy and linkage of genes as

underlying causes of genetic relationship between traits. As a

result, only partial information about the genetic architecture of

the traits under consideration is discovered. Multi-environment

and multi-trait QTL mapping approaches have been proposed

previously [39–40]. Malosetti et al. [41] proposed an approach by

integrating molecular markers into the linear mixed model

methodology which we applied in this study as well as the other

two approaches described above. For the mixture model approach

we detected thirteen putative QTLs on nine different chromosome

regions (1BS, 2AS, 3DS, 3AS, 3BS, 4BL, 5BL, 5DL, and 6DS)

(Table 3) for MDR in wheat. These chromosomes have also been

reported to be associated with disease resistance in numerous

genetic studies in wheat [5,6,9,11,24–26,29,42]. Present investi-

gation support those results and it may be possible that these

regions in wheat genome provide general defense against

pathogens. In all the QTLs, at least one marginal trait was found

to be significant (threshold = 2.5), except in chromosome 5DL-1,

in which the maximum marginal peak was lower than 2.5 (2.26)

for KB trait. However, in this chromosome joint analysis was

significant. In other chromosomes, the peak for marginal traits was

found similar with the joint profile peak. Marginal trait KB was

significant on chromosomes 1BS, 2DS.1, 2DS.2 3BS, 3BL, 4BL,

5BL.2 and 5DL.2 (Table 3). Chromosome 1BS was found to have

a LOD value of 3.41 for KB trait at the 20 cM position (Fig. 2 A),

whereas for the joint analysis it was observed at 22 cM position. In

almost all the QTLs reported in Table 3, the behavior for

marginal traits and joint profile was very consistent for all except

for yellow rust (QYr.cimmyt-2AS). KB was the trait which showed

the maximum LOD values 5.60 at 14 cM position and probably

was the trait that influences more the joint behavior on

chromosomes 1BS, 2DS, 3BS, 4BL, 5BL and 5DL. The most

significant joint profile peak was observed at 20 cM (LOD 7.99),

on chromosome 5BL-2 and it may be more influenced by KB trait.

For chromosome 3AS, the trait influencing joint profile the most

was TS and both marginal and joint profile are located at very

similar positions (Table 3 and Fig. 2 D). In chromosome 3AS

(QTs.cimmyt-3AS) the joint profile peak for TS was detected at

24 cM position with a LOD of 6.20 while for the marginal traits

the maximum peak LOD 3.84 was observed at 23 cM position

(Fig. 2 D). Trait TS was also significant at the chromosome 4BL,

but shifted around the 26 cM (LOD 2.93) from the peak of the

joint profile at 29 cM (LOD 6.07).

The disease Yr, was found significant on chromosomes 2AS,

4BL and 5BL-1 (Table 3). In chromosome 2AS (QYr.cimmyt-2AS)

the peak for the joint profile was at 11 cM while the maximum

peak for Yr was detected at the 29 cM with a LOD of 2.53

(Table 3, Fig. 2 B). Lr was found significant (LOD 5.53) only on

chromosome 6DS at 6 cM position, and this trait influenced joint

profile the most. While the other three traits had a LOD value

lower than 2.5. However, note that all the four individual traits

showed their maximum tendency in around the same peak of the

joint profile, i.e. around 5 cM (Fig. 2 G). MT method allows

studying the occurrence of QTL by environment interaction; it

facilitates examining the causes of genetic correlations between

traits which results from either linked QTLs or pleiotropic QTLs.

Further, it determines the changes in genetic correlations between

Multi-Trait and Multi-Environment QTL Analyses
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traits across environments, which are caused by linked or

pleiotropic QTLs showing QTL by environment interaction.

Interestingly, the resistance locus QKb.ksu-4BL for KB identified

in HD29 in a previous study [9] and in this study, resides in the

same region as resistance for tan spot and yellow rust diseases.

There are evidences for the existence of MDR QTLs, however,

they were detected independently from the crop and the

pathosystem. The question is whether this reflects just a random

co-localization of resistance genes in gene rich genomic regions or

the action of the same gene on different pathogens. Poland et al.

