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Abstract: Hyphal morphology is considered to have a close relationship with the production level of secreted proteins by filamentous
fungi. In this study, the gull gene, which encodes a putative mRNA-binding protein, was disrupted in cellulase-producing fungus
Trichoderma reesei. The hyphae of Agull strain produced more lateral branches than the parent strain. Under the condition for cellulase
production, disruption of gull resulted in smaller mycelial clumps and significantly lower viscosity of fermentation broth. In addition,
cellulase production was improved by 22% relative to the parent strain. Transcriptome analysis revealed that a set of genes encoding
cell wall remodeling enzymes as well as hydrophobins were differentially expressed in the Agull strain. The results suggest that the
regulatory role of gull in cell morphogenesis is likely conserved in filamentous fungi. To our knowledge, this is the first report on the

engineering of gull in an industrially important fungus.
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Introduction

The ascomycete fungus Trichoderma reesei (teleomorph Hypocrea
jecorina) is widely used for industrial cellulase production in the
world (Bischof et al., 2016). The cellulase hyper-producing mutant
of T. reesel was reported to produce up to 100 g/1 of proteins in in-
dustry (Cherry & Fidantsef, 2003). Moreover, T. reesei has been de-
veloped as a promising chassis for the production of heterologous
proteins (e.g., lipase and pharmaceutical proteins) (Landowski
et al.,, 2016; Rantasalo et al., 2019). Therefore, understanding the
biological processes involved in protein production in T. reesei is
important for rational engineering of strains for industrial appli-
cations. In the past decades, most of the work in this field has been
focused on transcriptional regulation, which critically affects the
synthesis level of cellulases (Druzhinina & Kubicek, 2017).

The linkage between morphology and productivity has been
observed in many industrial filamentous fungi (Grimm et al,,
2005; Quintanilla et al., 2015). First, the filamentous morphology
of cells affects the viscosity and consequently the efficiency of
mass transfer in the fermentation broth. Second, the action of
shear stress on long hyphae could be harmful to cell health in
submerged fermentation. Third, the frequency of hyphal branch-
ing might have a direct influence on secreted protein production,
as protein secretion is reported to be preferably occur at hyphal
tips (Li et al., 2019; Wosten et al., 1991). In T. reesei, freely dis-
persed or clumped mycelia are generally observed during sub-
merged fermentation for cellulase production (Ahamed & Ver-
mette, 2009; Choy et al., 2011). Using different cultivation media, a
positive correlation was observed between the number of tips and
cellulase production (Ahamed & Vermette, 2009). Hyphal pellets

were also reported for T. reesei cultures at low inoculum size or in
the presence of specific kinds of surfactants (Callow & Ju, 2012;
Domingues et al., 2000). Because the changes of cultivation pa-
rameters often affect multiple cell functions (e.g., nutrition and
membrane permeability), the relationship between morphology
and cellulase production is hard to discern in many studies.

Genetic engineering of morphology has been performed in
some fungal species based on the knowledge of cell growth and
development. For example, deletion of a kinesin-encoding gene
kipA in Aspergillus glaucus resulted in more compact mycelial
clumps, lower viscosity of culture, and higher production of as-
pergiolide A than the parent strain (Cai et al., 2014). Through
the screening of 90 gene deletion mutants with morphological
changes, Lin et al. (2018) found that the disruption of gul-1 gene in
Neurospora crassa caused the formation of hyphal pellets in sub-
merged cultivation, which significantly reduced the viscosity of
culture. The protein product of gul-1 and nuclear DBF2-related
(NDR) kinase COT-1 comprise a pathway regulating cell wall in-
tegrity and morphogenesis in N. crassa (Herold & Yarden, 2017;
Terenzi & Reissig, 1967). This pathway has been studied more
comprehensively in Saccharomyces cerevisiae, where the activity
of Ssd1 (GUL-1 homolog) is regulated by CBK1 (COT-1 homolog)
through phosphorylation (Kurischko, Kim, et al., 2011). During po-
larized growth, phosphorylated Ssd1 binds to a specific set of mR-
NAs and promotes their asymmetric localization. Under stress
conditions, Ssd1 is suggested to be dephosphorylated, and carries
the mRNAs binds to mRNA processing bodies (P-bodies) and stress
granules to repress their translation (Kurischko, Kim, et al., 2011;
Kurischko, Kuravi, et al., 2011).
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While the close homologs of GUL-1/Ssd1 are present in many
industrial fungi, their roles in morphogenesis and the relevant
strain engineering have been less reported. In this study, we per-
formed the disruption of gull gene in T. reesei. The gull disruption
mutant exhibited a hyper-branching morphology and reduced cell
wall integrity compared with the parent strain. In addition, the
mutant showed a lower viscosity of fermentation broth and higher
cellulase production than the parent, suggesting that gull dis-
ruption is an effective strategy for morphological engineering of
T. reesel.

