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Abstract

Understanding the patterns and causes of differential structural stability is an area of major interest for the study of
language change and evolution. It is still debated whether structural features have intrinsic stabilities across language
families and geographic areas, or if the processes governing their rate of change are completely dependent upon the
specific context of a given language or language family. We conducted an extensive literature review and selected seven
different approaches to conceptualising and estimating the stability of structural linguistic features, aiming at comparing
them using the same dataset, the World Atlas of Language Structures. We found that, despite profound conceptual and
empirical differences between these methods, they tend to agree in classifying some structural linguistic features as being
more stable than others. This suggests that there are intrinsic properties of such structural features influencing their stability
across methods, language families and geographic areas. This finding is a major step towards understanding the nature of
structural linguistic features and their interaction with idiosyncratic, lineage- and area-specific factors during language
change and evolution.
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Introduction

Languages always change no matter how vocal prescriptivists

are and how strongly the rules of ‘‘good’’ language are enforced

[1]. However, different languages – and even different aspects of a

single language – change in different manners and at different

rates. For example, Icelandic is notoriously conservative among

the Germanic languages [2], while English has relatively suddenly

lost most of its morphological case marking system inherited from

Old English. Understanding the patterns and causes of differential

structural stability is an area of major interest for the study of

language change and evolution. We will first briefly discuss the

notion of stability in the context of molecular biology, before

turning to previous research on stability in linguistics.

Stability in Biology
This situation is similar to evolutionary biology, where stability

(and its complement, the rate of evolution) are complex outcomes

of multiple factors, including universal and lineage-specific

components. Neutral genetic markers evolve at a constant rate

dictated by mutation rate [3] resulting in a molecular clock, while

nearly neutral markers evolve at a rate determined by mutation

and population size [4], reflecting the balance between mutation

(production of novelty) and genetic drift (purging variation from

the population). However, this is complicated by the non-

constancy of mutation rates across the genome, across species

and time, being influenced by, among others, the local DNA

context, metabolism, life history parameters, age, gender and

environmental stress [5,6]. The various types of natural selection

add a supplementary level of complexity. For example, purifying

selection will tend to resist change, while positive selection will

increase the rates of evolution [7].

Thus, there are highly conserved genes, such as those coding

for ribosomal RNA present across the whole of cellular life and

covering at least 3.5 billion years [8] or the Pax6 gene (a master

gene controlling the cascade leading to eye development) so well

conserved that the mouse gene induces eye formation in the

fruit fly [9], while the fruit fly homologue genes eyeless and twin

of eyeless induce the formation of several eye structures in the

frog embryos [10]. At the other end of the spectrum, there are

genes which evolve extremely fast, such as some involved in the

immune system [11] or male reproductive biology [12,13],

where strong and dynamic natural or sexual selective pressures

are acting. Interestingly, there are also stretches of DNA which,

despite being very stable in general, have changed a lot in a

given lineage, such as the so-called human accelerated regions

(HARs; [14,15]) which have changed dramatically in the lineage

leading to us. Several genes involved in microcephaly [16], such

as ASPM, Microcephalin and SHH, show faster evolution in

primates and especially in the lineage leading to humans,

suggesting that they might have been partly responsible for the

evolution of increased human brain size. FOXP2, a gene

involved in developmental verbal dyspraxia [17] is one of the

most conserved genes within vertebrates [18], but modern

humans and Neandertals carry a specific variant which differs at

2 positions from the chimpanzee [18,19]. A proposed explana-
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tion for these differences in patterns of stability among genes is

represented by the extended complexity hypothesis [20], suggesting

that genes that are involved in complex and extensive

interactions, and whose products participate in informational

processes (transcription, translation and related aspects) and

other complex functions, tend to change more slowly.

Stability of Vocabulary
In the case of language, recent work [21–23] shows that not all

concepts in a list of basic vocabulary – i.e. a standardised list of

concepts selected for their universality, the best-known being the

Swadesh 100 and 200-words lists [24] – are equally stable. For

example, concepts such as ‘‘two’’, ‘‘who’’, ‘‘tongue’’, ‘‘night’’,

‘‘one’’ and ‘‘to die’’ seem to be extremely stable in the Indo-

European language family, showing at most 1 cognate replace-

ment per 10,000 years of language change (depending on the

assumed age of the family), while the most unstable meanings,

such as ‘‘dirty’’, ‘‘to turn’’, ‘‘to stab’’ and ‘‘guts’’, show up to 9 such

replacements during the same period [22]. Moreover, the stability

of these concepts has a relatively strong universal component, in

the sense that their relative stabilities tend to be conserved across

several different language families [22,23,25,26]. An important

explanatory factor seems to be the frequency of use of these

concepts, with the more frequently used tending to be more stable

[22]. Thus, it seems that certain concepts have a set of properties,

including their frequency of use, which tend to make them resilient

against lexical replacement across language families, time and

space, the most stable showing a fidelity comparable to that of

genetic systems [23].

Stability of Structural Linguistic Features
The properties and patterns of stability of structural aspects of

language, such as the order of subject and verb or the number of

consonants in a language, are less well understood. Some authors

[27–29] suggest that the distributional properties of structural

features might inform us about deeper historical relationships than

are accessible through the standard comparative method of

historical linguistics [30,31], and they seem, at least in some

cases, more resistant to admixture than human genes [32].

In contrast (and in agreement with widespread assumptions in

historical linguistics), recent work [26] compared the historical

signal and phylogenetic stability of the basic vocabulary to that of

structural features in the Indo-European and the Austronesian

language families and found that in both families the vocabulary

data fitted the comparative-method established family trees much

better than the structural data. This suggests that structural

features evolve much faster and/or are more influenced by contact

phenomena [33] than basic vocabulary. Moreover, the rates of

evolution were roughly similar for vocabulary and structural data

in both families but the structural features stabilities’ (in contrast to

the vocabulary) show very weak correlations across these language

families, leading the authors to conclude that they ‘‘do not support

the existence of a set of universally stable typological features’’

(p.6). Likewise, other recent work [34] suggests that structural

properties are language family-specific, although this work was not

directly aimed at studying the stability of structural features but to

understanding the regularities governing the temporal dynamics

(i.e. correlated evolution) of various aspects of word order. Both

these studies suffer from a limited coverage of different language

families, potentially undermining the generality of their findings.

By considering more language families and structural features,

recent work involving the first author [35,36] seems to reconcile

these two views by finding that there is an important universal,

cross-language family component to the stability of structural

features, but that there is also a non-negligible amount of variation

among families. The view that multiple factors, such as universal

tendencies, vertical and horizontal processes are requried to

explain linguistic diversity has been suggested before (e.g., [27,37]),

but more empirical work using large databases and modern

quantitative methods is required for a thorough understanding of

this complex interplay [36].

There is currently a vigorous debate concerning the stability of

the structural properties of languages discussing whether (i) there

are universal, cross-language family tendencies in that some

features are more stable than others, or (ii) the stability of a feature

is entirely a language family-idiosyncratic property. The first view

points to possible universal biases acting on structural features

which influence their stability. These biases can be due to

communicative pressures, or to extra-linguistic factors (such as

neuro-physiologic, cognitive, articulatory and perceptive con-

straints), or to factors related to the linguistic system itself. As a

result, some features might play a more central role in shaping the

structural system of a language (alike to the model of the extended

complexity hypothesis [20] in biology). The second view instead

suggests that ‘‘historical accidents’’ (or ‘‘driving factors’’ in [38])

specific to individual language families are the major determinants

of structural change. Of course, there is the third possibility

[35,36], namely that these two views are not mutually exclusive

but complementary.

Summary of Paper
The present paper represents an empirical approach to the issues

surrounding the stability of structural features. Here, we compare

seven different published methods of estimating the stability of

structural linguistic features, in order to quantify their overlap and

differences. These seven methods propose different definitions of

the concept of structural feature stability and different estimation

techniques of these stabilities, while using the same large database

of language families and features, namely the World Atlas of

Language Structures (WALS) [39]. Reviewing the various methods,

we found that the seemingly simple concept of structural stability

hides an irreducible complexity, mainly due to the prevalence and

importance of horizontal processes in language change [40] and

the manner in which various proposals acknowledge and quantify

them. We believe that conceptual clarity about structural stability

is a necessary step in any discussion concerning language change

and evolution, and our empirical approach complements theoret-

ical frameworks such as Nichols’ [41].

Most importantly, we found that, despite this variety of

conceptualizations and methodological approaches, there is an

important agreement between these different stability estimates.

This strongly suggests the existence of a universal, cross-language

family component, probably due to intrinsic properties of the

structural features above and beyond the particular constraints of

the specific language families and areas. However, this universal

component does not explain the whole range of variation in

structural stability, showing that there are also language family-

specific factors at work. These findigs might help better

understand the interplay between the various ‘‘competing forces’’

and the relationship between different types of stability in

particular language families and areas and for particular structural

features [38,41]. We hope that these findings will open the door to

a research program aiming at understanding the nature and exact

mixture of universal and idiosyncratic components governing

structural language change and evolution.

Language Structural Stability across Methods
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Materials and Methods

We conducted an extensive literature survey in order to identify

and compare different proposals about the concept of stability as

applied to structural features of language. Given the differences

between proposals that our survey revealed, only a very general

gist of this concept (or rather of its opposite, instability) can be

formulated, namely as the easiness with which features change

value across time, under the influence of various processes. To

ensure comparability and objectivity, we defined several criteria

the proposals must meet in order to be considered:

1. they must be described in published form or in publicly available

drafts designed for publication;

2. they must use a concept of stability fitting our general gist;

3. they must be quantifiable, objective and repeatable;

4. they must deal with many structural features, preferably using the

WALS or equivalent datasets, allowing thus the comparison

with other methods;

5. they must produce estimates across many language families,

preferably using the WALS, the Ethnologue or equivalent

classifications, allowing broad comparability and cross-check-

ing; and

6. they must produce at least a rank of feature stabilities from the

most stable to the most unstable.