[14] discussed several hypotheses for explaining the potential

mechanisms underlying MDR QTLs. The most probable

hypothesis for MDR in this study is their involvement in basal

defense reaction or defense signal transduction. Because the

pathogens analyzed are not genetically related and infect different

plant organs (leaf vs. head) in different adult-plant stages (flag leaf

extension vs. flowering), the hosts’ resistance reaction might be

triggered by a widely conserved pathogen elicitors. Molecular

studies in Arabidopsis support the hypothesis that pattern-recogni-

tion receptors can condition quantitative differences in resistance

to several pathogens [43–44].

Individual QTL analyses
In order to compare and verify the consistency of the marginal

QTL results obtained on the multi-trait analysis, we performed

analysis for individual traits; KB, TS, Yr, and Lr, one at a time.

The individual and marginal profiles were very similar not only in

the chromosomes in which the significant QTLs were found but

also in all the other chromosomes (data not shown). In some

QTLs, the LOD score in the marginal profile was greater than in

the individual profile, while in others cases the behavior was the

opposite. For example, for KB QTL on chromosome 1BS, the

LOD score value for the marginal analysis was 3.41 while for the

individual analysis it was only 2.47. In the second QTL, on

chromosome 2AS, the marginal LOD for Yr was 2.53 while the

Figure 1. Disease frequency distribution of KB, TS, Yr, and Lr in the RIL population HD29/WH542. The mean value of the parents HD29
(P1) and WH542 (P2) is also shown on the figure.
doi:10.1371/journal.pone.0038008.g001

Table 1. Phenotypic correlations among mean score for
Karnal bunt (KB), tan spot (TS), yellow rust (Yr), and leaf rust
(Lr) diseases.

Trait KB TS Yr

TS 20.3424***

Yr 0.0550 NS 20.3275***

Lr 0.0823 NS 0.1448 NS 20.3294***

***: Significant at P#0.001 alpha level.
NS: Non significant at P#0.05 alpha level.
doi:10.1371/journal.pone.0038008.t001

Table 2. Genetic (lower diagonal) and phenotypic (upper
diagonal) correlations for Karnal bunt (KB) across the different
years.

Trait{ KB01 KB02 KB03M KB04M KB05M

KB01 1 0.8665* 0.4961* 0.3771* 0.3415*

KB02 0.8721* 1 0.5832* 0.4396* 0.3619*

KB03M 0.4798* 0.5521* 1 0.6783* 0.5259*

KB04M 0.4071* 0.4680* 0.7688* 1 0.4318*

KB05M 0.3460* 0.3664* 0.5162* 0.4672* 1

{: KB01, KB02, KB03, KB04, and KB05 indicate Karnal bunt disease score for year
2001, 2002, 2003, 2004, 2005, respectively.
*: Significant at P#0.001.
doi:10.1371/journal.pone.0038008.t002
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individual LOD was higher (2.75), and in both the cases these were

significant. Also on chromosome 2DS at 9 cM position, both the

marginal and the individual LOD score for KB were significant,

however, in the individual analysis the LOD was higher (2.53 and

3.34, respectively).

In chromosome 5BL the behavior for KB was the opposite, the

marginal LOD score (0.17) at 6 cM position was not significant,

but the individual LOD score was significant (2.78). Similarly, on

the chromosome 6DS again both marginal and individual LOD

scores were non-significant but values for the marginal QTL was

lower (0.03) than the individual one (2.26).

For TS, the marginal and individual LOD scores followed

similar pattern as for KB. For example in chromosome 3AS, both

marginal and individual LOD scores were significant with values

3.84 and 4.08, respectively. In summary, for KB and TS the

marginal and individual analyses were very similar.

For Yr and Lr, in almost all the putative QTLs reported, the

behavior of the marginal and individual analyses was the same, the

marginal LOD scores were higher than the individual LOD

scores, except for the QTL of chromosome 3AS for Yr (1.53 and

2.21, respectively). For the QTL detected in chromosome 5BL.1

for Lr with LOD scores values of 1.45 and 1.20 for marginal and

individual traits, respectively. In the two QTLs in which Yr was

found to be significant in the marginal analysis, in the

chromosomes 2AS and 5BL, the marginal LOD scores were

significant while the individual LOD scores were not (2.53 vs 1.30

and 3.00 vs 2.27, respectively). Also for Lr, the only QTL in which

the marginal LOD score was found to be significant in the

chromosome 6DS (5.53), the individual LOD was not significant

(2.03).