Materials and Methods
Construction of Strains

T. reesel QP4, a uracil auxotrophic strain derived from the strain
QM9414 through deleting the pyr4 gene (Zhong et al., 2016), was
used as a parent for strain construction. The gull gene knockout
cassette was constructed using the double-joint PCR method (Yu
et al.,, 2004). First, the upstream and downstream sequences of
gull were amplified from the genomic DNA of QP4 using primer
pairs gul1-UF/gull-UR and gul1-DF/gull-DR, respectively. The As-
pergillus niger pyrG gene was amplified from the genomic DNA of
T. reesel SCB18 using primer pair pyrG-F1/pyrG-R1, and employed
as a selection marker. The SCB18 strain carries A. niger pyrG gene
after previously reported genetic manipulations (Gao, Qian, et al.,
2017). The above fragments were fused together, and the primer
pair gull-NF/gul1-NR was used as nested primers to amplify the
entire gene knockout cassette. The gull overexpression cassette
was constructed by fusing the Ppdcl promoter, gull coding and
downstream sequences, and A. niger pyrG together. The cassettes
were then transformed into the protoplasts of QP4 as described
by Penttild et al. (1987). Transformants were screened and pu-
rified on minimal medium plates, and identified by PCR using
indicated primers. To construct the reference strain QPP, the A.
niger pyrG gene was transformed into the QP4 protoplasts, and the
transformants with pyrG integrated into the genome were identi-
fied through PCR using the primer pair pyrG-F1/pyrG-R1. All the
primers used in this study were listed in Supplementary Table S1.

Cultivation

The strains were cultivated on potato dextrose agar (PDA) plates
at 30°C for 7 days for conidiation. The conidia were harvested by
washing PDA plates with distilled water containing 0.9% (wt/vol)
NaCl and 0.01% (wt/vol) Tween 80. For mycelial growth study, fresh
conidia were inoculated into 50 ml minimal medium at a final
concentration of 10° per ml, and the Erlenmeyer flasks were in-
cubated in a rotary shaker at 200 rpm at 30°C. For cellulase pro-
duction, the strains were first grown in minimal medium for 36 hr,
and then 5 ml culture was inoculated to 50 ml cellulase produc-
tion medium for continued cultivation.

The minimal medium contained (g/l): glucose 20.0, (NH4),SO4
5.0, KH,PO, 15.0, MgSO,4-7H,O 0.6, CaCl, 0.6, peptone 2.0,
FeSO4-7H,0 0.005, MnSO4-H,0 0.0016, ZnSO4-7H,0 0.0014, and
CoCl-6H,0 0.002. The cellulase production medium contained
(g/1): microcrystalline cellulose 20.0, corn steep liquor 20.0,
KH,PO4 5.0, (NHy4)2SO04 2.0, MgSO4-7H,0 0.6, and CaCl, 1.0.

Phenotype Analysis on Agar Plates

One microliter of conidial suspension (10° per ml) of strains was
inoculated on the center of PDA or cellulose agar plates, and then
cultivated at 30°C. The cellulose agar plate was the same with
minimal medium agar plate except that glucose was replaced by

2% (wt/vol) ball-milled cellulose. The diameters of colonies on
agar plates were measured every day. For stress sensitivity anal-
ysis, the strains were inoculated on minimal medium plates sup-
plied with different chemicals as indicated, and cultivated at 30°C
unless specifically stated.

Microscopy Analysis

The conidia were inoculated to cellulose agar plates with cover-
slips inserted to the medium. Images of hyphae on cellulose agar
plates or mycelia in liquid minimal medium were acquired with
Eclipse 80i upright microscope (Nikon, Japan), and analyzed using
the ImageJ 1.8.0 software (Schneider et al., 2012). The Lyg, (length
of a hyphal growth unit) value was calculated by dividing the hy-
phal length by the number of tips (Quintanilla et al., 2015). Fifty
hyphae were measured for each strain.