We found seven methods that meet our criteria and we briefly

describe them in the alphabetic order of the first author. All these

methods used the structural features, their values and the language

families as given by WALS [39], except for the method described

in [35] which also used the classification given in the Ethnologue

[42].

Cysouw, Albu & Dress (2008): the Consistency with
Overall Patterns

These authors [43] develop a very original take on the issue of

stability, in that their primary interest is in identifying consistent

structural features. Such features ‘‘are most indicative of the

overall structure of a language […] of the typological profile, or

‘genius’ of a language’’ (p.263) and are identified by comparing

their distributional properties with the ‘‘averaged’’ distribution of

many features. The fundamental insight is to compute the

typological (structural) distances between languages relative to

each structural feature and to quantify how accurately the

typological distance given by any single feature reflects the overall

typological distance given by all features considered simultaneous-

ly.

More specifically, the authors start by defining the typological

distance DF (L1,L2) between a pair of languages L1 and L2

relative to a feature F as being 0 if both languages share the same

attested feature value, 2 if they have attested but different values,

and 1 if the feature value for at least one language is unattested

(missing data). This is extended to a set of features F by taking the

average of DF (L1,L2) for all features F[F which have attested

values in both languages. This leads naturally to a set of distance

matrices between all pairs of languages, first, one matrix per

feature, DF , and, second, an overall distance matrix D computed

for all considered features. The features F for which DF is more

similar to D are defined as more consistent. The authors propose

three ways to quantify this fit between DF and D:

N Mantel’s congruence test, denoted in the following by CM, is based

on Mantel’s proposal [44] to compute the similarity between

the two matrices DF and D as the proportion of matrices D
0

(obtained by randomly permuting D’s rows) which have a

higher correlation with DF . In effect, this method uses the

inverse of the p-value derived from the permutations test as the

measure of consistency;

N the coherence method (CC) is based on the ‘‘excess’’ of two

languages L1 and L2 relative to a third language L3 given a

distance matrix M, denoted excM (L1L2DL3) and computed as

M(L1,L3)zM(L2,L3){M(L1,L2) averaged across all lan-

guages for the feature F , versus the overall distances D. The

excess excM (L1L2DL3) measures the extra distance between

languages L1 and L2 when taking a detour through language

L3. With these, the coherence of feature F is the ratio of the

excess given D to the excess given DF averaged across all

possible triplets of languages, mean(
1zexcD(L1L2DL3)

1zexcDF
(L1L2DL3)

);

N the rank method (CR) is based on the rank of a language L1

relative to another language L2 defined as the number of

languages whose distance to L1 is smaller than the distance of

L2 to L1, rkD
L1

(L2)~cardfLDD(L1,L)ƒD(L1,L2)g With

these, the rank matrix between languages is defined as

RD(L1,L2)~rkD
L1

(L2), and the coherence of a feature F is

computed based on the average ranks of languages sharing the

same feature values, meanL

P
L
0 rkD

L (L
0
)

M(L,F )
, where L

0
have the

same value for F as L, and M(L,F ) is the smallest possible

value of the sum in the numerator. Thus, the method

quantifies the ranks of languages that share the feature value

with L averaged across all languages L.

Thus, there are three different ways of measuring the

consistency of a structural feature with the overall pattern of all

features, each quantifying it in a different manner. Given the

complexity of these methods, we urge the interested readers to

consult the original paper [43] for a better understanding of their

details.

The authors report that (i) these quantifications tend to give

comparable results across different datasets (with CC being the

most resilient), that (ii) their sensitivity to the amount of missing

data varies dramatically between methods (with CR being the least

sensitive), that (iii) they seem relatively unaffected by the

distribution of feature values and, surprisingly, that (iv) they do

not inter-correlate very well (except for CC and CR, for which

r~0:65, pv0:001).

Finally, and importantly for the present paper, the authors

tested the relationship between consistency and genealogical

stability by comparing the distances between related and unrelated

languages using sets of the most consistent 25%, 50% and 75%

features, and found that related languages had significantly lower

distances than unrelated languages. This suggests that the most

consistent features might be genealogically stable as well, in the

sense that they do distinguish between related and unrelated

languages, their values tending to be inherited. If such consistent

features do indeed reflect the ‘‘typological profile’’ of the languages

and if we assume that such profiles tend to be vertically

transmitted, then consistent features will also be stable in the

genealogical sense, being inherited from ancestor to daughter

languages.

Dediu (2011): the Phylogenetic Rates of Evolution
The approach from [35] (denoted in the following as D)

estimates the stability of structural features from a Bayesian

phylogenetic perspective [45,46]. More precisely, for a given

language family, the observed values of the structural features

Language Structural Stability across Methods
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within this family’s languages together with the tree representing

the genealogical relationships between these languages are used to

infer the rates at which the structural features have changed in this

family. As is specific to Bayesian methods in general [47,48], this

results in a posterior distribution of such rates giving the posterior

probability that a particular structural feature changes at a

particular rate in this family.

The author uses two methods for estimating the rates of

structural change: (i) a method estimating the probability of a

transition between two feature values during an infinitesimally

short time, implemented in MrBayes 3 [49], and (ii) another

method related to maximum parsimony [50] estimating the

minimum number of changes required to produce the observed

feature values starting from the inferred root value, implemented

in BayesLang [35]. It must be highlighted that these phylogenetic

methods are agnostic in what concerns the cause for these

structural changes: they could include ‘‘spontaneous mutation’’,

borrowing, language shift and various forms of selective pressures

acting on language (‘‘driving factors’’) such as cognitive, perceptive

or articulatory biases. Therefore, non-vertical processes are treated

as just another cause of structural change and reflected in the

posterior distribution of rates [36].

In order to control for the influence of particular historical

classifications, the author used the classifications given by WALS

[39] and Ethnologue [42], later [36] extending this to a collection

of more accepted classifications [51]. Given that absolute rates of

change cannot be directly compared across language families (as it

would require the absolute dating of the root proto-languages),

they were converted to ranks with features ordered from the most

to the least stable. This reduction in measurement level to ordinal

ensures comparability not only across family trees but also across

different methods. Most importantly, all combinations of the two

methods of stability estimation and the three classifications

produced highly similar estimates for the rates of structural

change [35,36].

Maslova (2002, 2004): Estimating Transition Probabilities
Elena Maslova [52–55] proposed a method to estimate the

transition probabilities between the values of a given structural

feature using pairs of closely related languages. Basically (for a

complete exposition of Maslova’s method see [56] and especially

Methods S1 here, where we also give the R code [Script S1]

used to implement the method using the WALS data [Dataset
S1] ), for a binary structural feature F which can take values A

and B, there are four possible transitions in a given time period for

a given language: A?B with probability pAB, B?A with

probability pBA, A does not change with probability 1{pAB,

and B does not change with probability 1{pBA. With these, the

stability of feature F is

S(F )~
(1{pAB)z(1{pBA)

2

To estimate pAB and pBA, we need to sample pairs of related

languages and compute the divergence rate, F (D), defined as the

proportion of such pairs differing for feature F . If we denote the

frequency of languages with value A for feature F as F (A),
Maslova derives the following equation (see the Supporting Online

Information):

F (D)~2:F (A):(pAB{pBA)z2:pBA
:(1{pAB)

allowing the estimation of pAB and pBA from at least two such

samples.

This method is based on the same fundamental insights [56] as

the fully phylogenetic methods discussed above [35], but it uses a

much simpler statistical approach and requires stronger assump-

tions concerning the relationships between the pairs of closely

related languages. We have implemented this method in R [57]

and estimated the stability of the structural features in WALS [39]

using WALS’ genera (the intermediate level between individual

languages and language families, such as Germanic and Romance

within Indo-European) to provide the sets of closely related languages

(these estimates are denoted in the following as M).

Parkvall (2008): Borrowability versus Genealogical
Stability

Mikael Parkvall [58] proposes to distinguish between features

which have a strong genealogical signal (‘a language needs to be

‘‘born with them’’ in order to have them’) from those that ‘may

‘‘come and go as they please’’’ (p.234). More precisely, he contrasts

genealogically stable features defined as ‘‘a language either has it

or lacks it, but whatever the case, contact or internal development

is not going to change much’’ to unstable features, defined as ‘‘an

easily borrowable or transferable characteristic, or for that matter,

a feature easily gained or lost in contact’’ (p.235). Thus, it seems

that his real focus is not on resistance to change whatever the cause

of the change, be it internal (‘‘mutation’’-like processes) or external

(language contact, selective pressures, random sampling or various

types of constraints), but specifically on resistance to borrowing.

This is reinforced by the actual operationalisation of his

definition (pp.235–238), which can be summarised as follows.

First, he contrasts genealogical units (families and subfamilies from

WALS [39]) to areal units (shown in his Map 1 on p.236). Second,

for a given feature F and a unit G he computes the Herfindahl-

Hirschman index (or Gini coefficient) defined as.

DG~1{
Xn

i~1

P2
i ,

where Pi is the proportion of languages in G which have value i
for the considered feature; in fact, this index is widespread in

economics and is closely related to entropy (see Appendix A in

[43]). The group’s homogeneity is obtained by taking the

reciprocal of the Gini coefficient,

HG~
1

DG

:

These homogeneities are then averaged over all the considered

groups, resulting in the average homogeneity of feature F over

families (when the groups are genealogical) H
fam
F and areas (when

the groups are areal) Hare
F . The actual measure of stability is the

ratio of the two:

H
fam
F

Hare
F

:

When using all the language families available in the WALS, the

author obtains a stability estimate which we will denote here as P1,

but he also considered only a subset composed of ‘‘only the most

Language Structural Stability across Methods
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Table 1. Estimates of stability given by the various methods, converted to relative ranks (from 0.00 = most unstable, to 1.00 = most
stable) for easiness of comparison between methods.