General behavior for individual QTL
The KB QTL on chromosome 1BS (QKb.cimmyt-1BS) was

detected exactly at the position of the marker Xgwm273. The traits

more influencing the joint profile were KB which had a profile

very similar to the joint profile with a R2 = 0.11 (Fig. 2 A; Table 3).

For traits KB, and Lr resistance alleles are contributed by the

parent HD29 (negative sign), while for TS and Yr the trait

enhancing alleles were contributed by parent WH542 (positive

sign). Few rust resistance genes are reported in chromosome

translocations 1BL.1RS and 1DL.1RS and introduced into wheat

from ‘Imperial’ rye [39]. Yr15 has been reported to be located on

the short arm of chromosome 1B [45]. The Lr46 was found tightly

linked or pleiotropic to a stripe rust resistance gene designated

Yr29. However marginal trait analysis could not detect QTLs

associated with rusts resistance on chromosome 1BS.

It was observed that often while the additive effects for the

individual traits were relatively high, for the joint analysis the

additive effects were low (0.05). Due to the manner in which the

identical by descent probabilities were calculated for the genetic

predictors, a positive sign in the additive effect means that the

allele which increments the numeric value of the traits comes from

the parent WH542.

The QTL on chromosome 2AS (QYr.cimmyt-2AS) was found in

between the markers Xgwm122 and Xppo33, the nearest was

Xgwm122 (Table 3, Fig. 2B). The traits that most influence the

Figure 2. Multi-trait analysis and locations of QTL for resistance to KB, TS, Yr and Lr. (A) chromosome 1BS with marker Xsukh6137 (at
14 cM), marker Xgwm264 (at 17 cM) and marker Xgwm273 (at 22 cM) where the QTL are located; (B) chromosome 2A with marker Xgwm122 (at 0 cM),
marker Xppo33 (at 29 cM where the QTL is located), and marker Xgwm312 (at 30 cM); (C) chromosome 2DS with marker Xgwm311 (at 2 cM) and
marker Xgwm261 (at 24 cM); (D) chromosome 3AS with marker Xbarc86 (at 21 cM), marker Xbarc45 (at 24 cM where the QTL is located), Xbem29 (at
27 cM), and Xbem7 (at 35 cM); (E) chromosome 4BL with marker Xbarc163 (at 18 cM), marker Xgwm149 (at 28 cM where the QTL is located), marker
Xwmc657 at 34 cM; (F) chromosome 5BL with marker Xgwm271 (at 2 cM where the QTL is located), marker Xwmc75 (at 6 cM), marker Xwmc235 (at
20 cM) and marker Xbarc232 (at 22 cM) and (G) chromosome 6DS with marker Xcfd42 (at 0 cM where the QTL is located), and marker Xcfd49 (at
27 cM). LOD scores are plotted against marker location. QTLs profiles legend with color red, blue, green, yellow, and black indicate KB, TS, Yr, Lr, and
joint effect respectively. Horizontal lines with black solid color mean threshold for Joint profile, and red dashed is threshold for marginal profiles.
doi:10.1371/journal.pone.0038008.g002
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joint profile were Yr followed by TS with R2 values of 0.04 and

0.24, respectively. Although Yr had a LOD score value greater

than TS, the R2 values showed an opposite behavior, indicating

the greater complexity of Yr disease as compared with TS. For

KB, the R2 value was medium (0.18) while for Lr it was very low

(0.01). Similar to previous cases, the additive sign for KB, Yr and

Joint were negative, while for TS and Lr were positive. The

additive value for the joint analysis was very small (0.01) related to

the individual traits.

The most significant QTL detected on chromosome 2DS

(QKb.cimmyt-2DS) was located near the marker Xcfd53 (Fig. 2 C,

Table 3). In the peak position for the joint profile (31 cM), the KB

individual trait was significant. Also, around 9 cM position, the

joint and marginal KB profiles had significant LOD values (4.27

and 2.53). The largest R2 values were for KB (0.16 and 0.13).