Biomass Measurement

The mycelial biomass in 50 ml liquid minimal medium was col-
lected by vacuum filtration and washed with distilled water. The
mycelia were dried to constant weight at 60°C and weighed. Due to
the insolubility of microcrystalline cellulose, the biomass in cellu-
lase production medium was measured indirectly by determining
the amount of internal protein. Specifically, 1 ml of culture broth
was centrifuged at 8,000 g for 30 min, and then the precipitate
was washed with 0.9% (wt/vol) NaCl solution. Next, the precip-
itate was resuspended in 1 ml of 1 M NaOH solution and incu-
bated at 200 rpm for 1 h at room temperature. The suspension
was centrifuged at 8,000 g for 10 min, and the protein content of
the supernatant was determined by the Bradford Protein Assay
Kit (Sangon Biotech, Shanghai, China).

Viscosity Measurement

The viscosity of fermentation broth was measured using digital
viscometer NDJ-5S (Lichen Bangxi Instrument Co. Ltd., Shanghai,
China) according to the manufacturer’s instructions. The instru-
ment drives a spindle (immersed in the test sample) through a cal-
ibrated spring, and measures the viscous drag of the fluid against
the spindle by the spring deflection. One hundred ml of culture
broth in a 100 ml beaker was used for measurement with three
repeats at room temperature. No. 2 spindle supplied with the vis-
cometer was used with the rotation speed set at 6 rpm. Data in the
measurement range of 20— 40% were recorded after the readings
were stable.

Cellulase Activity Assay and SDS-PAGE

The culture broth was centrifuged at 8,000 g, 4°C for 10 min to col-
lect supernatant. Filter paper activity was determined with What-
man No. 1 filter paper as the substrate as previously described
(Gao, Li, et al., 2017). One unit of enzyme activity was defined as
the amount of enzyme required to release 1 umol glucose equiva-
lent from the substrate per minute. For SDS-PAGE, equal volumes
(15 pl) of culture supernatants were supplemented with loading
buffer, boiled for 10 min, and loaded onto a 12% SDS polyacry-
lamide separating gel for electrophoresis at 120 V for 1 hr.

RNA-seq

The strains were first grown in minimal medium for 36 hr. Then,
5ml culture was inoculated to 50 ml cellulase production medium
with 10 g/l microcrystalline cellulose as the sole carbon source,
and then cultured for 48 hr in biological triplicates. Mycelia were
harvested by vacuum filtration and frozen immediately in lig-
uid nitrogen. Total RNA was isolated from ground mycelia using



RNAiso Reagent (TaKaRa, Japan) according to the manufacturer’s
instructions. High-throughput sequencing of RNA samples was
performed by Personal Biotechnology Co., Ltd. (Shanghai, China).
Briefly, mRNA was purified from total RNA using poly-T oligo at-
tached magnetic beads, and then sequencing libraries were gener-
ated using the TruSeq RNA Sample Preparation Kit (I[llumina, San
Diego, CA, USA). The products with an average insert size of 380 bp
were purified using the AMPure XP system (Beckman Coulter, Bev-
erly, CA, USA), and quantified using the Agilent high sensitivity
DNA assay on a Bioanalyzer 2100 system (Agilent). Paired-end se-
quencing was performed on a NovaSeq 6000 platform (Illumina)
with a read length of 150 bp. The clean reads obtained after raw
data processing were mapped to the reference genome of T. reesei
QMé6a (NCBI assembly accession: GCF_000167675.1) using HISAT2
(Kim et al.,, 2019). Count values on each gene were quantified us-
ing HTSeq (Anders et al., 2015). FPKM (fragments per kilobase per
million mapped fragments) was used to standardize the gene ex-
pression values. DESeq 1.30.0 (Anders & Huber, 2010) was used
to identify the genes of significantly differential expression with
combined thresholds (log2FoldChange| > 1 and p < .05).

Prediction of GPI Anchored Proteins

The list of proteins with signal peptides predicted by SignalP was
downloaded from the JGI genome portal (https://mycocosm.jgi.
doe.gov/Trire2/Trire2. home html). The proteins were then used
for the prediction of GPI anchored proteins using the online tool
NetGPI-1.0 (Gislason et al., 2021).

