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Hypertension is a major risk factor for cardiovascular disorders. As flow-mediated outward remodeling has a key role in
postischemic revascularization, we investigated this remodeling in mesenteric resistance arteries of normotensive (WKY) and
spontaneously hypertensive rats (SHRs) aged 3 to 9months. Sequential ligation of mesenteric resistance arteries allowedmodifying
blood flow in vivo, thus exposing arteries to low, normal, or high flow. After 1, 3, 8, or 24 weeks, arteries were isolated for in vitro
study. High flow (HF) induced outward hypertrophic remodeling in WKY rats after 1 week and persisted until 24 weeks without
change in wall to lumen ratio. In SHRs, diameter increase was delayed, occurring only after 3 weeks. Nevertheless, it was reduced
at 8 weeks and no longer significant after 24 weeks. In parallel, media cross-section area increased more with time in SHRs than in
WKY rats and this was associated with increased contractility and oxidative stress with decreased NO-dependent relaxation. Low
flow induced progressive inward remodeling until 24 weeks in both strains with excessive hypertrophy in SHRs. Thus, a chronic
increase in flow induced transitory diameter expansion and long-lasting hypertrophy in SHRs. This could contribute to the higher
susceptibility of hypertensive subjects to ischemic diseases.

1. Introduction

Arterial hypertension is a major public health problem
concern worldwide. This insidious disease that causes few if
any symptoms or warning signs is nevertheless an important
risk factor for myocardial infarction, stroke, renal failure,
and peripheral arterial disease. Chronic increase in blood
pressure induces a structural vascular remodeling associated
with endothelial dysfunction and increased vascular tone
in resistance arteries [1, 2]. Hypertension-induced arterial
remodeling is different along the vascular tree. Conduit
arteries develop inward hypertrophic remodeling, whereas
small arteries undergo inward eutrophic remodeling [1] in
order to restore wall stress toward control level [3]. Never-
theless, hypertrophic remodeling and increased stiffness may
affect resistance arteries in more severe forms of essential
hypertension or in renovascular (secondary) hypertension

[4] and this may have dramatic consequences on local
perfusion pressure and blood supply to target organs.

Shear stress exerted by blood flow at the surface of vascu-
lar endotheliumproduces vasorelaxation and in the long term
an outward arterial remodeling. Indeed, a chronic increase in
blood flow induces arterial diameter expansion normalizing
shear stress, while the associated compensatory hypertrophy
normalizes wall strain [5, 6]. Such outward arterial remodel-
ing occurs in response to regular physical exercise [7] during
pregnancy [8] or in response to vasodilator treatments [9].
Moreover, flow-mediated outward remodeling is essential
for collateral growth following ischemia [10]. Nevertheless,
the mechanisms involved in dilation and hypertrophy may
be dissociated. For example, in old healthy rats, diameter
expansion does not occur, whereas hypertrophy remains in
response to a chronic increase in flow [11]. On the other
hand, in young healthy rats treated with an angiotensin II
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type 1 receptor blocker, diameter increases in response to a
chronic increase in flow but in this case without vascular wall
hypertrophy [12].

In previous studies, we have shown that nitric oxide
(NO) is essential tomesenteric resistance arteries remodeling
induced by a chronic increase in blood flow [13, 14]. The
activity of endothelial NO synthase (eNOS) has been shown
to increase in spontaneously hypertensive rats (SHR) with
elevated NO [15] and cGMP [16] production. Nevertheless,
reduced NO bioavailability has been established in hyper-
tensive individuals, depending on the duration and severity
of arterial hypertension [17]. Indeed, in SHRs, endothelium-
derived constrictor factors (EDCFs) are produced, including
angiotensin II, thromboxane A

2
, and endothelin-1 [18, 19].

The net result of EDCFs, reactive oxygen species (ROS) [15],
and NO production by endothelial cells in SHR is an
impaired endothelial function and vasodilatation compared
to normotensive rats [17, 20].