Unlike the first two QTLs, the additive effect for TS and the joint

analysis were both negative (parent WH542). Also for Yr the sign

was opposite to the previous ones, while for KB were negative.

The absolute value for the joint additive effect was now clearly

greater than in the previous two QTLs.

The QTL found in chromosome 3AS (QTs.cimmyt-3AS) for

individual trait TS was significant, and this trait influenced the

joint profile the most. R2 value was 0.23 and positive additive as

the joint effect (Fig. 2 D, Table 3). The markers flanking the peak

were Xbarc45 and Xbem29 with Xbarc45 being the nearest. The

resistance QTL for TS identified on chromosome arm 3AS

(QTs.ksu-3AS) has also been reported in a previously [29].

However, here we are reporting additional PCR-based marker

(EST-STS) and the QTL flanked by markers Xbem29 and Xbarc45,

and will be useful for marker-assisted selection. Effertz et al. [42]

reported the restriction fragment length polymorphism marker

Xcdo395 on chromosome 3AS with a portion of the insensitivity of

Opata 85 to chlorosis-inducing crude culture filtrate of P. tritici-

repentis. Our results confirm the association of the region (3AS) for

Table 3. First part: Significant QTLs, chromosome, nearest marker, LOD score values (outside brackets, in bold) and their positions
(inside brackets, in italics) for multi trait analyses including traits Karnal bunt (KB), tan spot (TS), yellow rust (Yr) and leaf rust (Lr).

LOD Score

QTL Chr Marker KB{ TS Yr Lr JOINT{

1 1BS Xgwm273 3.41(20) 2.25(22) 0.72(14) 0.53(19) 4.61(22)

2 2AS Xgwm122 2.07(2) 2.41(12) 2.53(29) 0.39(8) 4.26(11)

3 2DS.1 Xgwm311 2.53(9) 0.40(24) 1.66(24) 0.93(2) 4.27(9)

4 2DS.2 Xcfd53 3.40(31) 0.42(30) 0.51(28) 0.41(30) 4.71(31)

5 3AS Xbarc45 0.58(0) 3.84(23) 1.53(0) 1.44(41) 6.20(24)

6 3BS Xgwm285 5.60(14) 1.85(9) 0.27(5) 1.46(3) 6.38(13)

7 3BL Xgwm340 2.62(94) 1.36(94) 1.97(94) 0.04(94) 4.79(94)

8 4BL Xgwm149 3.29(32) 2.93(26) 2.66(29) 0.10(23) 6.07(29)

9 5BL.1 Xgwm271 0.17(6) 1.50(4) 3.00(0) 1.45(12) 7.72(2)

10 5BL.2 Xwmc235 3.25(20) 2.96(20) 2.47(21) 1.94(21) 7.99(20)

11 5DL.1 Xest-002 2.26(6) 1.66(7) 0.38(6) 0.42(6) 3.88(6)

12 5DL.2 Xgwm90 3.92(25) 0.55(18) 0.01(24) 0.96(24) 5.78(24)

13 6DS Xcfd42 0.03(5) 1.96(12) 2.48(6) 5.53(6) 7.10(5)