Statistical Analysis
Statistical significance tests of differences were performed by

calculating p values with two-tailed homoscedastic t-test in the
software Microsoft Office 2016 Excel (Microsoft, USA).

Results

Annotation and Disruption of the gull Gene in
T. reesei

Reciprocal BLASTp analysis identified the protein product of gene
Trire2_77084 (NCBI RefSeq accession number: XP_006964501.1) in
T. reesei wild-type strain QMé6a as the ortholog of N. crassa GUL-1
(Martinez et al., 2008). However, the predicted protein sequence
of T. reesei GUL1 lacks around 250 amino acids at the N-terminal
when aligned with N. crassa GUL-1. Manual check of the genome
sequence suggested that the gull gene was mis-annotated in
strain QM6a, while the annotation in mutant strain Rut-C30
(TrireRUTC30_1_24555; GenBank accession number: ETS03006.1)
is correct.

The 1,349 amino acid-long sequence of T reesei GUL1 has an
identity of 76.8% with N. crassa GUL-1. Although predicted to
have a ribonuclease II/R domain, T. reesei GUL1 should not have
a ribonuclease activity due to the lack of some key amino acid
residues (e.g., metalion binding sites) for catalysis, which is a com-
mon feature for GUL-1/Ssd1 orthologs (Supplementary Fig. S1).
In addition, T. reesei GUL1 possesses several putative Cbk1/COT-
1 phosporylation sites, of which some are conserved between S.
cerevisiae, N. crassa, and T. reesel (data not shown).

The major part of gull gene was deleted via homologous recom-
bination in T. reesei QP4, a uridine auxotrophic strain constructed
from strain QM9414 (Zhong et al., 2016) (Supplementary Fig. S2).
One of the generated gull-disrupted mutants was named Agull
and used for further study. To exclude possible differences be-
tween genetic complementation and nutritional supplementation
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(Pronk, 2002), QP4 was also transformed with the selection marker
gene pyrG to generate the auxotrophy-complemented reference
strain QPP (via random integration). In this study, there is actually
no significant difference between QP4 and QPP when uracil was
supplemented in the culture medium.

The Disruption of gull Increased Hyphal
Branching

On PDA plate, the Agull strain showed a slower radial growth than
reference strains QP4 and QPP (Fig. 1a). In addition, the colony of
Agull was more compact, and had a smoother edge, than those
of reference strains (Fig. 1b). On the medium with cellulose as the
sole carbon source, the difference in colony morphology among
strains was less remarkable.

The growth of strains was also compared in liquid medium with
2% (wt/vol) glucose as the sole carbon source. The Agull strain ac-
cumulated higher biomass than the reference strain QPP at the
early stage of cultivation (Fig. 1c). Nevertheless, the calculated
maximum specific growth rate of Agull (0.15 h=?!) was lower than
that of QPP (0.19 h™'). This result was consistent with the higher
germination rate of the conidia of Agull. According to microscopic
observation, the mean percent of germination for conidia of Agull
was 24.84% (54/213) after 10 hr of incubation, while that of QP4
and QPP was 14.00% (35/250) and 13.81% (25/181), respectively.

The Agull strain showed a hyper lateral branching phenotype
on cellulose agar plate when examined with microscope (Fig. 2a).
The significant lower Ly, value of Agull than QPP (179.6 um ver-
sus 293.5 um) clearly suggested that gull disruption increased hy-
phal branching (Fig. 2b). This hyper-branching phenotype was in
line with the lower radial growth rate of Agull.

The Agull Strain Formed Smaller Clumps in
Liquid Medium

The disruption of gull also changed the morphology of mycelia
in liquid medium. The mycelia of reference strains were wound
into clumps in liquid minimal medium, with irregular shapes and
uneven distributions. By contrast, the mycelial clumps of Agull
were more uniform and inclined to be pelleted (Fig. 3a). The dif-
ferent morphologies of mycelia were also remarkable when ex-
amined under microscope. While the hyphae of reference strains
were intertwined into network structures, Agull formed smaller
and more compact clumps throughout the cultivation (Fig. 3b).