ID Feature Stability estimates (unstable to stable)

Name Area CM CC CR D P1 P2 W M

1 Consonant inventories P 0.21 0.41 0.11 0.01 0.36 0.56 0.10 0.02

2 Vowel quality inventories P 0.43 0.79 0.75 0.50 0.65 0.38 0.48 0.40

3 Consonant-vowel ratio P – – – 0.04 0.48 0.29 0.18 0.07

4 Voicing in plosives and fricatives P 0.75 0.55 0.44 0.22 0.22 0.49 0.24 0.15

5 Voicing and gaps in plosive systems P 0.68 0.82 0.88 – 0.16 0.43 0.38 0.43

6 Uvular consonants P 0.56 0.95 0.87 0.94 0.76 0.04 0.58 0.91

7 Glottalized consonants P 0.66 0.93 0.91 0.75 0.57 0.85 0.67 0.70

8 Lateral consonants P 0.55 0.85 0.58 0.46 0.39 0.80 0.46 0.49

9 Velar nasals P 0.53 0.87 0.84 0.65 0.79 0.67 0.84 0.85

10 Vowel nasalization P 0.29 0.95 0.74 0.97 0.74 0.96 0.91 0.88

11 Front rounded vowels P 0.19 1.00 1.00 0.99 0.87 0.01 0.08 0.96

12 Syllable structure P 0.31 0.76 0.60 0.37 0.16 0.10 0.28 0.43

13 Tone P 0.46 0.92 0.90 0.90 0.29 0.56 0.75 0.69

14 Fixed stress locations P 0.24 0.17 0.06 – 0.29 0.25 0.32 0.23

15 Weight-sensitive stress P 0.26 0.32 0.16 – 0.48 0.35 0.13 0.12

16 Weight factors in weight-sensitive
stress systems

P 0.14 0.20 0.02 – 0.50 0.29 0.07 0.03

17 Rhythm types P 0.21 0.06 0.28 – 0.79 0.47 0.25 0.25

18 Absence of common consonants P 0.61 0.99 0.99 1.00 0.92 0.96 0.88 0.99

19 Presence of uncommon consonants P 0.41 0.97 0.92 – 0.60 0.21 0.16 0.68

20 Fusion of selected inflectional
formatives

M 0.65 0.68 0.76 – 0.04 0.47 0.50 0.56

21 Exponence of selected inflectional
formatives

M 0.87 0.39 0.54 – 0.34 0.44 0.87 0.46

22 Inflectional synthesis of the verb M 0.38 0.15 0.10 – 0.39 0.35 0.09 0.01

23 Locus of marking in the clause M 0.88 0.24 0.19 0.19 0.25 0.51 0.36 0.09

24 Locus of marking in possessive
noun phrases

M 0.71 0.36 0.17 0.34 0.08 0.38 0.33 0.06

25 Locus of marking: whole-language
typology

M – – – – 0.29 0.66 0.56 0.38

26 Prefixing versus suffixing in
inflectional morphology

M 0.90 0.34 0.22 – 0.89 0.82 0.64 0.26

27 Reduplication M 0.15 0.50 0.29 0.66 0.18 0.57 0.55 0.80

28 Case syncretism M 0.78 0.77 0.59 – 0.50 0.62 0.96 0.97

29 Syncretism in verbal
person/number marking

M 0.64 0.69 0.80 – 0.39 0.59 0.97 0.92

30 Number of genders NC 0.84 0.64 0.18 0.56 0.67 0.92 0.99 0.86

31 Sex-based and non-sex-based
gender systems

NC 0.88 0.74 0.50 – 0.89 0.99 1.00 1.00

32 Systems of gender assignment NC 0.84 0.72 0.27 – 0.80 0.97 0.95 0.86

33 Coding of nominal plurality NC 0.69 0.53 0.12 – 0.76 0.80 0.63 0.42

34 Occurrence of nominal plurality NC 0.25 0.11 0.15 – 0.52 0.69 0.06 0.07

35 Plurality in independent personal
pronouns

NC 0.51 0.46 0.05 – 0.22 0.43 0.47 0.13

36 Associative plural NC 0.37 0.09 0.12 – 0.29 0.33 0.37 0.10

37 Definite articles NC 0.29 0.29 0.09 0.10 0.52 0.31 0.13 0.04

38 Indefinite articles NC 0.35 0.17 0.09 0.13 0.29 0.27 0.15 0.04

39 Inclusive/exclusive dist.
in independent pronouns

NC 0.56 0.89 0.85 – 0.55 0.89 0.92 0.77

40 Inclusive/exclusive forms for ‘we’ NC 0.86 0.55 0.35 – 0.45 0.98 0.93 0.46

Language Structural Stability across Methods
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Table 1. Cont.

ID Feature Stability estimates (unstable to stable)

Name Area CM CC CR D P1 P2 W M

41 Distance contrasts in demonstratives NC 0.02 0.40 0.34 0.32 0.34 0.71 0.12 0.32

42 Pronominal and adnominal
demonstratives

NC 0.05 0.32 0.48 0.63 0.76 0.59 0.78 0.83

43 Third-person pronouns and
demonstratives

NC 0.03 0.15 0.02 0.12 0.06 0.27 0.37 0.14

44 Gender dist. in independent personal
pronouns

NC 0.64 0.91 0.74 0.49 0.80 0.88 0.76 0.74

45 Politeness distinctions in pronouns NC 0.49 0.69 0.53 0.31 0.06 0.01 0.11 0.57

46 Indefinite pronouns NC 0.58 0.22 0.29 – 0.67 0.06 0.52 0.64

47 Intensifiers and reflexive pronouns NC 0.12 0.35 0.62 – 0.67 0.90 0.90 0.88

48 Person marking on adpositions NC 0.68 0.81 0.73 0.35 – – 0.61 0.62

49 Number of cases NC 0.97 0.24 0.08 0.03 0.29 0.51 0.60 0.09

50 Asymmetrical case marking NC 0.94 0.45 0.32 0.09 0.21 0.59 0.73 0.34

51 Position of case affixes NC 0.95 0.53 0.56 – 0.57 0.82 0.71 0.60

52 Comitatives and instrumentals NC 0.51 0.24 0.40 – 0.39 0.05 0.17 0.27

53 Ordinal numerals NC 0.47 0.12 0.03 0.07 0.25 0.40 0.60 0.12

54 Distributive numerals NC 0.16 0.02 0.20 – 0.63 0.41 0.69 0.59

55 Numeral classifiers NC 0.04 0.43 0.57 0.84 0.73 0.23 0.59 0.87

56 Conjunctions and universal
quantifiers

NC 0.05 0.04 0.31 – 0.18 0.12 0.35 0.18

57 Position of pronominal possessive
affixes

NC 0.62 0.39 0.24 0.54 0.98 0.87 0.86 0.62

58 Obligatory possessive inflection NS 0.43 0.89 0.88 0.93 0.29 0.89 0.01 0.72

59 Possessive classification NS 0.59 0.65 0.40 0.76 0.73 0.86 0.02 0.08

60 Genitives, adjectives, and relative
clauses

NS 0.22 0.05 0.60 – 0.39 0.34 0.07 0.05

61 Adjectives without nouns NS 0.09 0.02 0.77 – 0.45 0.27 0.82 0.22

62 Action nominal constructions NS 0.08 0.07 0.01 – 0.63 0.21 0.65 0.17

63 Noun phrase conjunction NS 0.59 0.19 0.89 – 0.03 0.68 0.83 0.76

64 Nominal and verbal conjunction NS 0.28 0.30 0.45 0.43 0.18 0.19 0.21 0.45

65 Perfective/imperfective aspect VC 0.41 0.57 0.66 0.68 0.11 0.35 0.54 0.70

66 Past tense VC 0.83 0.35 0.39 0.47 0.86 0.72 0.79 0.58

67 Future tense VC 0.74 0.57 0.71 0.59 0.48 0.18 0.34 0.59

68 Perfect VC 0.72 0.47 0.65 0.18 0.04 0.14 0.25 0.22

69 Position of tense-aspect affixes VC 0.92 0.66 0.57 – 0.95 0.75 0.72 0.61

70 Morphological imperative VC 0.76 0.67 0.50 0.21 0.71 0.68 0.32 0.37

71 Prohibitive VC 0.18 0.43 0.07 – 0.65 0.31 0.28 0.20

72 Imperative-hortative systems VC 0.24 0.75 0.61 – 0.52 0.15 0.17 0.44

73 Optative VC 0.11 0.98 0.95 0.96 0.81 0.14 0.90 0.96

74 Situational possibility VC 0.10 0.67 0.52 – 0.44 0.24 0.43 0.53

75 Epistemic possibility VC 0.55 0.53 0.26 – 0.06 0.15 0.41 0.24

76 Overlap b/w situational & epistemic
modal marking

VC 0.33 0.38 0.33 0.28 0.25 0.03 0.04 0.11

77 Semantic distinctions of evidentiality VC 0.91 0.74 0.86 0.40 0.76 0.25 0.42 0.36

78 Coding of evidentiality VC 0.91 0.61 0.70 – 0.60 0.22 0.22 0.31

79 Suppletion according to tense
and aspect

VC 0.38 0.72 0.36 0.62 0.11 0.64 0.79 0.66

80 Verbal number and suppletion VC 0.26 0.93 0.82 0.53 0.97 1.00 0.62 0.63

81 Order of subject, object, and verb WO 0.98 0.41 0.46 – 0.90 0.74 0.81 0.50

82 Order of subject and verb WO 0.85 0.96 0.96 0.79 0.95 0.74 0.53 0.90

83 Order of object and verb WO 1.00 0.84 0.98 0.74 0.99 0.56 0.94 0.84
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Table 1. Cont.

