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Abstract

The optimal management of mild traumatic brain injury (TBI) patients with injuries identified by computed tomography

(CT) brain scan is unclear. Some guidelines recommend hospital admission for an observation period of at least 24 h.

Others argue that selected lower-risk patients can be discharged from the Emergency Department (ED). The objective of

our review and meta-analysis was to estimate the risk of death, neurosurgical intervention, and clinical deterioration in

mild TBI patients with injuries identified by CT brain scan, and assess which patient factors affect the risk of these

outcomes. A systematic review and meta-analysis adhering to PRISMA standards of protocol and reporting were con-

ducted. Study selection was performed by two independent reviewers. Meta-analysis using a random effects model was

undertaken to estimate pooled risks for: clinical deterioration, neurosurgical intervention, and death. Meta-regression was

used to explore between-study variation in outcome estimates using study population characteristics. Forty-nine primary

studies and five reviews were identified that met the inclusion criteria. The estimated pooled risk for the outcomes of

interest were: clinical deterioration 11.7% (95% confidence interval [CI]: 11.7%–15.8%), neurosurgical intervention 3.5%

(95% CI: 2.2%–4.9%), and death 1.4% (95% CI: 0.8%–2.2%). Twenty-one studies presented within-study estimates of the

effect of patient factors. Meta-regression of study characteristics and pooling of within-study estimates of risk factor effect

found the following factors significantly affected the risk for adverse outcomes: age, initial Glasgow Coma Scale (GCS),

type of injury, and anti-coagulation. The generalizability of many studies was limited due to population selection. Mild

TBI patients with injuries identified by CT brain scan have a small but clinically important risk for serious adverse

outcomes. This review has identified several prognostic factors; research is needed to derive and validate a usable clinical

decision rule so that low-risk patients can be safely discharged from the ED.
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Introduction

There are 1.4 million annual attendances in England and

Wales to Emergency Departments (EDs) following a head

injury (any trauma to the head), and in 2010, 2.5 million people

were treated for traumatic brain injury (TBI; injury to the brain or

alteration of brain function due to an external force) in the United

States.1 Approximately 95% of patients have an initial Glasgow

Coma Scale (GCS) of 13–15, out of a possible 15, indicating

normal or mildly impaired responsiveness and orientation.1,2 In this

large group with head injury and a high conscious level at pre-

sentation, research has focused on developing decision rules to

identify patients who require computed tomography (CT) imaging

due to their risk for life-threatening TBI.

In the United Kingdom (UK), National Institute for Health and

Care Excellence (NICE) and Scottish Intercollegiate Guidelines
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Network (SIGN) guidelines are used for this risk assessment, based on

the Canadian CT head Rule (CCHR).1,3,4 Only 1% of head-injured

patients have life-threatening TBI.1,4 However, 7% have TBI iden-

tified by CT imaging.5

Most TBI patients who require neurosurgical intervention are

identified soon after presentation. The optimal management of the

remaining patients in this group remains controversial. A propor-

tion will deteriorate due to the progression of their injuries, and so

some studies advocate admission to higher dependency levels of

care and repeat CT imaging.6,7

Other studies report that some low-risk patients may be safely

discharged after a short period of observation in the ED.8,9 Perel

and colleagues have previously outlined how prognostic models

can aid clinical decision-making in TBI.10 Subsequent prognostic

models, including the IMPACT, TARN, and CRASH models, have

been useful in predicting adverse outcomes in patients with more

severe TBI, but they are not applicable to this patient group.11–13

Equivalent prognostic models for GCS13–15 patients with CT-

identified TBI may help safely reduce hospital admissions.

This review is the first to give an overview of the risk for adverse

outcomes and prognostic factors in patients with mild TBI (a high or

normal conscious level with traumatically induced brain dysfunction)

and injuries identified by CT brain scan. The review specifically:

(i) Estimates the overall risk for adverse outcomes in patients who

are initially GCS13–15 in the ED when TBI is identified by CT

imaging.

(ii) Assesses which prognostic factors affect the risk for deteriora-

tion and other clinically important outcomes in this population.

Methods

A systematic review was conducted using the PRISMA P protocol
and is reported in accordance with PRISMA guidelines.14 The review
is registered with the PROSPERO prospective register of systematic
reviews and (protocol is available at http://www.crd.york.ac.uk/
PROSPERO/display_record.asp?ID=CRD42016051585).

Inclusion criteria

Participants. Criteria were patients aged ‡12 years with an
initial GCS of 13–15 with TBI identified by CT imaging. TBI
included any traumatic extra-dural hemorrhage, subdural hemor-
rhage, intra-cerebral hemorrhage, subarachnoid hemorrhage, ce-
rebral contusion, or skull fracture. Studies had to be conducted in
the context of an emergency hospital attendance including a pre-
sentation to the ED or during admission to an inpatient ward.

Prognostic factors. Factors potentially affecting the risk for
adverse outcomes were included in the analysis if they were patient
factors present at admission including: demographic characteris-
tics, co-morbidities, medication use, symptoms, other clinical
features, or factors available from initial investigations.