The Agull Strain Showed Lower Culture
Viscosity and Increased Protein Production
During Cellulase Fermentation

Considering the wide use of T. reesel in cellulase production, we
compared the Agull and reference strains in a cellulase produc-
tion medium, where 2% (wt/vol) cellulose served as a carbon
source. Under this condition, the strains formed more compact
mycelial clumps relative to those in glucose medium. Similarly,
smaller myecelial clumps were observed for Agull than the refer-
ence strains (Fig. 4a). In addition, the broth viscosity of Agull was
dramatically lower than that of the reference strain, particularly
in the early stage of cultivation (Fig. 4a). The viscosity at 48 hr was
141.3 mPa s for Agull, which was approximately 40% of that of ref-
erence strain QPP (356.7 mPa s). Mycelial autolysis was observed
after 120 hr, when the broth viscosity dropped below 100 mPa s
for both strains.

The production level of cellulase (measured as filter paper en-
zyme, FPase) of the Agull strain was higher than those of refer-
ence strains (Fig. 5a). The cellulase activity of Agull at 168 hr was
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Fig. 1. The effect of gull disruption on the growth of T. reesei. For the growth on agar plates, Triton X-100 at a concentration of 0.1% (wt/vol) was
included in the media. (a) The diameters of fungal colonies on PDA plates. Data represent mean + S.D. (error bars) from triplicate cultivations. (b) The
morphology of colonies on PDA plates and cellulose agar plates (see section Materials and Methods). Photos were taken after 168 hr of cultivation. (c)
The growth in liquid minimal medium. Data represent mean + S.D. (error bars) from triplicate cultivations.
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Fig. 2. Disruption of gull increased hyphal branching on cellulose agar
plates. Photos were taken after 24 hr of cultivation. (a) The morphology
of hyphae. Scale bar, 50 um. (b) The Ly, values (see section Materials
and Methods) quantified by measuring 50 hyphae for each strain. The
cross markers indicate mean values.

3.38 U/ml, 22% higher than that of QPP. Consistently, Agull pro-
duced more proteins to the culture, particularly for some proteins
with apparent molecular weights of ~60 kDa (Fig. Sb and c). The
production level of cellulase was similar with those reported for
T reesei in many studies, such as 1.9 U/ml (Culbertson et al., 2013),
2.0-4.5 U/ml (Gao, Qian, et al., 2017a), and 1.6-2.3 U/ml (Novy et
al.,, 2016). Nevertheless, further engineering of genes directly in-
volved in cellulase production (e.g., transcription factors) and pro-
cess optimization are needed to achieve higher production levels
(Ellil4 et al., 2017; Novy et al., 2019).

To clarify if the decrease broth viscosity and increased protein
production in Agull was due to any change in cell biomass abun-
dance, intracellular proteins were extracted and determined to
indirectly study cell growth in cellulose medium (Bischof et al,,
2013). As shown in Fig. 5d, the growth of Agull was in advance
compared with the reference strain, with a higher biomass ac-
cumulated before 48 hr. The maximum biomass was similar be-
tween the strains. Thus, the decreased viscosity of fermentation
broth for Agull should be due to the change in morphology of
mycelium.

The relationship between gull and broth viscosity was fur-
ther confirmed by the construction and examination of the gull-
overexpression strain OEgull (Supplementary Fig. S2). In the
cellulase production medium, the broth of OEgull showed sig-
nificantly higher viscosities than that of QPP, especially in the
early stage of cultivation (Fig. 6a). The cellulase production level
of OEgull was similar with that of QPP at 24 hr, but became lower
along with the fermentation (Fig. 6a). In summary, the results
of gull overexpression study are in agree with those from gull
disruption.
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Fig. 3. The effect of gull disruption on the morphology in liquid minimal medium. (a) The macro-morphology of strains in shake flasks. The culture
broths after 36 hr of cultivation were poured into 9-cm petri dishes for photo taking. (b) Representative microscopic images of mycelia at different

time points of cultivation. Scale bar, 100 um.

Disruption of gull Caused a Modest
Transcriptomic Change During Cellulase
Production

While Ssd1 is believed to mainly regulate the translation of its
target mRNAs, it could also stabilize at least some of the targets
and therefore affect the abundance of transcripts (Ohyama et al.,
2010). In addition, the changes in mycelial morphology and cell
wall integrity (see next section) caused by gull disruption may
indirectly affect the transcription level of some genes. Therefore,
the transcriptomes of Agull and QPP grown in cellulose medium
(at 48 hr) were compared using the RNA-seq technology.