ID Feature Stability estimates (unstable to stable)

Name Area CM CC CR D P1 P2 W M

84 Order of object, oblique, and verb WO 0.81 0.10 0.63 – 0.48 0.51 0.87 0.57

85 Order of adposition and noun phrase WO 0.99 0.84 0.98 0.57 0.96 0.78 0.97 0.93

86 Order of genitive and noun WO 0.98 0.88 0.93 0.87 0.99 0.88 0.93 0.91

87 Order of adjective and noun WO 0.79 0.83 0.83 0.51 0.87 0.76 0.76 0.83

88 Order of demonstrative and noun WO 0.96 0.90 0.81 – 0.92 0.77 0.66 0.71

89 Order of numeral and noun WO 0.79 0.79 0.68 0.71 0.82 0.91 0.85 0.89

90 Order of relative clause and noun WO 0.57 0.50 0.53 – 0.22 0.41 0.84 0.78

91 Order of degree word and adjective WO 0.43 0.15 0.64 0.60 0.63 0.64 0.49 0.52

92 Position of polar question particles WO 0.17 0.26 0.13 0.06 0.67 0.33 0.29 0.21

93 Position of interrogative phrases in
content questions

WO 0.53 0.73 0.67 0.44 0.76 0.78 0.66 0.81

94 Order of adverbial subordinator and
clause

WO 0.89 0.32 0.43 – 0.18 0.49 0.69 0.54

95 Relationship between OV/VO and
PREP/POST

WO – – – 0.38 0.91 0.59 – 0.75

96 Relationship between OV/VO and
N REL/REL N

WO – – – 0.25 0.34 0.38 – 0.67

97 Relationship between OV/VO and
ADJ-N/N-ADJ

WO – – – 0.15 0.70 0.65 – 0.54

98 Alignment of case marking of
full noun phrases

SC 0.95 0.61 0.36 – 0.84 0.69 0.71 0.39

99 Alignment of case marking of
pronouns

SC 0.83 0.48 0.37 – 0.44 0.76 0.78 0.29

100 Alignment of verbal person marking SC 0.74 0.63 0.33 – 0.57 0.83 0.51 0.41

101 Expression of pronominal subjects SC 0.78 0.50 0.14 – 0.69 0.54 0.43 0.41

102 Verbal person marking SC 0.93 0.71 0.81 0.24 0.21 0.19 0.19 0.28

103 Third-person zero of verbal person
marking

SC 0.81 0.61 0.55 – 0.36 0.49 0.31 0.20

104 Order of person markers on the verb SC 0.70 0.61 0.47 0.16 0.71 0.46 0.57 0.38

105 Ditransitive constructions: the
verb ‘give’

SC 0.31 0.32 0.16 – 0.93 0.85 0.19 0.14

106 Reciprocal constructions SC 0.48 0.15 0.25 – 0.11 0.56 0.22 0.30

107 Passive constructions SC 0.20 0.97 0.97 0.69 0.82 0.81 0.39 0.82

108 Antipassive constructions SC 0.37 0.86 0.49 0.82 0.13 0.65 0.23 0.47

109 Applicative constructions SC 0.40 0.50 0.23 0.26 0.16 0.71 0.54 0.30

110 Periphrastic causative constructions SC 0.13 0.09 0.64 – 0.11 0.44 0.10 0.33

111 Nonperiphrastic causative
constructions

SC 0.20 0.91 0.47 – 0.29 0.84 0.74 0.80

112 Negative morphemes SC 0.77 0.54 0.22 – 0.84 0.41 0.34 0.36

113 Symmetric and asymmetric standard
negation

SC 0.60 0.78 0.78 0.29 0.39 0.61 0.27 0.17

114 Subtypes of asymmetric standard
negation

SC 0.46 0.45 0.05 – 0.39 0.53 0.45 0.16

115 Negative indefinite pronouns and
predicate negation

SC 0.40 0.28 0.94 – 0.08 0.11 0.03 0.73

116 Polar questions SC 0.73 0.65 0.43 – 0.48 0.23 0.29 0.51

117 Predicative possession SC 0.17 0.04 0.04 – 0.71 0.62 0.51 0.28

118 Predicative adjectives SC 0.66 0.29 0.30 0.72 0.96 0.94 0.99 0.95

119 Nominal and locational predication SC 0.63 0.59 0.79 0.91 0.91 0.94 0.98 0.99

120 Zero copula for predicate nominals SC 0.30 0.57 0.71 0.85 0.88 0.10 0.40 0.79

121 Comparative constructions SC 0.52 0.01 0.67 – 0.02 0.15 0.89 0.72

122 Relativization on subjects CS 0.33 0.38 0.72 – 0.57 0.11 0.68 0.93
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widely accepted families’’ (Algonquian, Austronesian, Bantu, Dravidian,

Indo-European, Iroquoian, Mayan, Mongolic, Semitic, Sino-Tibetan, Turkic

and Uralic; p. 240) resulting in an estimate denoted here as P2.

Those features scoring high on P1 (and P2) are those for which

H
fam
F wHare

F , and thus those for which related languages tend to

share the same value as opposed to those for which languages in

contact share the same value.

Therefore, we propose that this method should be more

appropriately seen as estimating borrowability (and its opposite,

resistance to borrowing) and not as stability in the sense of

resistance to change. The difference between them is readily seen

if we think about a feature which is easy to borrow and yet not

very stable.

Wichmann & Holman (2009): Stable Features Tend to
‘‘Stay in the Family’’

These authors [59] define the stability of a feature as ‘‘the

probability that a given language remains unchanged with respect

to the feature during [a fixed and arbitrary number of years; our

note], that is, the feature undergoes neither internal change nor

diffusion during the interval’’ (p.12), being thus explicitly an

estimate of the feature’s resistance to change irrespective of the

Table 1. Cont.

ID Feature Stability estimates (unstable to stable)

Name Area CM CC CR D P1 P2 W M

123 Relativization on obliques CS 0.09 0.07 0.42 – 0.29 0.07 0.57 0.35

124 want complement clauses CS 0.13 0.13 0.21 – 0.57 0.73 0.40 0.33

125 Purpose clauses CS 0.35 0.21 0.41 – 0.16 0.49 0.75 0.49

126 when clauses CS 0.70 0.24 0.26 0.41 0.63 0.37 0.46 0.48

127 Reason clauses CS 0.45 0.28 0.38 – 0.13 0.10 0.70 0.64

128 Utterance complement clauses CS 0.07 0.26 0.51 – 0.55 0.17 0.04 0.55

129 ‘hand’ and ‘arm’ L 0.02 0.12 0.69 0.78 0.43 0.04 0.63 0.65

130 ‘finger’ and ‘hand’ L 0.01 0.20 0.95 – 0.34 0.93 0.49 0.94

131 Numeral bases L 0.49 0.47 0.19 – 0.54 0.93 0.26 0.25

132 Number of nonderived basic colour
categories

L – – – – 0.06 0.29 0.14 0.19

133 Number of basic colour categories L – – – – 0.11 0.18 0.05 0.01

134 ‘green’ and ‘blue’ L – – – – 0.39 0.08 0.44 0.51

135 ‘red’ and ‘yellow’ L – – – – 0.60 – 0.01 0.78

136 M-T pronouns L 0.27 0.77 0.91 0.81 1.00 0.99 0.20 0.98

137 N-M pronouns L 0.06 0.81 0.77 0.88 0.84 – 0.81 0.75

138 Etymology of ‘tea’ L 0.33 0.02 0.84 – 0.01 0.07 – 0.67

139 Irregular Negatives in Sign Languages SL – – – – – – – –

140 Question Particles in Sign Languages SL – – – – – – – –

141 Writing Systems O – – – – – – – –

142 Paralinguistic usages of clicks O – – – – 0.01 0.02 – –

ID and Name are as in WALS [39]. D is [35]’s PC1 , P1 and P2 are [58]’s ‘‘all families’’ and ‘‘accepted families only’’, W is [59]’s ‘‘metric C’’, CM, CC and CR are [43]’s
‘‘Mantel’’, ‘‘Coherence’’ and ‘‘Rank’’ methods, M represents estimates of Maslova’s stability (as implemented by us). We used -D and -CR to ensure that all estimates
have the same directionality. The WALS Area is given as Phonology, Morphology, Nominal Categories, Nominal Syntax, Verbal Categories, Word Order, Simple
Clauses, Complex Sentences, Lexicon, Sign Languages and Other. See text for details.
doi:10.1371/journal.pone.0055009.t001

Table 2. Coverage of the WALS features.

Coverage Method

CM CC CR D P1 P2 W M

Number Percent 129 129 129 68 138 136 134 138

90.85% 90.85% 90.85% 47.89% 97.18% 95.77% 94.37% 97.18%

Shared among all methods

Number Percent 62

43.66%

Shown are each method’s coverage – i.e., the method provides an estimated stability – as number and percent of the 142 WALS features.
doi:10.1371/journal.pone.0055009.t002
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causes of change. They propose three slightly different methods for

estimating the relative stabilities of WALS features. However, they

conclude (by using computer simulations) that ‘‘metric C’’

performs the best, this is the only one we will describe and use

here (denoted in the following as W).

The idea behind ‘‘metric C’’ is ‘‘that if one given feature more

often tends to have the same value for languages that are related

than does another given feature, then the first of the two may be

considered to be more stable’’ (p.16) but the authors also correct

for overall tendencies as well. For a feature F and a genealogical

group G consisting of n languages for which the feature is attested,

they compute the proportion of pairs of languages sharing the

same feature value pF
G. These proportions are then averaged across

groups by weighting each group by
ffiffiffi
n
p

resulting in.