Outcome measures. Primary outcomes were: death, neuro-
surgical intervention, or any other measure of clinical deterioration
such that admission to a hospital was warranted. Secondary out-
come was: progression of TBI on repeat CT imaging.

Types of study design. All studies, other than case studies,
were included.

Search methods for study identification

Studies published before 1996 were excluded due to more liberal
use of CT imaging to diagnose TBI after this date.5

The following electronic databases were searched with results
restricted to English language studies:

� EMBASE (via OVID) searched 11/24/2016: 1996 to 2016,

week 47;

� MEDLINE (R) (via OVID) searched 11/24/2016: 1996 to

November, week 3, 2016;

� CINHAL plus (via EBSCO) searched 11/24/2016: 1983 to

2016;

� Cochrane Central Register of Controlled Trials (CENTRAL);

The Cochrane Library,2016, all available dates. Accessed 11/

24/2016.

The full search strategy is reported in Supplementary Table 1 (see

online supplementary material at http://www.liebertpub.com).
The reference and citation searches of several national guidelines,

reports, and reviews included: NICE, SIGN, and Australian New
South Wales (NSW) guidelines; National Institute for Health Research
(NIHR) Health Technology Assessment of management strategies for
minor head injury; the results of the World Health Organization
(WHO) collaboration on prognosis in mild TBI; systematic reviews
assessing prognostic factors in TBI; and systematic reviews assessing
the utility of repeat CT imaging in minor head injury.1,3,10,15–20 All
included studies’ references and citations were searched.

The Trauma Audit and Research Network (TARN)-listed pub-
lications were searched via the TARN website (https://www.tarn
.ac.uk/Content.aspx?ca=9&c=70; accessed 3/10/2017).

Data management and extraction

Identified studies were stored in EndNote X8 and duplicates
removed.

Study selection. Two reviewers (CM and AB) independently
completed title and abstract screening. Full reports of any studies
that potentially met the inclusion were selected and assessed. These
were screened, and studies that did not meet the inclusion criteria
were discarded with documented reasons. Disagreements were
resolved through discussion or arbitration by a third reviewer (TS).

Data extraction. The following data were extracted using a pre-
piloted data extraction tool: study population and demographics, sample
size, outcomes assessed, prognostic factors assessed, whether uni-
variable or multi-variable modeling had been undertaken, and the
overall results of the study. The selection criteria of studies were re-
corded to assess whether sub-populations with different risk profiles had
been studied. The data extracted are presented in Supplementary Table 2
(see online supplementary material at http://www.liebertpub.com).

Assessment of the risk of bias. The Quality in Prognostic
Studies (QUIPS) tool was used to assess the quality of included
studies, particularly for the risk of bias.21 Six domains were assessed:
study participation, study attrition, prognostic factor measurement,
outcome measurement, study confounding, and statistical analysis
and reporting.

Statistical analysis

Three forms of analysis were undertaken: pooling of adverse out-
comes reported in studies, identification of risk factors by exploration
of between-study variation in outcomes by study characteristics, and a
synthesis of common risk factors assessed within studies.

A pooled prevalence of the adverse outcomes of interest and
confidence intervals for individual studies were estimated using the
Metaprop function (STATA-SE 14).22 The Freeman-Tukey double
arscine transformation was used to include studies with no adverse
outcomes, and a random effects model was used due to study het-
erogeneity.23
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Between-study heterogeneity estimates of outcomes were explored
using subgroup analysis. Meta-regression of study characteristics was
used to identify factors that affected the risk for the outcomes of
interest. Meta-regression of multiple study characteristics’ effect on
the prevalence of adverse outcomes was assessed using the Metareg
function (STATA-SE 14) with weighting incorporating a measure of
between-study variation (tau2).24,25 The log odds of clinical deterio-
ration, neurosurgical intervention, and death were assessed as de-
pendent variables and the standard error of the log odds was used to
approximate the within-study standard error. To account for studies
with no outcomes, 0.5 was added to both the outcome estimates and
the sample size (consequently, in graphic representations of the meta-
regression the estimated risk can only tend toward zero).

Where studies had assessed the effect of risk factors on the
outcomes of interest using individual data, analysis was categorized
as uni-variable or multi-variable. Uni-variable meta-analysis of
prognostic factor effect estimates reported in primary studies was
completed using Review Manager 5.3 where possible.26 A random
effects model was used due to the heterogeneity of study popula-
tions, prognostic factor, and outcome measures.23 Meta-analysis of
multi-variable models was not possible due to limited numbers and
variation in outcome and prognostic factor measurement.

Results

Search result

The electronic search strategy was completed on November 24,2016,

and identified 4665 studies. Of these, 412 were duplicates, leaving 4253

studies for title and abstract screening (Fig. 1). Following title and

abstract screening, 69 studies6,9,27–93 and two reviews19,20 were

retrieved. A ‘‘gray’’ literature search identified a further 129 studies

for title and abstract screening, of which three were retrieved.94–96

Reference and citation searching of included studies and selected

reviews and guidelines identified another 46 studies7,8,39,97–139 for full

retrieval and three additional systematic reviews17,18,140 for reference

and citation searches.