Additive effects R2

QTL KB TS Yr Lr JOINT KB TS Yr Lr

1 25.91 4.17 5.18 22.77 20.05 11.35 13.40 1.53 0.48

2 24.70 4.88 211.04 2.74 20.01 17.57 24.20 4.02 1.18

3 210.76 21.81 8.92 4.93 20.73 13.16 1.57 3.44 1.29

4 27.46 22.62 5.36 24.31 23.78 16.17 0.91 1.53 0.22

5 21.93 5.75 27.51 29.16 1.85 3.01 22.74 7.74 0.27

6 27.71 3.78 24.75 6.01 20.25 18.75 12.14 0.07 0.48

7 5.36 22.93 11.20 20.52 0.98 0.18 0.08 12.52 2.28

8 25.62 5.25 210.03 2.78 20.67 14.47 6.60 6.85 0.05

9 21.54 4.68 13.20 6.99 3.51 3.70 9.78 8.05 0.06

10 24.88 4.04 211.47 6.41 20.11 12.10 8.49 2.79 4.81

11 24.01 3.25 23.82 2.52 0.12 17.92 10.88 0.33 0.84

12 26.57 2.35 24.00 5.28 20.32 17.59 4.73 0.08 1.50

13 21.03 4.67 212.13 11.66 1.16 3.82 10.37 2.25 8.63

R2 Total 56.57 55.22 38.21 22.32

Second part: Additive effect of the QTL and R2 for each trait. For the individual trait profiles, the LOD values are those found at the maximum individual peak.
{: Average threshold for individual trait analysis was 2.5.
{: Threshold for Joint analysis was 3.87.
doi:10.1371/journal.pone.0038008.t003
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a tan spot resistance. QTs.ksu-3AS could be the same because

Opata 85 and WH542 share Jupateco and Bluejay in their

pedigrees. This chromosomal region may be a source of MDR

because it has also been reported to carry a QTL for resistance to

Fusarium head blight in tetraploid wheat. Karnal bunt Yr, and Lr

had negative (HD29) additive effect while for TS was positive

(WH542).

The QTL QYr.cimmyt-5BL.1 detected on the chromosome 5BL

the more influencing trait was Yr which was the only individual

significant trait with an R2 of 8.05% (Fig. 2 F, Table 3). It had a

high positive additive effect for the joint profile as well. The peak

for the joint profile was located in between the markers Xgwm271

and Xwmc235 with Xgwm271 being the nearest marker. The

highest R2 value was for TS (9.78%) and also with a positive

(WH542) effect while KB had a negative (HD29) effect. Marker

Xfcp393 on the long arm of chromosome 5BL was significantly

associated with resistance to TS and explained 27% of the

phenotypic variation. A toxin insensitivity gene (Tsn1) in this

interval has been reported previously in a mapping population

from the cross of Chinese Spring (CS) and the CS-T. dicoccoides

chromosome 5B disomic substitution line [46].

For the QTL found on the chromosome 6DS, the peak of the

joint profile was located in between the markers Xcfd42 and Xcfd49

with Xcfd42 being the nearest (Fig. 2 G, Table 3). The more

influencing as well as the only significant individual trait was Lr

with an R2 value of 9.0% and a high positive additive effect. Now

all the effects were positives except for KB and Yr however, Yr

had a high negative effect.

In summary, KB and TS were the most significant traits in eight

QTLs out of the thirteen. Yellow rust was found to be significant

in three QTLs while Lr was significant in only one QTL. Total

phenotypic variation explained by these thirteen QTLs for each

disease resistance traits KB, TS, Yr, and Lr were 57%, 55%, 38%,

and 23% respectively. The largest R2 values were found for KB

and TS in almost all the QTLs. Usually the R2 values for Yr and

Lr were very low except in the chromosome 3BL and 5BL for Yr

and in chromosome 6DS for Lr. KB had negative (HD29

contributed all the allele to reduce the disease) additive effects in all

the QTLs except for chromosome 3BL-1, while TS had positive

(WH542 allele contributed to reduce the disease) effects for all

QTLs except in chromosome 2DS-1, 2DS-2, and 3BL-1. Yr and

Lr showed alternate positive and negative effects, Yr had negative

effects in eight out the thirteen QTLs while Lr had positive effects

in nine out the thirteen QTLs.

Multi-environment QTL analysis
The multi environment QTL analysis for KB, identified three