RF ~
X

G

pF
Gffiffiffiffiffiffi
nG
p :

Likewise, they compute the proportion of pairs of unrelated

languages sharing the same feature value UF and their stability

Figure 1. Relationship between different stability estimates. Each panel shows the scatterplot of the stability estimates for the shared
features produced by a pair of methods (grey dots) and the identified outliers (red crosses; see text for details). The regression lines with the outliers
(red) and without (blue) have been drawn for convenience.
doi:10.1371/journal.pone.0055009.g001
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estimate SF is obtained by correcting for this.

SF ~
RF {UF

1{UF

:

Thus, given that both RF and UF are bounded by 0 and 1, SF

quantifies how much more similar related languages are than

unrelated languages (on average), weighted by the maximum

possible such difference. Therefore, SF is a measure of genealog-

ical stability irrespective of the actual causes of change.

Comparing the Methods
For each of these methods we have extracted the estimated

stabilities for each of the 142 structural features in WALS [39], as

follows:

Table 3. Pairwise correlations between stability estimates for all shared features.

rr/ CM CC CR D M P1 P2 W

CM – 0.08 0.25* 20.08 0.06 0.29* 20.03 0.36**

0.534 0.047 0.523 0.636 0.021 0.838 0.003

CC 0.10 – 0.82** 0.65** 0.59** 0.33** 0.21 0.12

0.428 ,2.2?10216 8.34?1029 2.95?1027 0.008 0.108 0.353

CR 0.12 0.83** – 0.73** 0.72** 0.49** 0.17 0.21

0.346 ,22?10216 7.78?10212 2.48?10211 5.34?1025 0.189 0.102

D 20.177 0.60** 0.68** – 0.83** 0.45** 0.20 0.31*

0.177 1.35?1027 ,2.2?10216 ,2.2?10216 2.20?10216 0.127 0.014

M 20.01 0.59** 0.68** 0.82** – 0.68** 0.39** 0.62**

0.941 2.41?1027 ,2.2?10.41?10216 ,2.2?10216 1.52?1029 0.002 4.70?1028

P1 0:150.15 0.42** 0.54** 0.52** 0.58** – 0.49** 0.41**

0.254 7.02?1024 4.20?1026 1.32?1025 5.37?1027 4.89?1025 8.63?1024

P2 0.23 0.33** 0.18 0.29* 0.25 0.48** – 0.16

0.075 0.008 0.154 0.020 0.053 7.25?1025 0.215

W 0.28* 0.23 0.25* 0.39** 0.56** 0.51** 0.46** –

0.028 0.072 0.048 0.001 1.876?1026 1.83?1025 1.87?1024

Upper diagonal: Pearson’s r; lower diagonal: Spearman’s r; within cells, upper line is the correlation estimate (* stands for significant correlation at a-level = 0.05, **the
correlation is significant at a-level = 0.01; all significant correlations are in bold) and the lower line is the p-value.
doi:10.1371/journal.pone.0055009.t003

Table 4. Pairwise correlations between stability estimates excluding the outliers.

r/r CM CC CR D M P1 P2 W

CM – 0.17 0.33** 20.04 0.11 0.45** 0.20 0.37**

0.200 0.011 0.754 0.420 3.96?1024 0.123 0.004

CC 0.19 – 0.80** 0.62** 0.58** 0.38** 0.36** 0.30*

0.150 2.20?1021 1.16?1027 1.12?1026 0.003 0.006 0.018

CR 0.21 0.81** – 0.71** 0.70** 0.53** 0.27* 0.38**

0.111 3.01?10215 3.07?10210 4.21?10210 1.48?1025 0.043 0.003

D 20.12 0.57** 0.65** – 0.83** 0.51** 0.44** 0.51**

0.356 1.71?1026 3.76?1028 4.44?10216 4.23?1025 5.75?1024 2.68?1025

M 0.06 0.58** 0.66** 0.82** – 0.60** 0.48** 0.75**

0.625 1.30?1026 3.07?1028 ,2.2?10216 5.22?1027 1.59?1024 6.71?10212

P1 0.24 0.39** 0.52** 0.53** 0.67** – 0.55** 0.63**

0.061 0.002 2.43?1025 1.38?1025 8.62?1029 7.97?1026 6.87?1028

P2 0.29* 0.35** 0.17 0.32* 0.42** 0.50** – 0.61**

0.026 0.007 0.212 0.014 0.001 5.35?1025 3.74?1027

W 0.25 0.33** 0.37** 0.55** 0.77** 0.62** 0.54** –

0.051 0.010 0.003 6.27?1026 3.76?10213 2.04?1027 1.01?1025

Upper diagonal: Pearson’s r; lower diagonal: Spearman’s r; within cells, upper line is the correlation estimate (*stands for significant correlation at a-level = 0.05, **the
correlation is significant at a-level = 0.01; all significant correlations are in bold) and the lower line is the p-value.
doi:10.1371/journal.pone.0055009.t004
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N Cysouw, Albu & Dress (2008): for each of their three

methods (CM, CC and CR) we have extracted the estimated

stabilities from their paper’s Appendix D [43]. We use here the

negative of CR to align it with the other methods;

N Dediu (2011): we have extracted the agreed ranks (the scores

on the first principal component) for the polymorphic features

from Table S7 in the paper’s Electronic Supplementary

Material [35]. We use here the negative of this estimate, D, to

align it with the other methods;

N Maslova (2002, 2004): we computed the stabilities, M, as

described above and as detailed in the Supplementary

Material Online;

N Parkvall (2008): to allow comparability with the other

methods, we have retained only the estimates for polymorphic

features as computed using ‘‘all families’’ (denoted in the

following by P1) and using only the ‘‘most widely accepted

families’’ (P2), both extracted from his paper’s Appendix

(pp.245–250) [58];

N Wichmann & Holman (2009): we extracted the estimates

produced by their ‘‘metric C’’ (denoted in the following by W)

from their paper’s Appendix 1 (pp.43–46) [59].

These estimates are reported in Table 1 and each method’s

coverage of the 142 WALS features is given in Table 2. P1 and M
cover the most features (136; 97.18%) while D covers only 68

(47.89%): these differences are explained by the minimal

requirements of the methods and the threshold of maximally

acceptable proportion of missing data used by the different

authors. There are 62 (43.66%) shared features covered by all

methods, namely (please note that WALS uses unique numeric

identifiers for its features, given here in parantheses): Consonant

inventories (1), Vowel quality inventories (2), Voicing in plosives and fricatives

(4), Uvular consonants (6), Glottalized consonants (7), Lateral consonants (8),

Velar nasals (9), Vowel nasalization (10), Front rounded vowels (11),

Syllable structure (12), Tone (13), Absence of common consonants (18), Locus

of marking in the clause (23), Locus of marking in possessive noun phrases

(24), Reduplication (27), Number of genders (30), Definite articles (37),

Indefinite articles (38), Distance contrasts in demonstratives (41), Pronominal

and adnominal demonstratives (42), Third-person pronouns and demonstra-

tives (43), Gender distinctions in independent personal pronouns (44),

Politeness distinctions in pronouns (45), Number of cases (49), Asymmetrical

case marking (50), Ordinal numerals (53), Numeral classifiers (55), Position

of pronominal possessive affixes (57), Obligatory possessive inflection (58),

Possessive classification (59), Nominal and verbal conjunction (64),

Perfective/imperfective aspect (65), Past tense (66), Future tense (67), Perfect

(68), Morphological imperative (70), Optative (73), Overlap between

situational and epistemic modal marking (76), Semantic distinctions of

evidentiality (77), Suppletion according to tense and aspect (79), Verbal

number and suppletion (80), Order of subject and verb (82), Order of object

and verb (83), Order of adposition and noun phrase (85), Order of genitive and

noun (86), Order of adjective and noun (87), Order of numeral and noun (89),

Order of degree word and adjective (91), Position of polar question particles

(92), Position of interrogative phrases in content questions (93), Verbal person

marking (102), Order of person markers on the verb (104), Passive

Table 5. Principal components analysis on the full set of 62
shared features.

Loadings PC1 PC2 PC3 PC4

% variance
explained 48.3% 17.2% 13.5% 10.2%

CM 0.13 0.61 0.44 0.46

CC 0.39 20.33 0.16 0.32

CR 0.44 20.19 0.24 0.29

D 0.43 20.28 0.04 20.25

M 0.46 20.04 0.02 20.36

P1 0.36 0.31 20.31 0.15

P2 0.20 0.19 20.79 0.28

W 0.26 0.53 0.08 20.55

Significant loadings with the same sign significant are in bold and italic to
increase clarity.
doi:10.1371/journal.pone.0055009.t005

Table 6. Principal components analysis excluding the
outliers.

Loadings PC1 PC2 PC3 PC4

% variance
explained 55.8% 16.1% 12.2% 6.8%

CM 0.18 20.60 20.60 0.03

CC 0.35 0.36 20.33 20.46

CR 0.39 0.27 20.43 0.03

D 0.39 0.36 0.17 0.17

M 0.42 0.16 0.20 0.37

P1 0.37 20.32 20.02 0.08

P2 0.31 20.27 0.43 20.72

W 0.37 20.34 0.30 0.31

Significant loadings with the same sign significant are in bold and italic to
increase clarity.
doi:10.1371/journal.pone.0055009.t006

Figure 2. Relationships between methods. The distances between
methods computed in the 62-dimensional space defined by the relative
ranks of all shared features projected using classic Multidimensional
Scaling (MDS). The results excluding the outlier features are extremely
similar.
doi:10.1371/journal.pone.0055009.g002
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constructions (107), Antipassive constructions (108), Applicative constructions

(109), Symmetric and asymmetric standard negation (113), Predicative

adjectives (118), Nominal and locational predication (119), Zero copula for

predicate nominals (120), ‘When’ clauses (126), ‘Hand’ and ‘arm’ (129),

M-T pronouns (136). N-M pronouns would also belong to this list if not

for P2.