In total, 118 primary studies and five systematic reviews were

retrieved.

Study selection. Forty-nine primary studies met the inclusion

criteria.6–9,27,28,30,32,37,41,42,52,54,55,57,59,60,62,63,65,66,69,71,73–78,86,87,90,93,

97–104,106–109,114,125,130,139 One review presented new study data.18 The

four remaining reviews formed part of the narrative synthesis.17,19,20,140

The reasons for excluding the remaining 69 studies are presented in

Supplementary Table 3 (see online supplementary material at http://

www.liebertpub.com). Anonymized individual patient data were pro-

vided by the authors of a cohort study to allow outcomes for initial

GCS13-15 patients to be calculated, so this study is included.139

Study characteristics. Supplementary Table 4 presents the

characteristics of included studies (see online supplementary material

at http://www.liebertpub.com). Seven prospective studies were

identified28,66,74,75,90,114,139 and four studies had a sample size of over

1000.63,87,98,108 Forty-six studies estimated the outcomes of interest

and contributed to pooled estimates of risk.6–9,27,28,30,32,37,41,42,52,

54,55,57,59,60,62,63,65,66,69,71,73–78,86,87,90,93,97–104,106–109,114,125,130,139

Four studies presented data regarding specific injury subtypes.32,55,71,103

FIG. 1. PRISMA flow-diagram showing selection of studies for inclusion in the systematic review.
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One study only contributed to the narrative synthesis due to the outcome

measure it assessed.42 Three studies presented the Brain Injury Guide-

lines (BIG) risk stratification tool.9,27,109 As this tool was applied to all

TBI patients and initial GCS forms part of risk stratification, these

studies contributed to the narrative synthesis.

Twenty-one studies presented either uni-variate or multi-

variable analysis assessing prognostic factors’ effect on the out-

comes of interest.6,37,41,54,55,66,69,71,73–78,87,98–101,130,139 Sixteen

studies presented multi-variable models using logistic regression or

recursive partitioning.6,37,41,54,55,66,69,71,73,74,77,78,98,100,101,130 Only

two studies attempted to validate such models by splitting the study

datasets.66,98

Quality assessment. QUIPS quality scores are presented in

Supplementary Table 2.21 The following common methodological

issues were identified.

Study recruitment was often not representative of all GCS 13–15

patients with TBI identified by CT imaging. Sixteen studies that

contributed to the pooled estimates of adverse outcomes only included

patients who had undergone repeat CT imaging, and so are likely to

represent a higher-risk population.7,18,54,74–78,86,90,102,104,106,107,125,130

Even when re-imaging was presented as routine practice, it was often

indicated that not all patients were re-imaged and included in analy-

sis.6 Many other studies excluded higher-risk anti-coagulated patients

or those with more severe injuries.

Prognostic factor measurement was not consistent. Continuous

variables were dichotomized at different thresholds or the same risk

factor was measured with different methods. For example, the se-

verity of injury identified by CT imaging was assessed with 10 dif-

ferent measures. Most studies were retrospective and reliant on the

accuracy of case notes and radiological reports. The small sample size

of many studies prevented multi-variable modeling with all variables

identified in uni-variable modeling as affecting deterioration.37

In 32 studies, outcomes were assessed during inpatient admis-

sion, and so patients who were discharged and deteriorated were

missed. In other studies, is wasn’t clear when outcome measures

were assessed. Eight different measures of clinical deterioration

were used in 18 studies.

Several studies included patients with extra-cranial injuries and

significant co-morbidities. Extra-cranial injuries caused clinical

interventions, and in studies that measured deterioration in this

way this was a potential source of bias.66 Other studies indicated

some recorded deaths were related to co-morbidities instead of

TBI.41,73

Risk of adverse outcomes and exploration
of between-study variation

Death. Twenty-seven studies assessed the outcome of

death.6,8,28,41,52,57,60,62,63,65,69,73–75,78,86,93,97,99–102,104,114,125,130,139

The estimated risk of death for these studies ranged between 0–6%

(median 1.1%), and with a pooled prevalence of 1.4% (95% confidence

interval [CI]: 0.8%–2.2%; Fig. 2). Studies that selected only initial

GCS15 patients had a pooled estimate of mortality of 0.03% (95% CI:

0%–0.28%). Studies that selected populations for non-intensive

care unit (non-ICU) admission or other conservative care pathways

had an estimated prevalence of death of 0.1% (95% CI: 0%–0.6%).

The effect on mortality of mean GCS, average age, and selection

of study population for a lower level of care was explored using

meta-regression. Increased age of study population was associated

with a higher risk for death (1.05, 95% CI: 1.00–1.12; Fig. 3),

whereas higher study population GCS was associated with a lower

risk for death (0.12, 95% CI: 0.02–0.86; Fig. 4). The percentage

of patients taking anti-coagulants in studies was not associated

with the prevalence of death (1.05, 95% CI: 0.95–1.17), but se-

lection for a lower level of care compared with a higher level of

care was (0.27, 95C.I: 0.08–0.94). When average age of the study

population and mean study GCS were assessed in a multi-variable

model they remained statistically significant predictors of mortal-

ity (Table 1), with an adjusted R squared of 38%, indicating that

these two factors explained over one-third of the variation in study

estimates.