High flow-mediated remodeling, when measured after 1
week, is reduced in young (10 weeks old) SHRs as compared
to age-matched WKY rats [21]. Nevertheless, this is likely
to be due to a different kinetic of remodeling in SHRs. In
normotensive animals, a plateau of luminal expansion is
reached after 1 week [22] while in SHRs, the reduced dilator
response to flow [16, 20] might slow down the process. This
may be the consequence of an elevated H

2
O
2
level in SHRs

arteries together with a high NO concentration that cannot
be further elevated following chronically increased blood
flow [15]. Although NO and ROS are both essential for
high flow remodeling of large [23] and small arteries [24],
oxidative stress is elevated in SHRs, so that the system
could be unbalanced. Indeed, in the SHR, an antioxidant
treatment restores high flow-mediated outward remodeling
of the mesenteric artery [15]. Nevertheless, these studies
were performed in 10-week-old SHRs, thus shortly after the
onset of hypertension and most damage associated with high
blood pressure occurs later. Finally, little is known about the
evolution of remodeling with time in rats, especially in SHRs.
In mature (10-month-old) [21] and old (24-month-old) rats
[11], high flow-mediated remodeling is impaired. Although
ROS production increases with age in normotensive rats,
this phenomenon is exacerbated in hypertensive animals
[25]. NAD(P)H-oxidase likely contributes to this age-related
increase in ROS in hypertension [26].

In this study, we investigated the evolution and the nature
of flow-mediated remodeling in the context of hypertension
and aging. To address this issue, we conducted functional
and biochemical studies on mesenteric resistance arteries
chronically submitted to high blood flow for 1 week up to
6 months in 3-month-old WKY rats and SHRs to evaluate
the parallel evolution of flow-mediated remodeling, arterial
contractility, and endothelium-mediated relaxation.

2. Materials and Methods

2.1. Arterial Ligation in Rat Mesenteric Arteries. Forty-eight
10-week-old male WKY rats and 48 SHRs (Iffa-Credo,
L’Arbresle, France) were anaesthetised (isoflurane, 2.5%) and
pretreated with buprenorphine (Temgesic; 0.05mg/kg, s.c.).

A loop of intestine was then exposed and local mesen-
teric artery blood flow was surgically reduced as previously
described [27, 28]. Briefly, from three adjacent first-order
mesenteric arteries, second-order branches of the first and
third arteries were ligated with 7-0 surgical silk threads. This
creates high flow (HF) in themiddle vessel, with lowflow (LF)
in the other two vessels. Control (normal flow, NF) vessels
were distant first-order mesenteric arteries obtained from
the same animal.

Rats were divided in 4 groups (𝑛 = 12 rats per group) and
after 1, 3, 8, or 24 weeks, they were anesthetized for blood pre-
ssure measurement in the carotid artery [29] and for blood
flow measurement in NF, HF, and LF arteries [22]. In short,
blood flow was measured using a 1mm ultrasonic flow probe
and a TS420 transit-time perivascular flowmeter (Transonic
System Inc.). Changes in blood flowwere recorded for at least
10min before the flow rate was averaged. Mesenteric arteries
were then rapidly collected and used for arterial diameter
measurement, histological analysis, or biochemical analysis.

The procedure followed in the care and euthanasia of
animals was in accordance with the European Community
Standards on the Care and Use of Laboratory Animals
(Ministère de l’Agriculture, France, authorization number
6422). The protocol was approved by the regional ethical
committee (Protocol CEEA PdL number 2008.10).

2.2. Arterial Diameter Measurement in Isolated Arteries. The
mesenteric vascular bed was removed and kept in ice-cold
physiological solution of the following composition (mM):
130, NaCl; 15, NaHCO

3
; 3.7, KCl; 1.2 KH

2
PO
4
; 1.2, MgSO

4
;

11, glucose; 1.6, CaCl
2
; and 5, N-2-hydroxy-ethylpiperazine-

N-2ethylsonic acid, pH 7.4, PO
2
160mmHg, and PCO

2

37mmHg. Mesenteric arteries were dissected free of fat and
connective tissue using a dissection microscope. From each
HF, LF, and NF artery, one segment was quickly frozen in
liquid N

2
, one was used to determine the pressure-diameter

relationship, and one was used for a pharmacological study.
One segmentwas then cannulated at both ends in a video-

monitored perfusion system (Living Systems Ins., Burlington,
VT) as previously described [30]. Briefly, arteries were bathed
and superfused with a Ca2+-free PSS containing EGTA
(2mmol/L) and sodium nitroprusside (SNP, 10 𝜇mol/L).
Pressure was controlled by a servo-perfusion system (LSI,
Burlington, VT) and increased by steps from 10 to 150mmHg.
Diameter changes were continuously measured and recorded
(Biopac, MP100, La Jolla, CA).

At the end of each experiment, pressure was set at
75mmHg, and the arteries were fixed in a 10% buffered
formaldehyde solution, as previously described [31] and
stored for histomorphometric analysis.