Among the 9,113 genes analyzed, 272 and 249 genes were sig-
nificantly upregulated and downregulated, respectively, in Agull
relative to QPP (Supplementary Table S2 and Supplementary
Fig. S3). Gene Ontology term enrichment of the differentially ex-
pressed genes suggested that the transcript abundance of mem-
brane proteins, glycoside hydrolases, and oxidoreductases had
more significant changes. Within the 228 glycoside hydrolase, car-
bohydrate esterase and polysaccharide lyase genes annotated by
Hékkinen et al. (2012), 17 genes were significantly upregulated,
while 42 were downregulated, in Agull (Supplementary Table S2).
These genes included 6 of the 18 chitinase genes in T. reesei (Seidl
et al.,, 2005). Specifically, chi18-12 and chil8-15 were upregulated,

while chi18-14, chi18-16, chi18-17, and chil8-18 were downregu-
lated, in Agull (Supplementary Fig. S3). In addition, genes encod-
ing chitosanases, @-1,6-mannanases and g-1,3-glucanases, which
are probably involved in cell wall remodeling, were also found in
the differentially expressed genes.

Glycosylphosphatidylinisotol (GPI) anchored proteins, which
are known to be attached to membrane or cell wall in fungi,
are involved in cell wall biogenesis, integrity and cell adhe-
sion (Gonzalez et al., 2009). Eighty-six GPI anchored protein-
encoding genes were predicted in T reesei (see section Materi-
als and Methods), of which 14 were differentially expressed in in
Agull relative to QPP. These genes are predicted to encode a 8-
1,3-glucanosyltransferase, an «-1,6-mannanase, and putative cell
wall mannoproteins with unknown functions (Supplementary Ta-
ble S3). The significant upregulation of two hydrophobin genes
was also noted. The gene hfbl with a role in hyphal development
(Askolin et al., 2005) and another class Il hydrophobin gene TRIRE-
DRAFT_106538 were upregulated by 9.91- and 10.83-fold, respec-
tively, in Agull relative to QPP.

Unexpectedly, the transcription levels of genes encoding ma-
jor cellulases and hemicellulases were decreased in Agull
(Supplementary Table S2). In addition, the gene xyrl, which en-
codes a key transcriptional activator for cellulase/hemicellulase
expression (Stricker et al., 2006), was downregulated (by around
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40%) in Agull. These results suggested that the improved cellu-
lase production in Agull strain was not likely due to increased
cellulase gene expression.

The gull Gene is Involved in Cell Wall Integrity
Maintenance in T. reesei

Both S. cerevisiae SSD1 and N. crassa gul-1 contribute to the main-
tenance of cell wall integrity (Lin et al., 2018; Mir et al., 2009).
Given the similar effects of gull/gul-1 disruption on mycelial mor-
phology between T reesei and N. crassa, we examined the tolerance
of Agull to commonly used cell wall stressing dyes (Ram & Klis,
2006). Compared with the reference strain QPP, Agull was signif-
icantly more sensitive to Congo red and Calcofluor white (Fig. 7),
suggesting a weaker ability to modulate cell wall integrity in this
mutant. The sensitivity to heat (cultivation at 37°C) and high os-
molarity (0.5 M KCl) of Agull was similar or slightly lower com-
pared with QPP (Fig. 7), indicating that gull is not involved in the
tolerance to these stresses.

Discussion

The morphology of mycelia is an important parameter in indus-
trial fermentation for filamentous fungi (Cairns et al., 2019). For
cellulase producing fungi, hyper-producing mutants with altered
morphologies have been obtained through classical mutagene-
sis. For example, a mutant of Myceliophthora thermophila with high
cellulase productivity formed small mycelial fragments in sub-
merged culture, resulting in reduced viscosity (Visser et al., 2011).
For T. reesel, a cellulase high producing mutant was found to form
shorter, thicker and more frequently branched hyphae than the
parent strain (He et al., 2016). Considering the close relationship
between hyphal branch frequency, protein secretion ability and
culture viscosity (Bocking et al., 1999), several genes involved in
hyphal branching have been manipulated to test whether the pro-
duction of secreted proteins could be improved. However, the mu-
tants with increased hyphal branching (e.g., disruption mutants
of the gene encoding Rho GTPase RacA/Racl) did not always led
to reduction in culture viscosity and/or enhanced protein secre-
tion (Fiedler et al., 2018; Fitz et al., 2019). In this study, the disrup-
tion of gene gull resulted in more branched hyphae and reduced
culture viscosity in T. reesei, providing an effective target for ra-
tional strain engineering. It should be noted that the Agull strain
formed more lateral branches (Fig. 2a), while mutations in actin

or RacA/Racl (regulating actin behaviors) genes usually formed
more dichotomous branches (Kwon et al., 2011; Virag & Griffiths,
2004). Therefore, different types of “hyper-branching” might have
different effects on mycelial morphology and protein secretion,
which is worth being studied in the future.