Neurosurgical intervention. Thirty-six studies reported neuro-

surgical outcomes.6–9,27,30,37,52,54,57,60,62,63,65,66,73–78,86,90,93,97–102,104,106,

109,114,125,130,139 Figure 5 presents the estimates of the proportion of

patients who underwent a neurosurgical procedure stratified by the

GCS inclusion criteria. Reported neurosurgical intervention prev-

alence ranged between 0 and 26% (median 3.1%). The high pro-

portion requiring neurosurgical intervention reported by Beynon

and associates93 may reflect the greater use of anti-coagulants or

anti-platelets (33/70 participants).

The pooled estimated neurosurgical intervention risk was 3.5%

(95% CI: 2.2%–4.9%). An I2 of 96.4% indicated considerable

heterogeneity. Studies conducted on initial GCS 15 patients had a

lower prevalence of neurosurgical intervention: 0.2% (95% CI:

0%–0.5%). Sensitivity analysis of selection of the study population

for reduced care, such as discharge, a non-ICU admission or non-

routine repeat CT imaging found the pooled estimate of neurosur-

gical intervention in these studies to be 0.1% (95% CI: 0%–0.5%).

The of result of meta-regression using: mean study population

GCS, mean study population age, anti-coagulation, and selection

of study population for non-ICU admission or other reduced care

pathways is shown in Figures 6–8 and Table 1. Increasing age

(1.01, 95% CI: 1.02–1.11) and increasing percentage of study

population taking anti-coagulants (1.1, 95% CI: 1.01–1.19) was

associated with a higher risk, whereas an increasing GCS (0.71,

95% CI:0.01–0.56) was associated with a lower risk, of neurosur-

gical intervention.

Figure 7 shows a cluster of four small studies with low mean

ages that appear to have a disproportionately low estimated prev-

alence of neurosurgical intervention.8,52,62,106 This is explained by:

exclusion of anti-coagulated patients,8,52,62 selection of patients for

non-ICU admission or other reduced other care pathays,8,52,62 and

exclusion of patients with large injuries.8

When the effect of population selection for reduced clinical

management, exclusion of anti-coagulated patients (only 23/36

studies reported percentage of anti-coagulated patients), mean age,

and GCS of the study population were all included in a meta-

regression, age and GCS were the only statistically significant

predictors of neurosurgical intervention (Table 1). The adjusted R

squared of the model was 48%, indicating that these factors ac-

counted for almost half of between-study variation.

Clinical deterioration. Eighteen studies measured prevalence

of clinical deterioration.8,37,41,63,66,69,73,74,76–78,100,101,104,107,108,114,125

The estimated risk of deterioration ranged between 0 and 24.5%

(median 12.8%). Figure 9 presents study estimates of the percentage

of patients who deteriorated, with 95% CIs and stratified by how

the outcome was assessed. A pooled prevalence of 11.7% (95% CI:

8.21%–5.8%) for some form of clinical deterioration was estimated

with an I2 of 95.7%.

Estimates were stratified by: initial GCS of patients, whether the

included population were all selected for repeat CT imaging, the
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inclusion of anti-coagulated patients, the follow-up period, and

exclusion of patients with extra-cranial injuries. None of these

factors reduced the observed between-study heterogeneity.

The effect of: mean GCS study population, mean age study

population, study population selection, exclusion of patients with

extra-cranial injuries, and exclusion of anti-coagulated patients was

explored using meta-regression. As only 18 studies measured this

outcome, the model was restricted to two variables. No factor as-

sessed individually or in conjunction with another factor was found

to statistically affect the risk of clinical deterioration. Higher age

FIG. 2. Risk for death stratified by initial Glasgow Coma Scale (GCS).

FIG. 3. Meta-regression of risk for death by mean age study
population (coefficient odds 1.05, 95% confidence interval [CI]:
1.00–1.12; p = 0.049).

FIG. 4. Meta-regression of risk for death by mean Glasgow
Coma Scale (GCS) study population (coefficient odds 0.12, 95%
confidence interval [CI]: 0.02–0.86; p = 0.04).

RISK IN GCS13–15 PATIENTS WITH MTBI ON CT 707



and lower GCS were non-statistically associated with a higher risk

of clinical deterioration (Table 1).