Conceptually, these methods propose quite different approaches

to the structural stability of language. Dediu (2011) [35] uses a

standard concept from evolutionary biology, in which stability is

equated with resistance to change (irrespective of the causes of

change) while languages evolve following an assumed tree-like

history. Stable features are those with a low rate of change. A

related idea, but much simpler and ignoring many possible

problematic issues, is proposed by Wichmann & Holman (2009)

[59], which take stable features to be those that tend to share

values within families rather than across them. Maslova’s method

[52–55] also shares fundamental insights with Dediu (2011) and

Wichmann & Holman (2009) in the sense that stability is

understood in a genealogical context. Parkvall (2008) [58]

estimates something which would probably be better called non-

borrowability rather than stability in the sense that features high

on this scale are those shared more within genealogical units than

within linguistic areas. Finally, Cysouw, Albu & Dress (2008) [43]

describe a method which apparently has no genealogical

component, whereby they estimate the consistence of a feature

with the overall pattern given by many features.

Results

All analyses and graphs were realised using R [57].

Pairwise Relationships between Methods
Using all 62 features shared across all methods, the relationships

between all pairs of methods are represented in the scatterplots in

Figure 1. Table 3 shows the pairwise correlations (Pearson’s r and

Spearman’s r) between the stability estimates. For each pair of

methods, we inspected the scatterplots and regression diganostic

plots (using R’s lm() function; Residuals vs Fitted, QQ-plot and

Leverage) in order to identify outliers. Given the small number of

shared features across all methods, we applied a conservative

approach by selecting only those features that were strong outliers

for several pairs of methods, identifying the following features:

Verbal Number and Suppletion (80), Obligatory Possessive Inflection (58), M-

T Pronouns (136), and Front Rounded Vowels (11); see also Figure 1.

Without these outliers the correlations do not change much (see

Table 4), except for P2, as it takes an extreme position for almost

all outlier features.

Figure 2 shows a different view of the relationship between

methods: in the 62-dimensional space determined by the shared

features, each method represents a single point with coordinates

given by the relative ranks of the features as computed by the

method. In order to meaningfully compare the feature stabilities

across methods, we converted them to relative ranks between 0.0

(most unstable feature) and 1.0 (most stable feature). We did this

for each method separately, by first computing the ranks of the

method’s actual stability estimates for all the features that the

method provided estimates for, and then by normalizing these

ranks between 0 and 1 using the formula
r{rmin

rmax{rmin

where r is a

given feature’s rank and rmin and rmax are the smallest and largest

ranks respectively. In this space we computed all pairwise

Euclidean distances between the methods and projected these

distances on two dimensions using classical multidimensional

scaling (MDS) [60], resulting in Figure 2. A small distance between

two methods means that they tend to estimate the same relative

stabilities for all features, while a large distance signals disagree-

ments between methods. The maximum possible distance in this

space is
ffiffiffiffiffi
62
p

~7:87 but the distances between methods are

Figure 3. Distribution of features’ stabilities across methods. Left panel: a ll shared features (given by their numeric WALS unique ID; see
Table 1) plotted on the PC1|PC2 . Right panel: the distribution of the stability across the WALS areas, with the number of features of each type
shown on the right. PC1 represents the strong inter-method agreement and varies from the unstable (left) to stable (right); the actual scales of the
axes are arbitrary. The colours and symbols represent the WALS areas (see Table 1 for details), with the open diamond % representing all shared
features together. The results excluding the outlier methods are extremely similar.
doi:10.1371/journal.pone.0055009.g003
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Table 7. The shared features sorted by their agreed stabilities from the most stable to the most unstable.

Rank ID Name Abbr. name PC1 PC1* PC2 PC3 PC4

1 18 Absence of Common Consonants AbsComC 4.41 5.16 21.01 0.31 0.32

2 11 Front Rounded Vowels FrRoundV 3.48 NA 23.34 1.16 1.09

3 136 M-T Pronouns MTPron 3.28 NA 0.35 23.51 1.15

4 86 Order of Genitive and Noun GenN 3.28 4.17 2.30 0.46 0.57

5 83 Order of Object and Verb OV 3.21 3.75 2.97 1.97 1.33

6 85 Order of Adposition and Noun
Phrase

AdposNP 2.94 3.63 2.77 1.69 0.84

7 73 The Optative Optative 2.81 2.70 21.41 0.63 21.09

8 80 Verbal Number and Suppletion VnumSupp 2.61 NA 0.58 25.61 1.94

9 82 Order of Subject and Verb SV 2.35 2.59 20.10 0.66 0.83

10 119 Nominal and Locational
Predication

NomLocPred 2.25 3.21 0.98 20.51 21.49

11 10 Vowel Nasalization VowelN 2.14 2.94 20.52 20.49 20.94

12 6 Uvular Consonants UvulC 1.94 1.74 21.09 0.77 20.37

13 107 Passive Constructions PassiveC 1.87 2.01 21.61 0.10 0.50

14 89 Order of Numeral and Noun NumN 1.45 2.12 0.71 0.04 20.44

15 118 Predicative Adjectives PredAdj 1.38 2.47 1.87 20.93 21.73

16 9 The Velar Nasal VelarN 1.37 1.58 20.03 0.35 20.65

17 7 Glottalized Consonants GlotC 1.36 1.70 20.43 0.45 0.16

18 87 Order of Adjective and Noun AdjN 1.31 1.70 0.61 0.38 20.06

19 13 Tone Tone 1.22 1.24 20.88 0.69 20.60

20 44 Gender Dist. in Indep. Personal
Pronouns

GenDIPersP 1.16 1.74 0.27 0.01 20.04

21 120 Zero Copula for Predicate
Nominals

ZeroCopPredNom 0.60 0.41 20.68 0.01 20.61

22 30 Number of Genders NoGen 0.59 1.46 1.76 20.08 21.30

23 57 Position of Pronominal
Possessive Affixes

PosProPAff 0.58 1.31 1.44 20.90 20.76

24 93 Pos. of Inter. Phrases in Content
Questions

IntPhCQ 0.55 0.86 0.07 20.10 20.39

25 58 Obligatory Possessive Inflection OlbPosInfl 0.39 NA 22.87 20.16 1.52

26 55 Numeral Classifiers NumClas 0.30 0.18 20.85 20.37 21.58

27 42 Pronominal and Adnominal
Demonstratives

PadDem 0.16 0.30 20.14 20.56 21.83

28 77 Semantic Distinctions of
Evidentiality

SemDistEv 20.02 20.02 0.43 0.90 1.19

29 66 The Past Tense PastTense 20.02 0.39 1.41 0.09 20.52

30 2 Vowel Quality Inventories Vowel 20.07 20.11 20.60 0.27 0.21

31 79 Suppletion According to
Tense and Aspect

SuppTAsp 20.12 0.01 20.22 0.23 21.24

32 65 Perfective/Imperfective Aspect PerfImpAsp 20.12 20.25 20.67 0.44 20.77

33 8 Lateral Consonants LatC 20.12 0.09 20.56 0.09 0.22

34 67 The Future Tense FutTense 20.15 20.31 20.28 0.61 0.06

35 108 Antipassive Constructions AntipassiveC 20.21 20.30 21.42 0.23 20.04

36 27 Reduplication Redup 20.37 20.41 20.78 20.12 21.32

37 129 Hand and Arm HandArm 20.40 20.64 20.83 20.17 21.77

38 91 Order of Degree Word and
Adjective

DegWAdj 20.48 20.42 20.07 20.13 20.61

39 70 The Morphological Imperative MorphImp 20.86 20.70 0.28 0.13 0.80

40 113 Symm. and Asymmetric
Standard Negation

SymAsymStNeg 20.92 20.91 20.43 0.41 1.01

41 102 Verbal Person Marking VpersM 20.93 21.08 0.19 1.20 1.48

42 12 Syllable Structure SylStr 20.98 21.23 20.94 0.41 0.14
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between 1.34 and 3.43 with a mean of 2.43, suggesting again that

the methods agree better than expected by chance. This was

confirmed by randomly generating 10,000 sets of seven points in

this 62-dimensional space and comparing the distribution of these

generated distances to the observed distances between methods:

both min and mean observed distances are much smaller than

expected (pv10{4), while the maximum distance is also smaller

but within the distribution of maximum random distances

(p~0:026). It can be seen that CC and CR form a tight cluster,

as do P2 and W. Further, D and M are relatively close together,

while CM is a clear outlier.

Principal Components Analysis
To better understand the relationships between the stability

estimates produced by these methods we have conducted a

Principal Components Analysis [61] both on the full set of shared

features and on the set excluding the outliers, using the actual

stability estimates provided by each method.

On the full set of 62 shared features, the first four Principal

Components explain in total 89.2% of the variation (Table 5). PC1

explains 48.3% and represents the agreement between all methods

(their loadings have the same sign). PC2 explains 17.2% and

contrasts CC, CR and D on one hand, and CM, P1, P2 and W on

the other (excluding M, which has a loading close to zero on this

component). PC3 explains 13.5% and makes a further distinction

between the three methods in [43] (CM, CC and CR) and the two

methods in [58] (P1 and P2). Finally, PC4 explains 10.2% and

contrasts D, W and M with the other methods.

The first principal component, explaining by far most of the

variance (48.3%), represents the agreement between all these

highly different methods. The following components also make

interesting distinctions, such as the grouping together of the

strongly phylogenetic method D with two of the strongly non-

genealogical methods CC and CR (component 2), the

identification of [58]’s special concept of ‘‘borrowability’’ (P1n
and P2) versus [43]’s ‘‘consistency’’ (CM, CC and CR)

(component 3), and the recognition that D, W and M methods

are fundamentally similar, even if differing widely in details

(component 4).