The viscosity of fermentation broths during cellulase produc-
tion showed rapid decreases between 24 and 48 hr, when cell
biomass was still increasing (Figs 4 and 5). This inconsistence
should be due to the change in mycelial morphology during fer-
mentation, which needs to be further studied. In A. niger, the
roughness of mycelial clumps was found to be correlated to broth
rheology among several morphological parameters (Olsvik et al.,
1993). Here, Agull formed smaller clumps with less hyphal inter-
actions (particularly in the early stage) compared with the refer-
ence strain, which could explain its lower broth viscosity through-
out fermentation.

Many of the phenotypical changes observed in the Agull
strain (e.g., hyperbranching, lower viscosity and reduced cell wall
integrity) are similar with those of gul-1 deletion mutant in N.
crassa (Lin et al., 2018). This highlights the significance of using
the N. crassa gene deletion mutant library to identify genes deter-
mining important traits in biotechnology studies. To our knowl-
edge, this is the first time that gull manipulation was used for
engineering the morphology of an industrial fungus. Compara-
tive transcriptome analysis showed the transcript abundances of
a set of genes with putative roles in cell wall remodeling or cell de-
velopment changed in Agull (Supplementary Table S2), of which
many were also differentially expressed in the N. crassa Agul-1
strain. For examples, the genes TRIREDRAFT_22914 (encoding a
B-1,3-glucanosyltransferase) and TRIREDRAFT_66792 (encoding
a B-1,3-endoglucanase) were both downregulated in Agull, and
similar downregulations of their orthologs were also detected in
N. crassa Agul-1. The orthologs of Aspergillus nidulans phiA, which
is required for normal phialide development, showed signifi-
cantly increased transcript abundances in both Agull and Agul-1.
The changes in the transcript abundance of these genes might
contribute to the altered morphologies of gull/gul-1 disruption
mutants.

Deletion of gul-1 in N. crassa increased the production of ex-
tracellular g-glucosidase but not that of major cellulases (Lin
et al,, 2018). However, the T. reesei Agull strain showed higher cel-
lulase production level than the reference strain, which is ben-
eficial from an industrial perspective. Interestingly, the cellulase
genes were found to be downregulated in Agull but notin Agul-1.
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Considering the rapid decrease of cellulase gene expression after
early induction by cellulose (Cao et al., 2017), the effect of gull dis-
ruption on cellulase gene expression needs to be investigated in
time-course experiment.

The Cbk1-Ssdl pathway is similar between S. cerevisiae and
N. crassa in several aspects despite their different morphologies.

In both species, the pathway is involved in the establishment of
cell polarity and the maintenance of cell wall integrity. Recently,
Gao et al. reported that the silencing of cot-1 homolog in T. ree-
sei resulted in more frequent hyphal branching and increased
cellulase production in the early stage of fermentation (Gao
et al.,, 2020). The results of them and us suggest that the above
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pathway is also conserved in T. reesei. While the molecular mech-
anism of regulation by Ssd1in S. cerevisiae has been relatively clear
(Kurischko,Kim, et al., 2011; Kurischko, Kuravi, et al., 2011), there is
no direct evidence that its homologs also control the localization
and translation of mRNAs encoding cell wall proteins. For the 14
Ssd1-bound mRNA targets supported by two independent stud-
ies (Hogan et al., 2008; Jansen et al., 2009), only CTS1 (encoding
an endochitinase) has an ortholog in T. reesei (chil8-17). There-
fore, Ssd1/GUL1 might evolve with different targets in different
fungal species. The identification of GUL1-bound targets (e.g., by
RNA immunoaffinity purification) is expected to reveal the regula-
tory mechanism of GUL1, which is important for the understand-
ing and precise engineering of cell morphogenesis in filamentous
fungi.
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