2.3. Histomorphometric Analyses. Sections (7 𝜇m thickness)
were obtained from the fixed arterial segments and stained
with orcein. External diameter, lumen diameter, and media
thickness were determined after images acquisition (Olym-
pus T100 microscope, Sony camera) and analyzed using
the Histolab software (Microvision, Paris, France) for cross-
sectional area (CSA) calculation as previously described [32].
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Table 1: Blood flow (𝜇L/min), measured using a Transonic probe in NF, LF, and HF arteries of WKY rats and of SHRs.

Time after surgery 1 week 3 weeks 2 months 6 months
NF artery WKY rats 345 ± 33 354 ± 40 378 ± 46 402 ± 38
LF artery WKY rats 110 ± 21∗ 123 ± 23∗ 90 ± 21∗ 54 ± 16∗$

HF artery WKY rats 673 ± 52∗ 661 ± 64∗ 695 ± 70∗ 724 ± 79∗

NF artery SHRs 326 ± 38 332 ± 41 367 ± 45 350 ± 37
LF artery SHRs 93 ± 18∗ 103 ± 24∗ 77 ± 18∗ 50 ± 14∗$

HF artery SHRs 654 ± 45∗ 598 ± 42∗ 645 ± 69∗ 688 ± 70∗

Mean ± SEM is presented (𝑛 = 6 per group in the WKY rats and 𝑛 = 5 per group in the SHRs).
∗
𝑃 < 0.05, HF or LF versus NF arteries.

$
𝑃 < 0.05, 3 weeks, 2 months, or 6 months versus 1 week.

2.4. Pharmacological Analysis. The last arterial segment
(2mm long) was mounted on a wire-myograph (DMT,
Aarhus, DK) as previously described [33]. Briefly, 2 tungsten
wires (25 𝜇m diameter) were inserted in the lumen of the
arteries and connected to a force transducer and a micro-
meter, respectively. Arteries were bathed in the PSS described
above [34]. A wall tension, equivalent to intra-arterial pres-
sure, was applied [19] and vessels are allowed to stabi-
lize for one hour. Artery contractility was assessed with
phenylephrine (PE, 1𝜇mol/L). Acetylcholine- (Ach 1 𝜇mol/L)
induced relaxation was then obtained after phenylephrine-
induced preconstriction (50% of maximal contraction) in
the presence or in the absence of the NO synthesis blocker L-
NAME (100 𝜇mol/L) or of superoxide dismutase (120U/mL)
plus catalase (80U/mL) [31].

2.5. Tissue Extraction andWestern Blot Analysis. Frozen arte-
rial segmentswere pulverized in liquid nitrogen.Thepowders
were resuspended in ice-cold lysis buffer: 150mM NaCl,
1% IgepalCa630, 0,5% Na deoxycholate, 0,1% SDS, proteases
inhibitors cocktail (Complete Protease Inhibitor Cocktail,
Roche). Vessel extracts were incubated in this buffer on ice
for 15min and then centrifuged (14,000 rpm, 15min, 4∘C).
The detergent soluble supernatant fractions were retained,
and protein concentration in samples was equalized by using
a Micro BCA Protein Assay Kit (Pierce) [11]. Proteins (15𝜇g
total protein from each sample) were separated by SDS-PAGE
and transferred to nitrocellulose membranes. The mem-
branes were incubated with the primary antibody (Trans-
duction Laboratories for gp91phox, p67phox, and beta-actin
1 : 1000 in T-TBS, Santa Cruz Biotechnology for eNOS, 1 : 500
in TBS-T), washed (3 times for 15min), and incubated
with horseradish peroxidase-conjugated secondary antibody
(Amersham) for 90min at room temperature. The proteins
were visualized using the ECL-Plus Chemiluminescence Kit
(Amersham) and bands intensity was quantified by densito-
metry using Image J software.The results were normalized to
beta-actin immunoreactivity [11].

3. Statistical Analysis

Results were expressed asmeans ± standard error (SEM). Sig-
nificance of the differences between groups was determined
by analysis of variance (two-way ANOVA for consecutive

measurements followed by the Bonferroni 𝑡-test) to compare
pressure-diameter curves in the different groups. In the
other set of experiments, means were compared by unpaired
Student’s 𝑡-test. 𝑃 values less than 0.05 were considered to be
significant.

4. Results

Mean arterial blood pressure was not significantly affected by
the ligations in either strain. In the 4 studied groups (1, 3, 8,
and 24 weeks of ligation) mean arterial pressure was 146 ± 6,
162±7, 173±9, and 170±8mmHg in SHRs and 92±5, 95±6,
94 ± 7, and 95 ± 7mmHg in WKY rats (𝑛 = 12 per group).