When excluding the outliers, the first four principal components

explain 90.5% of the variation (Table 6). The first principal

component, PC1, explains 55.8% of the variation and represents

the agreement between all methods with similar loadings to the

previous case. PC2 explains 16.1% and distinguishes CC, CR, D
and M on one hand, from the CM, P1, P1 and W, on the other, in

a pattern similar to the previous case. However, PC3 (12.2% of the

variance) and PC4 (6.8%) differ from the ones found using all

shared features; PC3 still distinguishes [43]’s ‘‘consistency’’ (but

not [58]’s ‘‘borrowability’’).

Table 7. Cont.

Rank ID Name Abbr. name PC1 PC1* PC2 PC3 PC4

43 126 When’ Clauses WhenC 20.98 20.96 0.47 0.08 20.29

44 104 Order of Person Markers on
the Verb

PersMV 20.99 20.84 0.67 0.18 0.39

45 59 Possessive Classification PosClas 21.03 20.84 20.91 20.46 1.31

46 45 Politeness Distinctions in
Pronouns

PolitDPron 21.20 21.62 20.99 0.64 0.22

47 64 Nominal and Verbal Conjunction NomVConj 21.36 21.61 20.73 0.08 20.35

48 50 Asymmetrical Case2Marking AsymCaseM 21.49 21.20 1.68 0.77 0.38

49 109 Applicative Constructions ApplicativeC 21.67 21.50 0.01 20.17 20.32

50 4 Voicing in Plosives and Fricatives VoicPF 21.69 21.69 0.02 0.37 0.84

51 41 Distance Contrasts in
Demonstratives

DistCDem 21.79 21.81 21.12 20.72 20.17

52 68 The Perfect Perfect 21.79 21.99 20.16 0.75 0.65

53 23 Locus of Marking in the Clause LmarkC 22.33 22.20 0.98 0.33 0.63

54 76 Overlap b/w Sit. and Epistemic
Modal Mark.

OvSitEpi 22.39 22.72 20.79 0.03 0.65

55 24 Locus of Marking in Possessive
Noun Phrases

LmarkPNP 22.40 22.40 0.21 0.24 0.31

56 92 Position of Polar Question
Particles

PolQPart 22.54 22.53 0.19 20.67 20.12

57 49 Number of Cases Ncases 22.68 22.37 2.15 0.52 0.71

58 37 Definite Articles DefArt 23.15 23.18 0.08 20.56 0.46

59 53 Ordinal Numerals OrdNum 23.26 23.08 1.09 20.50 20.62

60 1 Consonant Inventories Cons 23.36 23.32 20.14 20.62 0.72

61 38 Indefinite Articles IndefArt 23.44 23.49 0.13 20.46 0.38

62 43 Third Person Pronouns and
Demonstratives

P3PrDem 23.70 23.75 20.11 20.85 20.99

The Rank represents the feature’s rank from the most ‘‘stable’’ (top) to the most ‘‘unstable’’ (bottom), the ID is the feature’s numeric identifier in WALS [39], Name is
the feature’s full name while Abbr. name is the abbreviated name, and PC1 and PC�1 the feature’s score on the first principal component representing the agreement
between all methods and excluding outliers, respectively; PC2 – PC4 are the loadings on principal components 2, 3 and 4 using all shared features. See text for details.
doi:10.1371/journal.pone.0055009.t007
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Figure 3 (left panel) shows all shared features in the PC1|PC2

space, capturing together 65.5% of the variation between

methods. Features that cluster together are features that show

similar stability estimates across methods. The right panel

compares the stability of the various WALS areas and shows that

Word Order features tend to be the most stable, with Phonology

covering the whole spectrum. An one-way ANOVA shows that the

areas differ in their average stability (F8,53~2:48, p~0:023), but a

post-hoc pairwise comparison using Tukey’s HSD shows that only

Word Order – Nominal Categories survive the multiple testing

correction (adjusted p~0:026), most probably due to the small

numbers of features included.

The Agreement and Differences between Methods
The pairwise correlations and the Principal Components

Analysis strongly suggest that there is an important agreement

between these different methods in what concerns the stability of

the shared features.

Table 7 shows the shared features sorted from the most stable to

the most unstable by their scores on the first principal component

when using all shared features, PC1(all), and then by the first

principal component when excluding the outlier features,

PC1(nooutliers). The correlation between PC1(all) and

PC1(nooutliers) is r~0:99, pv2:2:10{16.

Figure 4 shows the shared features ordered by their median

relative rank across all methods, an indication of the agreement

between methods for each feature (the interquartile range, IQR),

as well as the actual estimate given by each individual method.

Table 8 shows the features ordered by the disagreement between

methods (IQR). It can be seen that despite a clear overall

concordance between methods (as shown by the first principal

component), the agreement is far from perfect, and there are clear

differences between methods both overall (reflected in the second,

third and fourth Principal Components, and in the patterns of

inter-method correlations and distances), and in what concerns the

estimated stability of individual features.

The IQR varies between 0.08 and 0.89 with a mean of 0.30,

and while some features show very little disagreement between

methods (such as 87: Order of Adjective and Noun, 86: Order of Genitive

and Noun and 18: Absence of Common Consonants), for some (such as

11: Front Rounded Vowels, 129: ‘Hand’ and ‘Arm’ and 136: M-T

Pronouns) the methods disagree almost completely. In order to

better understand these IQR values, we computed their expected

distribution by randomizing 10,000 times the stability estimates

across features and computing the IQR between the methods; the

distribution is relatively normal (as judged from the QQ-plot) with

a mean of 0.45 and standard deviation of 0.14. For each feature

we them compared its IQR to this expected distribution and we

found that, after Holm’s correction for multiple testing [62], only

feature 87: Order of Adjective and Noun has an IQR less than expected

(adjusted p~0:0492), and feature 11: Front Rounded Vowels has an

IQR much larger than expected (adjusted p~0:0124). Without

multiple testing correction, 24 features have a smaller IQR than

expected at an a-level of 0.05, but only 11: Front Rounded Vowels has

a larger IQR (see Figure 4 for details). For future research it will be

interesting to clarify for individual features why the methods

disagree and what these disagreements mean from a theoretical

perspective.

Discussion

Based on our literature survey, we selected seven methods that

propose different approaches to defining and quantifying the

stability of the structural features of language, generally under-

stood as the inverse of the easiness with which features change

value across time, under the influence of various processes. These

methods are: CM, CC and CR [43] three related methods which

estimate the consistency between the distributional pattern of a

feature with the overall distribution of all features using various

measures of such consistency; D [35] which proposes a fully

phylogenetic approach inspired from evolutionary biology; M
[53,54] estimating the transition probabilities using pairs of closely

related languages; P1 and P2 [58] which conceptualize and

estimate the borrowability of structural features in contrast to their

genealogical stability; and W [59] which defines stability as the

tendency for sharing between related languages.

The methods D, M and W are all based on the same

fundamental genealogic insight, namely that related languages will

tend to share the values of stable features (through inheritance

from their common ancestor), but these methods still vary widely

in their assumptions and implementation. In contrast, P1 and P2

look at those features that resist borrowing across genealogical

units, while CM, CC and CR focus on those features that show

the distributional pattern as expected from the overall pattern

when all features are taken together.

If we were to assume a ‘‘competing forces’’ framework such as

suggested by Nichols [41], distinguishing between Inheritance

(vertical transmission from ancestor to descendant language),

Borrowing (propensity to be acquired by horizontal processes),

Substratum (persistence from substratum languages), and Selection (a

bias favouring certain feature values), then each of these methods

can be seen as estimating a particular weigthed combination of

‘‘forces’’. It is beyond the scope of this paper to analyze these

combinations (and it is even unclear how these weights could be

empirically determined in the absence of pure estimators of the

‘‘forces’’), but see Table 9 for a subjective attempt based on the

description of the methods and the stability estimates they produce

(Table 4). Future computational work could simulate different

types of features evolving under the influence of known

combinations of forces and analyze the stability estimates

produced by different methods.

Probably the most important result of our analysis is that,

despite the large conceptual differences between the reviewed

methods, they do tend to agree to a large extent. The simplest

proposal to explain this agreement is that it is related to an intrinsic

tendency of some structural features to be more stable than others

across language families and geographic areas. Such tendencies

are due to multiple factors affecting how features change,

including cognitive, articulatory and perceptual biases, and

constraints deriving from language use. One important mecha-

nism might be represented by the iterated cultural transmission of

Figure 4. The features’ stabilities. The stabilities (as relative ranks from 0.0 = most unstable to 1.0 = most stable) of the shared features as
estimated by all methods. Shown are the median stability (black thick lines), the interquartile range (IQR; light gray) and the individual method
estimates (D, 1, 2, W, A, C, R, and M – see legend for details). The features with a significantly smaller or larger IQR than expected by chance are
marked with red ‘‘,’’ and blue ‘‘.’’ symbols respectively on the right-hand side of the figure, with the number of symbols being one for pv0:05, two
for pv0:01 and three for pv0:001; please note that this is before the multiple testing correction, after which only the features with pv0:001, 11 and
87, survive (see text for details). The features are represented by transparently abbreviated names derived from their full WALS names (see Table 8)
and their WALS unique IDs.
doi:10.1371/journal.pone.0055009.g004
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Table 8. Differences in stability among methods for individual features.