putative QTLs, in chromosomes 3BS (QKb.cimmyt-3BS), 4BL

(QKb.cimmyt-4BL.1), and 5DL (QKb.cimmyt-5DL.1) (Table 4). In

general, the years KB05M and KB04M influenced joint analysis

the most while KB01, KB02 and KB03M were not significant in

any of the three QTLs. The individual and joint additive effects

were all negatives except for KB04M in the chromosome 3BS and

for KB05M in the chromosome 5DL. Two new QTLs, QKb.cim-

3BS.1 (Fig. 3 A) and QKb.cim-5DL.1 (Fig. 3 C), with resistance

alleles from HD29 were identified and mapped on chromosomes

3BS and 5DL. These explained 10 and 20% of the total

Figure 3. Multi-environment analysis and locations of QTL for resistance to Karnal bunt. (A) chromosome 3BS with markers Xgwm285 (at
0 cM), Xcfd49 (at 25 cM where the QTL is located), Xgwm493 (at 31 cM), and Xgwm108 (at 47 cM); (B) chromosome 4BL with marker Xgwm495 (at
0 cM), Xbarc163 (at 17 cM), Xgwm149 (at 29 cM where the QTL is located), Xwmc657 (at 33 cM), and Xgwm513 (at 38 cM) and (C) chromosome 5DL
with markers X6augwm20 (at 0 cM), Xest-ksm2 (at 5 cM), Xest-002 (at 7 cM), Xest-001(at 9 cM where the QTL is located), and Xest-567(at 14 cM). LOD
score is plotted against marker location. QTLs profiles legend with color red, blue, green, yellow, gray and black are KB01, KB02, KB03M, KB04M,
KB05M, and joint effect respectively. Horizontal lines with black solid color mean threshold for Joint profile, and red dashed is threshold for marginal
profiles.
doi:10.1371/journal.pone.0038008.g003
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phenotypic variation, respectively. A previously reported QTL,

Qkb.ksu-4BL.1, was also identified on the same region of the

chromosome and explained up to 13% of phenotypic variation. All

the three QTLs were statistically significant in multiyear joint

analyses. The QTL by environment was significant for the QTLs

in the chromosomes 3BS and 5DL and non-significant in the

chromosome 4BL.

Specific behavior for individual QTL
The QTL (QKb.cimmyt-3BS.1), detected on the chromosome

3BS, had flanking markers Xgwm285 and Xcfd149 being Xcfd149

the nearest (Fig. 3 A, Table 4). The trait with more influence in the

joint profile was KB05M, the only one significant, with R2 value of

10.0% and negative additive effect (23.46). In this QTL, all the

additive effects were negative except for KB04M. Although KB02

and KB03M were not significant they had a high R2 value 10.0%

and 12.0%, respectively, inclusive for KB03M the R2 value was

greater than for KB05M (Table 4). This was because KB02,

KB03M and KB05M showed similar trends and their maximum

LOD score was reached near to the peak for the joint profile, while

KB01 and KB04M showed a rather flat profile with very low LOD

values along the entire chromosome (Fig. 3 A).

The QTL (QKb.cimmyt-4BL.1), on chromosome 4BL was

associated to the markers Xgwm149 and Xwmc657, Xgwm149 being

the nearest marker (Fig. 3 B, Table 4). Again, the more influencing

individual trait was KB05M followed by KB04M which had a

LOD value slightly lower than the threshold (Table 4). These two

traits also had the highest R2 values 15.0% and 13.0%. In this

QTL, all the individual and joint additive effects were negatives.

Also in this QTL, all the individual traits showed similar trends in

their profile along the entire chromosome and had their maximum

LOD score very near to the joint peak. This QTL was the only in

which the QTL x Environment test was not significant (Table 4).

For the QTL QKb.cimmyt-5DL.1 found on chromosome 5DL,

the markers flanking the joint peak were Xest-wr001 and Xest-567

being Xest-wr001 the nearest (Fig. 3 C, Table 4). These flanking

markers were used for cloning leaf rust resistance gene Lr1. Lr1 is a

dominant leaf rust resistance gene located on chromosome 5DL of

bread wheat and the wild species Aegilops tauschii [47–48]. In

present study, three polymorphic markers (Xest-wr001, Xest-wr002,

and Xest-wr003) were used from resistance gene analogs (RGAs)

clustering around the Lr1 locus. These markers were used to map

KB resistance QTLs on chromosome 5DL. This is most likely first

KB resistance QTL mapped in wheat using a candidate gene

approach and showed significant effect on the disease. More

influencing trait and the only significant one was in year KB04M

with a clearly high R2 value 20.0%. All the additive effects were

negative except for KB05M. The behavior of all individual traits

was similar as can be seen on their profiles reaching their

maximum LOD scores values near to the joint peak.