Blood flow (Table 1),measured using aTransonic probe in
NF arteries, ranged from 345±33 to 402±38 𝜇L/min inWKY
rats (𝑛 = 6 per group, 1 to 24 weeks after surgery) and from
326±38 to 350±37 𝜇L/min in SHRs (𝑛 = 5 per group). In HF
arteries blood flow ranged from 673 ± 52 to 724 ± 79 𝜇L/min
in WKY rats (𝑛 = 5 or 6 per group) and from 654 ± 45 to
688 ± 70 𝜇L/min in SHRs (𝑛 = 5 per group, 𝑃 > 0.05). In LF
arteries, blood flow ranged from 110 ± 21 to 54 ± 16 𝜇L/min
in WKY rats (𝑛 = 6 per group, 𝑃 < 0.05) and from 93 ± 18 to
50 ± 14 𝜇L/min in SHRs (𝑛 = 5 per group, 𝑃 < 0.05).

In isolated mesenteric resistance arteries, stepwise
increases in pressure induced a rise in diameter (Figures
1(a) and 1(b)). Arterial diameter was significantly higher in
HF and lower in LF arteries than in NF vessels. In order to
quantify remodeling, the diameter of HF and LF arteries
was expressed as percentage of change compared to the NF
artery (Figure 1(c)). In WKY rats, diameter in HF arteries
was 20 to 28% higher than in NF vessels after 1 to 24 weeks
(no significant difference between ages, Figure 1(a)). In
SHRs, diameter rose by 8% in HF arteries after 1 week
(not significantly different from NF vessels, Figure 1(c)). By
contrast, diameter in HF vessels increased by 38% after 3
weeks (𝑃 < 0.01). Remodeling decreased then after 8 weeks
(22%, 𝑃 < 0.05 versus NF and 𝑃 < 0.01 versus HF after
3 weeks) and after 24 weeks (9%, 𝑃 < 0.01 versus 3 and 8
weeks).

Outward remodeling in HF arteries was significantly
lower in SHRs than in WKY rats after 1 week and after 24
weeks, whereas it was higher after 3 weeks and equivalent
after 8 weeks. Inward remodeling of LF arteries was equiv-
alent in SHRs and in WKY rats and developed progressively
with time (Figure 1(c)).
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Figure 1: Continued.
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Media cross-section area (CSA) was higher in SHR
compared to WKY rats arteries as previously described [1].
Chronic increase in blood flow (HF arteries) significantly
augmented CSA in both SHR and WKY rats at 3, 8, and 24
weeks after ligation (Figure 2(a)). In LF arteries, CSA was not
different when compared to NF vessels in both SHRs and
WKY rats and there was no difference between the 2 strains.
Media to lumen ratio, an index of hypertrophy, was sig-
nificantly higher in SHR than in WKY in HF, LF, and NF

arteries (Figure 2(b)). In WKY rats media to lumen ratio
was not significantly different in HF and LF vessels than
in NF arteries. In SHR, the ratio was higher in LF than in
NF arteries. In HF arteries, the ratio was higher than in NF
vessels in SHR after 1, 8, and 24 weeks but not after 3 weeks
(Figure 2(b)).

Phenylephrine- (PE-) induced contraction (Figure 3(a))
was higher in HF and NF arteries from SHRs compared
to WKY rats. No difference in contraction was observed in
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LF arteries between WKY rats and SHRs. In HF arteries,
contraction to PE (1 𝜇mol/L) was higher than in NF vessels
(significant after 8 and 24 weeks in SHRs and after 3, 8, and
24 weeks in WKY rats). Nevertheless, contractility rose pro-
gressively from 1 week to 24 weeks in HF arteries from SHRs,
whereas the contraction was stable in HF arteries fromWKY
rat from 3 to 24 weeks.The contraction induced by depolariz-
ing potassium concentration (KCl 80mM) followed a similar
pattern with the exception that it was higher in LF arteries
in SHR compared to WKY rats (Figure 2(b)).

Endothelium-dependent relaxation in response to ACh
(1 𝜇mol/L) was lower in HF and NF arteries from SHR
than in equivalent arteries from WKY rats (Figure 4(a)). No
difference in relaxation was observed in LF arteries between
WKY rats and SHRs. In SHRs, ACh-mediated relaxation was
reduced in HF compared to NF arteries. Attenuation of ACh-
induced relaxation by L-NAME (Figure 4(b)) was lower in
LF than in NF and HF arteries in both SHRs and WKY rats.
No difference in sensitivity to L-NAME was observed
between HF and NF arteries in both WKY rats and SHRs.