Progression on repeat CT imaging. Twenty-six studies

assessed the outcome progression of the initial injury on repeat

CT imaging.6,18,27,28,30,41,62,74–78,87,90,97,99–102,104,106–108,114,125,130

The prevalence of this outcome in these studies is presented in

Figure 10, stratified by whether studies only included patients who

had undergone repeat CT imaging. The pooled estimate for this

outcome was 15.6% (95% CI: 11.3%–20.4%). There is a high de-

gree of heterogeneity with a range in risk of progression between 2

and 48% (median 36.5%) and I2 = 97%. The non-statistically sig-

nificant higher pooled risk in studies that included only patients

who had undergone repeat CT imaging probably reflects selection

of higher-risk patients to repeat imaging. Subgroup analysis of

study characteristics did not find any factors that accounted for the

heterogeneity. This is probably the result of different criteria used

to triage patients to repeat CT imaging and definition of progression

of injury.

Prognostic factors assessed in primary studies

Twenty-one studies presented within-study estimates of effect of

individual risk factors on the outcomes of interest (Supplementary

Table 4) and the factors assessed are presented in Supplementary

Table 5 (see online supplementary material at http://www.liebertpub.

com).6,37,41,54,55,66,69,71,73–78,87,98–101,130,139 The most influential fac-

tors were: age, initial GCS, severity of CT finding, type of injury, anti-

coagulation, and anti-platelet medication (Table 2). Individual forest

plots are presented in Supplementary Table 6.

Age. Age was evaluated as a factor in prognostic modeling

in 18 primary studies.6,37,41,54,55,66,69,71,73,74,76–78,98–101,130 Ten

studies37,41,54,66,73,74,76–78,101 assessed age using four different di-

chotomous cutoffs and 11 studies measured age as a continuous

factor.6,55,69,71,73,76,77,98–100,130 Multi-variable models included: lo-

gistic regression with age either a dichotomized or continuous vari-

able, or decision tree analysis.

Of these 18 studies: six assessed the outcome of clinical dete-

rioration, eight assessed the outcome of neurosurgical intervention,

one measured death as an outcome, and eight studies evaluated

progression of injury on repeat CT imaging. Despite being the most

commonly assessed prognostic factor, due to the variation in mea-

surement and the outcomes assessed, it was not possible to undertake

a pooled analysis.

Increased age was associated with an adverse outcome in 9 of the

19 uni-variable models presented. Age was a significant predictor

of an adverse outcome in 2 of 5 multi-variable models where it was

treated as a continuous variable.69,71,98,130 However, in 4 of 6 multi-

variable models where it was dichotomized, older age predicted the

outcomes of interest.41,54,66,73,78,101 This may indicate a non-linear

relationship with older age groups having a disproportionately

higher associated risk for adverse outcomes.

Initial GCS. Twelve primary studies presented within-study

estimates of the effect of initial GCS on the risk of the outcomes of

interest.6,37,41,55,66,69,73,74,77,98,100,101 Uni-variable effect estimates

of initial GCS of 15 were pooled for studies assessing clinical

deterioration and neurosurgical intervention as an outcome with

individual patient data provided by Fabbri and co-workers, and an

initial GCS of 15 was protective against clinical deterioration or

neurosurgical intervention (pooled odds ratio [OR] 0.35, 95% CI:

0.23–0.53; Table 2).37,41,66,73,74,77,101 Two articles assessed pro-

gression of injury on repeat CT imaging and both found an initial

GCS of 15 to be associated with reduced risk of progression.74,77

Four studies estimated the effect of an initial GCS of 15 in multi-

variable models.37,66,73,101 All four multi-variable models found

Table 1. Meta-regression of Study Factors Predictive for Death, Neurosurgery, and Clinical Deterioration

Factor Outcome
Unit increase affect

odds uni-variable model
Unit increase affect

odds multi-variable model

Mean age study population Death 1.05 (95% CI: 1.0003–1.12), p = 0.049 1.06 (95% CI: 1.0002–1.12), p = 0.049
Mean GCS study population Death 0.12 (95% CI: 0.02–0.86), p = 0.04 0.09 (95% CI: 0.01–0.59), p = 0.02
Lower-risk study population

vs. ICU population
Death 0.27 (95% CI: 0.08–0.94), p = 0.04

Unselected study population
vs. ICU population

Death 0.81 (95% CI: 0.22–1.97), p = 0.63

Percentage population
anti-coagulated

Death 1.05 (95% CI: 0.95–1.17), p = 0.32

Mean age study population Neurosurgery 1.01 (95% CI: 1.02–1.11), p = 0.01 1.09 (95% CI: 1.02–1.16), p = 0.02
Mean GCS study population Neurosurgery 0.71 (95% CI: 0.01–0.56), p = 0.01 0.12 (95% CI: 0.02–0.91), p = 0.04
Lower-risk study population

vs. ICU population
Neurosurgery 0.13 (95% CI: 0.04–0.41), p < 0.01 0.67 (95% CI: 0.10–4.37), p = 0.66

Unselected study population
vs. ICU population

Neurosurgery 0.95 (95% CI: 0.43–2.12), p = 0.90 1.34 (95% CI: 0.45–4.02), p = 0.58

Percentage population
anti-coagulated

Neurosurgery 1.1 (95% CI: 1.01–1.19), p = 0.04

Exclusion of anti-coagulated
patients in study selection

Neurosurgery 0.63 (95% CI: 0.27–1.43), p = 0.26 1.33 (95% CI: 0.51–3.49), p = 0.54

Mean age study population Clinical
deterioration

1.01 (95% CI: 0.95–1.09), p = 0.64 1.02 (95% CI: 0.93–1.12), p = 0.59

Mean GCS study population Clinical
deterioration

0.36 (95% CI: 0.04–3.20), p = 0.33 0.26 (95% CI: 0.02–3.76), p = 0.29

CI, confidence interval; ICU, intensive care unit; GCS, Glasgow Coma Scale.
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initial GCS of 15 to be associated with a reduced risk of adverse

outcomes.