It is not uncommon in wheat to find regions inherited as multi-

disease resistance loci. These are typically due to absence of

recombination from alien chromosomal segments, such as the

stripe rust and mildew resistances from a rye chromosome 1RS

segment or triple rust and nematode resistances from the Ae.

ventricosa introgressed segment on wheat chromosome 2A [27,49].

These introgressed segments were shown to carry diverse and

multiple gene clusters that encode nucleotide binding and leucine

rich repeat sequences, the most common class of plant disease

resistance genes [49–50]. By contrast the Lr34/Yr18/Pm38 locus of

wheat has no history of alien introgression and thus suppressed

recombination does not explain the multi-pathogen resistance

found at this locus on wheat chromosome. Numerous wheat

mapping studies, component parts or all of the multi-disease
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resistance traits on have been scored as a quantitative trait locus

(QTL) partly due to the partial resistance phenotype and other

rust resistance loci elsewhere in the wheat genome [15].

Delineating the locus to facilitate the molecular genetics

characterization of the multi-disease resistance was boosted by

the development of genetic stocks in the wheat genotypes

Thatcher, Lalbahadur, Avocet and Arina from which ‘single

gene’ families were generated. The partial resistance expression of

the multi-pathogen resistance QTL was shown to be inherited as a

simple Mendelian trait in the single gene families. In a few wheat

backgrounds, such as Thatcher and its derivatives, the presence of

Lr34 enhances stem rust resistance. However, co-segregation of

Lr34 with the adult plant stripe rust resistance gene Yr18 in

exhibiting dual rust resistance in numerous wheat backgrounds

may have contributed to the continued widespread use of the

Lr34/Yr18 germplasm in wheat breeding [15]. Subsequent

observations that the Lr34/Yr18 locus also contributed to partial

resistance against adult plant powdery mildew (Pm38) highlighted

the multi-pathogen nature of the Lr34/Yr18/Pm38 locus in wheat

chromosome [51] mutagenic changes to the ABC transporter

alone were adequate to confer loss of the leaf rust, stripe rust and

powdery mildew resistances encoded by Lr34/Yr18/Pm38. To-

gether with haplotype analysis and high resolution mapping, it was

established that a single gene, an ABC transporter, conferred all

three resistances [15]. Strong parallels between the dual adult

plant leaf and stripe rust resistance gene(s) Lr46/Yr29 and Lr34/

Yr18 have been documented. Co-segregation of Lr46/Yr29 with

Ltn2, a second gene for leaf tip necrosis and adult plant powdery

mildew partial resistance, Pm39 [15] bear resemblance to the

corresponding phenotypes of Ltn1 and Pm38 with the Lr34/Yr18

gene. Sr2 shows parallels with Lr34 and Lr46, in that it is associated

with multi-pathogen resistance. Tight linkage between Sr2, the leaf

rust resistance gene Lr27, and partial APR to stripe rust (Yr30) and

powdery mildew were observed [52]. Wheat plants with inacti-

vated Lr27 alleles from mutagenesis appear to have lost Sr2

possibly indicating pleiotrophism [51]. In addition to the

associated Sr2 plant morphology with dark pigmentation or

necrotic region on the peduncle and glumes often referred to as

pseudo black chaff has remained inseparable from Sr2 resistance in

high resolution mapping [53].

From the results of the MT analysis described in this report, it

can be observed that the joint effect of the combined analysis on

the marginal effect for each trait reflects the correlation among the

traits, which produce some increase or decrease in the individual

effect. The combined MT QTL detection should be a more realist

approach than individual QTL mapping analyses since physio-

logical processes in plants always act as in a complex system and

not in isolate individual effects. By taking into account the

correlated structure of multiple traits, the joint analysis has several

advantages, compared with separate individual analyses, for

mapping QTL, including the expected improvement on the

statistical power of the test for QTL and the precision of

parameter estimation. In addition, the joint analysis provides

formal procedures to test a number of biologically interesting

hypotheses concerning the nature of genetic correlations between

different traits. Further research is required to validate the QTLs

with major effects as well as QTL regions with multi-pathogen

resistance in different genetic backgrounds. Some of the resistances

are affected mainly by additive effects. Thus a combination of

major QTL in wheat breeding lines seems to be promising and

more efforts to incorporate those QTLs that reveal resistance to

different pathogens.
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