Endothelium-independent relaxation induced by SNP was
equivalent in all groups (Figure 4(c)).

The expression level of eNOS was significantly higher in
HF than in NF arteries in WKY rats, not in SHRs (Figure 5).
It was therefore significantly lower in HF arteries from SHRs
compared to HF vessels from WKY rats after 1, 8, and 24
weeks, not after 3 weeks. In LF arteries, eNOS expression level
was significantly lower than in NF arteries, in both SHRs and
WKY rats (no difference between the 2 strains).

The expression level of gp91phox (Figure 6) and p67phox
(Figure 7) was significantly higher in HF than in NF arteries
inWKY rats after 1, 3, 8, and 24weeks and in SHRs after 8 and
24 weeks. The expression level of gp91phox and p67phox was
also higher in SHRs than inWKY rats in NF arteries, but not
in LF vessels. In HF arteries, gp91phox and p67phox expres-
sion level was higher in SHRs than in WKY rats only after
8 and 24 weeks.

ACh-induced relaxationwas increased by superoxide and
catalase in arteries of SHRs but not in arteries of WKY rats
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(Figure 8). This effect was significantly greater in HF arteries
than in NF and LF arteries in SHRs.

5. Discussion

Chronic increases and decreases in blood flow induce out-
ward and inward arterial remodeling, respectively [27, 28].
These diameter changes allow the normalization of wall shear
stress and are accompanied by a compensatory change in wall
mass, which restores circumferential stress [27]. In order to
investigate flow-mediated remodelingweused amodel allow-
ing the comparison of resistance arteries submitted in vivo to
different blood flow levels in the same physiological condi-
tions and in the same vascular bed for several days to several
weeks.

Flow-mediated enlargement of preexisting vessels, or
collaterals, constitutes a compensatory response to arterial
narrowing or occlusion that allows adequate blood supply
to distal ischemic tissues. The development of coronary
collateral arteries allows reducing infarct size and increases

survival in patients suffering coronary artery disease and was
consequently proposed as a “valuable treatment strategy” in
this pathology [35].

Collateral arterial growth is impaired in several phys-
iological and pathological situations. Collateral growth is
reduced in humans [36] and animals during aging [11, 21]. It
is strongly impaired in diabetes, especially in the peripheral
circulation such as the lower limb arteriolar network where
improving collateral circulation is a key issue [37]. Finally, in
hypertension a major risk factor for cardio- and neurovascu-
lar disorders is also associated with impaired flow-mediated
remodeling in young SHRs and in patients suffering coronary
artery disease [35]. However, the specific association of aging
and hypertension has not been investigated and the duration
of the increase in blood flow investigated in previous studies
was limited to 1 week [15, 21].

In agreement with those previous studies [15, 38], high
flow-mediated outward remodeling in SHRs was not signif-
icant 1 week after ligation of the adjacent arteries. Neverthe-
less, 3 weeks after ligation, a significant diameter expansion
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was observed in SHRs in association with improved NO-
dependent relaxation and elevated eNOS expression. How-
ever, this did not persist and outward remodeling reversed
progressively after 8 and 24weeks.Thus, in SHRflow-induced
diameter expansion was delayed compared to WKY and did
not last over time. Several explanations could account for this
result. First, the low kinetic of remodeling observed in SHRs
could be due to oxidative stress, which is especially elevated
in SHR arteries compared to WKY rats [15, 38]. Indeed,
diameter expansion depends on the activation of matrix
metalloproteinases by peroxynitrite which are formed from
NO and O

2

−. Production of both NO and O
2

− is activated by
the chronic increase in flow as shown in the carotid [23] and
in the mesenteric artery [22, 24, 39]. Nevertheless, an imbal-
anced equilibrium betweenNO and oxidative stressmay alter
remodeling. A previous work performed in young SHRs has
shown that the chronic increase in flow is associated with
elevated H

2
O
2
level in the mesenteric artery together with

a high NO concentration which cannot be further elevated
despite the chronic increase in blood flow [15]. This is in
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agreement with the finding of the present study, as diameter
expansion did not occur one week after increasing flow. In
agreement, we found that arterial contractility, gp91phox, and
p67phox levels aswell asNO-dependent relaxation and eNOS
level were not different in HF than in NF arteries in SHRs
one week after ligation. By contrast, these parameters were
all elevated in HF compared to NF arteries after 3 weeks.
This observation is in favor of a lower kinetic of the process
involved in high flow-mediated diameter expansion in the
young SHRs.