Severity of injury as assessed by CT findings. Nine

studies estimated whether the severity of injury identified by initial

CT scan predicted adverse outcomes.6,41,54,55,66,73,76,78,100 This was

assessed by: the presence of midline shift or mass effect in five

studies,6,55,66,76,100 the Marshall classification in two studies,41,73

and measures of hemorrhage thickness or volume in four stud-

ies.54,55,78,100 The variability in the measures of injury severity and

differences in the outcomes assessed prevented pooling.

All studies that assessed presence of midline shift/mass effect

found it to be statistically predictive of adverse outcomes. This

association remained in the two studies that presented multi-

variable analysis.6,66 The Marshall classification was assessed as a

continuous73 and dichotomized variable,41 and neither study found

a statistically significant association with adverse outcomes.

The two studies that assessed the effect of bleed thickness

>10 mm found this to be statistically predictive of either progres-

sion of injury on repeat CT imaging or neurosurgical intervention in

both uni- and multi-variable analysis.54,78

FIG. 5. Risk for neurosurgery stratified by the initial Glasgow Coma Scale (GCS) of the study population.

FIG. 6. Meta-regression of risk for neurosurgery by mean
Glasgow Coma Scale (GCS) study population (coefficient odds
0.71, 95% confidence interval [CI]: 0.01–0.56; p = 0.01).
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Isolated subarachnoid hemorrhage. Twelve studies pre-

sented outcomes for populations with isolated injuries and patients with

isolated subarachnoid hemorrhages (iSAH) had the lowest risk for ad-

verse outcomes: neurosurgical intervention pooled risk 0.01% (95% CI:

0%–0.7%; Fig. 11), and 1.1% (95% CI: 0%–5.5%) pooled prevalence of

clinical deterioration (Supplementary Fig. 1; (see online supplementary

material at http://www.liebertpub.com).32,37,55,59,71,74,77,98,99,103,107,108

Uni-variable effect estimates presented in the two studies that

assessed the effect of the presence of iSAH were pooled with data

extracted from three additional studies.37,73,77,98,108 The pooled

estimate indicated iSAH reduced the risk of neurosurgical inter-

vention/clinical deterioration (Table 2).

Two multi-variable models included iSAH as a prognostic fac-

tor. One found iSAH to be associated with a lower risk for clinical

deterioration.37 The other found iSAH to have no effect on risk.98

Isolated extra-dural hemorrhage. Patients with isolated

extra-dural hemorrhage had the highest risk for neurosurgical in-

tervention: 13.7% (95% CI: 9.3%–18.5%; Fig. 11); 18.5% is esti-

mated from a population of all initial GCS14–15 patients with

extra-dural hemorrhage, whereas the estimates in the other studies

are from populations that have been selected for more conservative

management.77,98,107,108

Three studies assessed isolated extra-dural hmorrhage as a

prognostic factor.37,73,98 A pooled risk estimate for clinical deteri-

oration or neurosurgical intervention using these three studies and

outcome data extracted from a further two studies,77,108 found iso-

lated extra-dural hemorrhage to be associated with these outcomes

(OR 2.26, 95% CI: 1.9–2.68; Table 2). Isolated extra-dural hem-

orrhage remained statistically associated with neurosurgical out-

comes in the only multi-variable model that included this factor.98

Anti-coagulation. Twelve studies estimated the prognostic ef-

fect of anti-coagulation.6,37,41,55,74,76–78,98,100,101,139 Measures of anti-

coagulation included: any documented coagulopathy,6,41,55,77,98,100

pre-injury warfarin use,37,76,101 warfarin or anti-platelet therapy as a

combined risk factor,78,100 and continuous laboratory measures of anti-

coagulation.6,74,101

Uni-variable effect estimates of dichotomous measures of anti-

coagulation were pooled with individual patient data from Fabbri

and colleagues for the composite outcome of clinical deterioration

or neurosurgical intervention (Table 2), pooled estimate: OR 1.45,

95% CI: 1.28–1.64.

Two studies presented multi-variable models that included anti-

coagulation and it was not statistically associated with the out-

comes of interest in either model.78,98

Anti-platelet medication. The effect of anti-platelet use was

evaluated by: aspirin use,37,76,101 clopidogrel use,37,76,101 and a

joint measure of anti-platelet use.55,66,87 No multi-variable models

included anti-platelet use. Pooled uni-variable risk estimates of pre-

injury aspirin and clopidogrel use are presented in Table 2. Meta-

analysis indicated a statistical association between clopidogrel and

clinical deterioration or neurosurgical intervention, but there was

no association between aspirin use and this outcome.