ID Name Abbr. name IQR Range

87 Order of Adjective and Noun AdjN 0.08 0.33

86 Order of Genitive and Noun GenN 0.09 0.18

91 Order of Degree Word and Adjective DegWAdj 0.11 0.52

18 Absence of Common Consonants AbsComC 0.12 0.40

41 Distance Contrasts in Demonstratives DistCDem 0.14 0.62

44 Gender Distinctions in Independent Personal Pronouns GenDIPersP 0.15 0.40

89 Order of Numeral and Noun NumN 0.15 0.31

93 Position of Interrogative Phrases in Content Questions IntPhCQ 0.15 0.33

9 The Velar Nasal VelarN 0.16 0.31

43 Third Person Pronouns and Demonstratives P3PrDem 0.16 0.35

82 Order of Subject and Verb SV 0.16 0.44

37 Definite Articles DefArt 0.17 0.40

92 Position of Polar Question Particles PolQPart 0.17 0.49

76 Overlap between Situational and Epistemic Modal Marking OvSitEpi 0.18 0.26

4 Voicing in Plosives and Fricatives VoicPF 0.19 0.60

7 Glottalized Consonants GlotC 0.19 0.41

64 Nominal and Verbal Conjunction NomVConj 0.19 0.22

126 When’ Clauses WhenC 0.20 0.59

104 Order of Person Markers on the Verb PersMV 0.21 0.56

2 Vowel Quality Inventories Vowel 0.21 0.34

38 Indefinite Articles IndefArt 0.21 0.29

67 The Future Tense FutTense 0.21 0.60

85 Order of Adposition and Noun Phrase AdposNP 0.21 0.44

8 Lateral Consonants LatC 0.22 0.36

65 Perfective/Imperfective Aspect PerfImpAsp 0.23 0.57

12 Syllable Structure SylStr 0.23 0.52

24 Locus of Marking in Possessive Noun Phrases LmarkPNP 0.24 0.66

109 Applicative Constructions ApplicativeC 0.24 0.52

83 Order of Object and Verb OV 0.24 0.53

23 Locus of Marking in the Clause LmarkC 0.25 0.79

79 Suppletion According to Tense and Aspect SuppTAsp 0.26 0.71

119 Nominal and Locational Predication NomLocPred 0.28 0.52

70 The Morphological Imperative MorphImp 0.29 0.60

1 Consonant Inventories Cons 0.29 0.45

68 The Perfect Perfect 0.29 0.73

10 Vowel Nasalization VowelN 0.30 0.71

107 Passive Constructions PassiveC 0.32 0.79

6 Uvular Consonants UvulC 0.34 0.85

113 Symmetric and Asymmetric Standard Negation SymAsymStNeg 0.35 0.50

30 Number of Genders NoGen 0.36 0.84

53 Ordinal Numerals OrdNum 0.37 0.60

50 Asymmetrical Case-Marking AsymCaseM 0.39 0.85

13 Tone Tone 0.39 0.57

42 Pronominal and Adnominal Demonstratives PadDem 0.39 0.69

80 Verbal Number and Suppletion VnumSupp 0.39 0.81

77 Semantic Distinctions of Evidentiality SemDistEv 0.40 0.68

27 Reduplication Redup 0.40 0.56

45 Politeness Distinctions in Pronouns PolitDPron 0.41 0.52

120 Zero Copula for Predicate Nominals ZeroCopPredNom 0.41 0.75
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language across generations in populations of biased language

acquirers and users [63–65], and some of these biases might even

have a genetic component [66,67]. From the loadings on the first

Principal Component (Tables 5 and 6), the pairwise correlations

(Tables 3 and 4) and the distances (Figure 2) between methods, it is

clear that while CM is discordant (but still agreeing), the other

methods contribute relatively equally.

This suggests (i) that this agreement reflects mostly a vertical/

genealogical component whereby the stable features’ values tend

to be transmitted faithfully to daughter languages, and (ii) that

genealogically (vertically) stable features also tend to be stable

against contact (horizontal) processes. However, we would first

need to rule out other possible explanations, such the pattern of

missing data or hidden sampling biases in the considered features,

languages, language families and areas. To effectively address

these issues we will need to use realistic computer simulations and

randomization of the WALS data, as well as, if possible,

replications using other typological databases. We will leave this

task for future research. Nevertheless, we would argue that, given

the differences between the methods included and the fact that

each individual publication introducing these methods performed

various sanity checks and tests, this agreement does, with a very

high probability, tell us something about the stability of structural

features and not about contingent sampling and coding biases or

dataset coverage.

Second, a clear and reliable distinction seems to cut across

conceptual differences between methods. Based on an a priori

analysis of the methods, we would not have expected that the

strongly phylogenetic method D and the strongly non-genealogical

methods CC and CR would agree so well. In turn, we would have

expected D to agree with W and M, which all include a strong

genealogic component. Surprisingly, W does not agree very well

with D and M. In effect, the strongest agreement seems to be

among the methods D, M, CC, and CR. The special status of the

borrowability encapsulated by P1 and P2 and the consistency

captured by CM, CC and CR also appears in the lower-ranked

components of the PCA. The pattern of differences and similarities

between methods that our investigation here has uncovered will

help clarify not only the various aspects behind the apparently

simple concept of structural stability, but also to allow the choice of

the most appropriate concept of stability and associated estimation

method for the problem at hand.

Third, the identification of globally stable and unstable features

(Table 7) as well as those features for which the methods agree or

disagree most, will allow a better understanding of language

change and evolution and the multifaceted constraints acting on it.

However, an important future direction will be represented by the

study of structural stability at the level of language family and

geographic area. An important first step has recently been made in

this direction [36], showing that besides the universal tendencies

and idiosyncratic differences between language families, there

might be large-scale cross-family patterns in what concerns the

stability of structural features.

In this context, it is interesting to note the recent work of

Balthasar Bickel [38], which tests the Family Bias Theory, whereby

‘‘directional biases’’ attested across multiple families are due to the

action of one or more ‘‘driving factors’’ (or ‘‘universal pressures’’)

as opposed to the action of ‘‘faithful inheritance’’. A directional

Table 8. Cont.

ID Name Abbr. name IQR Range

108 Antipassive Constructions AntipassiveC 0.41 0.71

66 The Past Tense PastTense 0.42 0.61

55 Numeral Classifiers NumClas 0.44 0.77

57 Position of Pronominal Possessive Affixes PosProPAff 0.44 0.76

49 Number of Cases Ncases 0.45 0.92

102 Verbal Person Marking VpersM 0.45 0.76

118 Predicative Adjectives PredAdj 0.47 0.83

59 Possessive Classification PosClas 0.47 0.77

58 Obligatory Possessive Inflection OlbPosInfl 0.48 0.90

73 The Optative Optative 0.50 0.87

136 M-T Pronouns MTPron 0.55 0.82

129 Hand and Arm HandArm 0.58 0.76

11 Front Rounded Vowels FrRoundV 0.89 0.98

The features (abbreviated names are transparently based on the full WALS names and as for Figure 4) sorted by the disagreement between methods (IQR). IQR
(interquartile range) and Range (Max - Min) between relative stability ranks as given by all methods.
doi:10.1371/journal.pone.0055009.t008

Table 9. Nichols’ [41] forces estimated by the seven methods.

Method Forces

Inheritance Borrowing Substratum Selection

CM + ? + ? 2 ? 6

CC + ? + ? 2 ? 6

CR + ? + ? 2 ? 6

D +++ 2 2 + +

M +++ 2 2 6

P1 + + 2 2 2 ? 2 ? +

P2 + + 2 2 2 ? 2 ? +

W +++ 2 2 6

A subjective view on what combination of ‘‘forces’’ each method estimates.
Cells represent approximate effects: + (postive effect), 2 (negative effect), ?
(unclear), 6 (could be positive or negative).
doi:10.1371/journal.pone.0055009.t009
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bias is defined in this context as the skewing of the distribution of a

given structural feature’s values in the family’s (or other historical

unit’s) languages as detected by a significant x2 test at a-level 0.05

when the p-values are computed using permutations (p.2–4). He

then adduces several arguments based on the analysis of the

WALS database [39] and computer simulations in support of the

Family Bias Theory and concludes that ‘‘typological distributions

are systematically driven by the interaction of faithful inheritance

(genealogical stability) with various kinds of external pressure, such

as universal principles and areal diffusion trends’’ (p.17).

Given the results of our analysis, and our discussion of stability

in a biological evolutionary context, it seems to us that Bickel’s

[38] apparent criticism is in fact agreeing with our findings on a

deeper level. More precisely, the ‘‘copying fidelity’’ of a structural

feature across generations and language splits is certainly a

component of the feature’s stability but not the only one, as

external pressures (‘‘driving factors’’), generated by language-

internal or by the larger cultural, biological and ecological context,

also play an important role in shaping the distribution of linguistic

diversity. Linguists have been aware for a long time that languages

have historical and evolutionary inertia and that different

languages and language groups present different affordances and

opportunities for language change, all these interacting in a

complex manner with feature-specific properties in shaping their

temporal stability.

In conclusion, this analysis represents an important step towards

a better understanding of language as a complex evolutionary

system, and it strongly suggests that structural stability shows a

clear universal tendency for some features to be more stable than

others, but that this apparently simple concept of stability is in fact

very complex.

Supporting Information

Methods S1 Elena Maslova’s estimation of transition
probabilities. Here we present the detailed derivation of Elena

Maslova’s (denoted in this paper as method M) estimation of

transition probabilities starting from first prinsiples and its

application to the WALS data.

(PDF)

Script S1 The R implementation of Maslova’s method.
This is the R script implementing our derivation of Maslova’s

method (detailed in Methods S1) for the WALS database,

released under a GPL v3 license.

(R)

Dataset S1 The version of WALS dataset used in the
paper. This dataset (released under an Attribution-NonCom-

mercial-NoDerivs 2.0 Germany (CC BY-NC-ND 2.0) license) is

the actual version of WALS used in our paper, included here for

maximum reproductibility of the reported results.
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