In addition to the reduction in diameter expansion
observed in theHF arteries after 8weeks in SHRs, we found in
these arteries a progressive increase in media cross-sectional
area and contractility.This evolution of structure and vascular
reactivity was observed neither inNF arteries in the SHRs nor
in NF or HF vessels in WKY rats. The balance between NO
and ROS is likely to be deleterious in HF arteries of SHRs as
shown by our observations. The structural change observed
inHF arteries in SHRsmay be in favor of a net decrease in the
biodisponibility of NO that has been shown to be a negative
regulator of vascular smoothmuscle proliferation in response
to a remodeling stimulus [40].

Indeed, p67phox and gp91phox expression levels were
higher in SHRs than in WKY rats. This may lead to exces-
sive oxidative stress and consequently to hypertrophy and
hypercontractility as previously described in various vascu-
lar territories in hypertension [41–43]. Our finding is also
consistent with a previous study showing flow-mediated
elevation of peroxide production in SHRs but not in WKY
rats [15]. In human coronary arteries, flow-mediated dilation
has also been associated with H

2
O
2
production through

activation of NADPH oxidase [44]. In the HF artery in
SHRs, p67phox and gp91phox, hypertrophy and contractility
increased continuously between 3 weeks and 6 months after
ligation.The impaired outward remodeling observed in SHRs
is in agreement with a previous study showing that antioxi-
dant therapies reverse the impaired collateral arteries growth
in the mesenteric circulation [38]. A possible explanation for
the excessive oxidative stress and contractility found in SHR
HF arteries is that the increased flow per se could induce this
dysfunction. An acute increase in flow (shear stress) induces
endothelium-mediated dilation, which is impaired in SHRs
due to excessive vasoconstrictor agents (the so-called EDCFs)
production [19 2000]. After a chronic increase in blood flow,
similar imbalance between vasodilator and vasoconstrictor
agentsmay occur.This assumption is supported by our obser-
vations as well by previous studies cited above. As arterial
diameter in theHF artery decreased after 3weeks, shear stress
was not normalized and consequently the stimulus (shear
stress) remained elevated, possibly leading to a higher basal
constrictor tone, which further reduced arterial diameter.
This finding may help in understanding the bad outcome
of ischemic disorders in hypertensive patients. Indeed, after
occlusion of a large artery, outward arterial remodeling
would not fully occur, thus reducing revascularization of the
ischemic area. Our observation implies that this outward
remodeling may not last over time and eventually deteriorate
in hypertensive patients. Indeed, collateral growth has been
shown to be impaired by hypertension [38, 45] as well as

by other risk factors such as aging [36], metabolic syndrome
[46, 47], and diabetes [48, 49].

Finally, in arteries exposed to a reduced flow, intraluminal
diameter decreased continuously over the 6-month duration
of the protocol without reaching a plateau and without
difference between SHRs and WKY rats. Low flow-mediated
inward remodeling is the consequence of unopposed con-
strictor tone as flow-mediated EDRF release is chronically
reduced [12, 27, 50]. Consequently, diameter decreases with-
out hypertrophy leading to eutrophic or hypotrophic inward
remodeling as previously described [50–53].This continuous
diameter decrease is surprising and could not be attributed to
the excessive contractility observed in SHRs as diameter fol-
lowed a similar pattern in WKY rats. A possible explanation
could be that collateral arterioles branching from the low LF
artery also decrease in size due to a similar inward remodeling
and progressively their density could also decrease and thus
further reduce blood flow, thus resulting in a vicious circle.
Nevertheless, this hypothesis remains speculative and thus
it requires further investigation. Alternatively, the process of
LF remodeling could involve a progressive and long-lasting
decrease in endothelium- (NO)mediated relaxation, whereas
contractility remains fully efficient. Thus this progressive
unbalanced equilibrium between endothelium and smooth
muscle would lead to a progressive reduction in arterial size.

To conclude we found a biphasic evolution of high
flow-mediated outward remodeling of mesenteric resistance
arteries in SHRs. Nevertheless, remodeling evolved rather
negatively over time in SHRs with a progressive worsening
of the arterial function and structure, whereas in WKY rats
outward remodeling persisted over time with an improved
endothelium-mediated relaxation. Such a reduced response
to a chronic increase in blood flow could provide a possible
explanation for the deleterious outcome of ischemic disorders
in hypertensive patients.
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