Discussion

Summary

We have completed a thorough systematic review and meta-

analysis to identify risk factors for adverse outcomes in this TBI

population. This is the first review to provide pooled estimates of

clinically important outcomes in this population and identify which

factors affect the risk for these outcomes.

The pooled prevalence for adverse outcomes was: 11.7% (95% CI:

8.21%–5.8%) clinical deterioration, 3.5% (95% CI: 2.2%–4.9%)

neurosurgical intervention, and 1.4% (95% CI: 0.8%–2.2%) death.

These outcome estimates used a pooled total of 65,724 patients and

are comparable to the 2.7% craniotomy rate reported for a similar

population in a national UK trauma database.94 The variation in in-

dividual study outcomes reflects differences in populations studied

and outcome definitions. For the outcomes of neurosurgical inter-

vention and death, heterogeneity could be explained by the age of

study populations and different study population GCS scores.

Risk factors for adverse outcomes were identified using both meta-

regression of study characteristics and synthesis of prognostic models

presented by primary studies. Age, anti-coagulation, and initial GCS

were found by both methods to affect risk. An increase in mean study

population age by one year was associated with increased odds of

neurosurgical intervention of 1.09 in multi-variable meta-regression

FIG. 8. Meta-regression of risk for neurosurgery by percentage
of study population taking anti-coagulants (coefficient odds 1.1,
95% confidence interval [CI]: 1.01–1.19; p = 0.04).

FIG. 7. Meta-regression of risk for neurosurgery by mean age
study population (coefficient odds 1.01, 95% confidence interval
[CI]: 1.02–1.11; p = 0.01).
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(Table 1), and age was a predictor for an adverse outcome in 6 of 11

multi-variable models presented in primary studies. In uni-variable

meta-regression a unit increase in the percentage of the study popu-

lation taking anti-coagulants was associated with a 1.1 increase in the

odds of neurosurgical intervention (Table 1). Pooling of uni-variable

models presented in primary studies found anti-coagulated patients to

have odds 1.45 times greater than patients not anti-coagulated for

neurosurgical intervention/clinical deterioration (Table 2). In multi-

variable meta-regression, a unit increase in mean/median study pop-

ulation GCS was associated with a 0.12 reduction in the odds of

neurosurgical intervention (Table 1). Pooling of uni-variable models

indicated that patients with an initial GCS <15 had odds of clinical

deterioration/neurosurgical intervention 2.9 times that of patients who

presented with an initial GCS of 15 (Table 2). In multi-variable meta-

regression models including both initial GCS and age, initial GCS had

a smaller effect on the risk for either neurosurgical intervention or

death than in uni-variable analysis, and this may be due to older

patients presenting with higher initial GCS relative to the severity of

their injury (Table 1).141 Patients with extra-dural hemorrhage had the

highest prevalence of adverse outcomes, whereas patients with iSAH

had the lowest (Fig. 11).

Meta-analysis of multi-variable models was not possible due to

the small number and variability in how these models were con-

structed. Therefore, although this review has identified the factors

that affect risk, no model that could identify low-risk patients was

found or could be reliably constructed.

Strengths

A thorough search has been conducted, identifying 50 relevant pri-

mary studies. Our review fulfills all the AMSTAR systematic review

checklist quality domains apart from items 10 and 11, regarding the

assessment of publication bias and conflicts of interest.142 However, the

non-interventional nature of the included studies means these domains

are less relevant. This review is low-risk for bias in the five domains

assessed by the Risk of Bias in Systematic reviews (ROBIS) tool.143

Limitations

Many studies identified were small and retrospective with limited

follow-up of patients after discharge. Instead of attempting to identify

low-risk patients through prognostic modeling, several studies se-

lected patients on study-specific characteristics for different care

pathways. This variation in study populations contributed to hetero-

geneity in estimates of outcome prevalence and risk-factor effect. The

prognostic models that were identified were often derived in cohorts

too small to construct multi-variable models with all relevant factors.

The clinically useful outcome in informing discharge decisions is

clinical deterioration, and most prognostic models did not assess this.

FIG. 9. Estimates of clinical deterioration stratified by the outcome measure.
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FIG. 10. Risk on repeat computed tomography (CT) imaging for progression of injury stratified by whether entire population selected
for repeat imaging.

Table 2. Summary of Effect Estimates of Risk Factors Assessed within Studies

Risk factor Number of studies assessed in Pooled uni-variable effecta

Effect
multi-variable

modelsb
Likely effect

on risk

Age 186,37,41,54,55,66,69,71,73,74,76–78,98–101,130 +6/11 1
Initial GCS 15 737,41,66,73,74,77,101 OR 0.35, 95% CI: 0.23–0.52 -4/4 2
Severity CT brain 96,41,54,55,66,73,76,78,100 +7/8 1
Isolated SAH 537,73,77,98,108 OR 0.19, 95% CI: 0.07–0.5 -1/2 2
Isolated EDH 537,73,77,98,108 OR 2.26, 95% CI: 1.9–2.68 +1/1 1
Isolated SDH 537,73,77,98,108 OR 1.82, 95% CI: 0.69–4.77 +2/2
Isolated contusion 337,98,108 OR 0.24, 95% CI: 0.2–0.28 0/1
Anti-coagulation 126,37,41,55,74,76–78,98,100,101,139 OR 1.45, 95% CI: 1.28–1.64 0/2 1
Aspirin 637,55,66,76,87,101 OR 1.30, 95% CI: 0.95–1.78
Clopidogrel 637,55,66,76,87,101 OR 1.79, 95% CI: 1.17–2.72 1

aPooled estimate of effect on risk of neurosurgery or clinical deterioration.
bIndicates number of multi-variable models where factor was found to be a significant predictor and direction of effect on risk.
CI, confidence interval; CT, computed tomography; EDH, extra-dural hemorrhage; GCS, Glasgow Coma Scale; OR, odds ratio; SAH, subarachnoid

hemorrhage.
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Clinical deterioration was defined by seven different composite

outcomes and most commonly by neurological deterioration. This

lack of consistency in definition contributed to the heterogeneity in

outcome estimates. Neurological deterioration was variably de-

fined and a clinically relevant and consistently used definition or

deterioration is required.

No included studies assessed pupillary response and duration of

loss of consciousness/amnesia. These factors are predictive for

adverse outcomes in other TBI populations and future research

should assess these factors in this population.13,144

Context

When the Canadian CT Head Rule was developed, the authors

presented a consensus-derived list of intra-cranial injuries that

would never require neurosurgical intervention.4 The implication

was that patients with such injuries were safe for discharge. This

was rejected by the Society of British Neurological Surgeons.1 A

U.S. group based in Arizona has produced the BIG consensus-

derived statement that identifies a population with low-risk clinical

characteristics and intra-cranial injuries similar to those presented

by the CCHR authors.109 They propose such patients are safe for

discharge after 6 h of ED observation.9,27,109

Kreitzer and associates present an alternative policy at a

level 1 trauma center in Cincinnati, where the population of

interest remains in the ED for observation and undergoes repeat

CT imaging approximately 6 h following diagnosis.86 Neuro-

logically stable patients without progression of injury are dis-

charged. Pruitt and co-workers present a model of care in a level

1 trauma center in Chicago in which all GCS13–15 patients

with intra-cranial injuries receive a neurosurgical consulta-

tion.108 Low-risk patients identified by the neurosurgeon are left

under ED care and discharged after a period of observation. This

is similar to the standard of care in the UK National Health Ser-

vice (NHS).

Others advocate the admission of GCS13–15 patients with brain

injuries identified by CT imaging to higher levels of care and

routine re-imaging, citing evidence that deterioration in neurolog-

ical examination may not identify progression of injury that war-

rants clinical intervention.6,78 Multiple reviews have found that this

is too rare an occurrence to warrant routine re-imaging of all

GCS13–15 patients with TBI identified by CT.17–20

FIG. 11. Pooled risk for neurosurgery stratified by isolated injury type identified by initial computed tomography (CT) imaging.
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Implications

This review supports the view that there are subsets of

GCS13–15 patients with injuries identified by CT imaging who

may possibly be safely routinely discharged from the ED. How-

ever, the current available evidence is insufficient to reliably iden-

tify such low-risk patients. The risks for serious adverse outcomes

are sufficiently high that, in the absence of evidence to be able

to accurately pinpoint low-risk individual patients, admission for

observation probably remains clinically indicated.

No validated model predicting a measure of clinical deteriora-

tion that could be used to triage hospital admission was identified.

We suggest future research should assess a measure of clinical

deterioration that encompasses: neurosurgical intervention, death,

a fall in GCS by 2 or more points, seizure activity, intravenous

medical intervention, or ICU intervention. These would warrant

ongoing inpatient hospital admission.

The BIG criteria, although the best effort at risk stratifying this group

in a clinically relevant way, require validation in larger prospective

cohorts in different health care contexts before being more widely

adopted. They were derived by consensus, and empirical prognostic

modeling could possibly improve the accuracy of risk stratification.

Decision rules have been employed successfully in the ED to

risk-stratify patients in a range of conditions, including ankle in-

juries and suspected pulmonary embolus.145,146 Equivalent models

could be used for patients with mild TBI to identify low-risk pa-

tients. This review has identified the key factors that are likely to

inform such risk stratification, but an adequately powered deriva-

tion study with a clinically relevant definition of deterioration and

adequate follow-up is required.

Conclusion

Mild TBI patients with injuries identified by CT imaging are a

heterogenous group. Their overall risk for clinical deterioration and

more serious adverse outcomes is small, but clinically significant.

Current research gives an indication to which factors affect the risk

for adverse outcomes but is of too low quality to inform clinical

decision-making. High-quality prognostic modeling is needed to

help inform discharge decisions.
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