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Quantification of the overall contribution of gene-
environment interaction for obesity-related traits
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The growing sample size of genome-wide association studies has facilitated the discovery of

gene-environment interactions (GxE). Here we propose a maximum likelihood method to

estimate the contribution of GxE to continuous traits taking into account all interacting

environmental variables, without the need to measure any. Extensive simulations demon-

strate that our method provides unbiased interaction estimates and excellent coverage. We

also offer strategies to distinguish specific GxE from general scale effects. Applying our

method to 32 traits in the UK Biobank reveals that while the genetic risk score (GRS) of 376

variants explains 5.2% of body mass index (BMI) variance, GRSxE explains an additional

1.9%. Nevertheless, this interaction holds for any variable with identical correlation to BMI as

the GRS, hence may not be GRS-specific. Still, we observe that the global contribution of

specific GRSxE to complex traits is substantial for nine obesity-related measures (including

leg impedance and trunk fat-free mass).
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Genome-wide association studies (GWAS) have been
instrumental in the discovery of tens of thousands of
genetic variants (mainly single-nucleotide polymorph-

isms, SNPs) associated with complex traits and diseases1. While
dozens or even hundreds of SNPs have been found to be asso-
ciated with each trait, the effect contributed by each individual
marker is typically very small2. In addition to their marginal
effects, many genetic factors are suspected to alter susceptibility to
the effects of environmental factors on the trait. The detection of
these gene–environment (G x E) interactions has become possible
with the large sample sizes of current GWAS, and many methods
have been proposed to achieve this. However, most of these
methods assume that the genetic marker(s) and the interacting
environmental factor have been measured without noise, and
often require that the outcome and/or environment be binary.
While model misspecification may have a more limited impact in
single SNP-association analysis, this can result in biased estima-
tion of the interaction term in GxE analysis3. For example, testing
a noisy or dichotomised version of a continuous environmental
variable can bias the estimation in an arbitrary direction,
depending on the dichotomisation threshold4. Observing the
outcome variable on a transformed scale (i.e., where the effect of
the genetic marker is not linear) is also liable to introduce bias in
any direction and magnitude.

More advanced methods adapt a two-step procedure5 includ-
ing a filtering first step based on either the marginal SNP–trait
association6,7, SNP–environment association8, a mixture of the
two (cocktail method)9 or their combination10. Mixed effect
models have been proposed to evaluate the differences in herit-
ability in subgroups based on environmental exposure11. All these
methods, however, require that the environment be measured
(accurately), whereas in most studies only some of the relevant
environmental variables are reported. Furthermore, many
potentially crucial factors may be difficult to define precisely or
measure accurately, such as physical activity, accessibility of fast
food, sleep and diet which are all key factors in obesity and are
suspected to interact with genetic risk. Even in cases where a
potentially relevant factor has been measured accurately, it is
impossible to determine whether any detected interaction is due
to the tested variable or one of its correlates. For example, many
environmental factors have been shown to interact with the
genetic risk score for body mass index (BMI)12, such as physical
activity13, alcohol consumption14, socio-economic status (as
measured by the Townsend deprivation index)15, sugary drink
consumption16, certain types of diet17, etc. Many of these
environmental variables are correlated with one another, and
little is known about how these interactions relate to each other14.

Another approach which has been proposed is to detect G × E
interaction based on differences in variance across genotype
groups18–20. This has the advantage of accounting for all inter-
acting environmental variables, without requiring their observa-
tion. However, these methods were not designed to assess the
extent of the interaction strength, and are mostly restricted to
single SNP analysis. In addition, these studies do not seek to
account for general scale effects that are not specific to the genetic
markers. Due to their low statistical power, variance tests have
rather been used to improve power of classical G × E tests where
the environment is measured and testable21. Others also proposed
variance component analysis22, assuming that the environment is
emerging as cumulative effect of multiple observed molecular
phenotypes, which is less feasible for complex human traits and
the method is not scalable to hundreds of thousands of samples.

In this work, we propose a method to establish statistical
interaction between a genetic risk score (GRS) for a continuous
outcome and all environmental variables. Furthermore, this
method quantifies the total contribution of G × E to the trait

variance beyond that of the GRS alone. The structure of the paper
is as follows: first, we set up the normal linear interaction model
and derive how to quantify the total G × E contribution. Next, we
demonstrate through extensive simulations that any violations of
the model assumptions (such as normality of the underlying
environment and noise) do not introduce noticeable bias in the
interaction parameter estimation. Further, we show that our
bootstrap procedure produces close to nominal coverage prob-
ability of the produced confidence intervals regardless of the noise
distribution. In addition, we propose an approach to determine
whether the observed variance inflation is specific to the tested
GRS or simply due to general heteroscedasticity. Finally, we apply
our method to the GRSs of 32 continuous complex traits from the
UK Biobank to reveal the contribution of G × E to their varia-
bility. The code implementing the algorithm is available in R and
Matlab (https://github.com/zkutalik/GRSxE_software).

Results
Overview. Our proposed method (see “Methods” for details)
calculates the overall contribution of G × E interaction between a
fixed genetic factor (e.g., a single SNP or a GRS) and all of its
interaction partners, which do not need to be measured in the
study. We treat the environment as a random effect and integrate
it out, hence we require only data on the outcome and the genetic
factor. Even without observing E, G × E will result in differences
in trait variance across the different GRS groups. The rate of
change of the outcome variance allows us to infer the underlying
G × E contribution to the outcome. We first explored the per-
formance of our method through extensive set of simulations. In
summary, most violations of our model assumptions do not lead
to bias or incorrect coverage of the 95% confidence interval
(which would yield badly calibrated P-values).

Effect of G–E correlation on the parameter estimation. First, we
tested, using the original parameterisation (α0; β0; γ0; δ0), whether
the correlation between G and E has any effect of the parameter
estimations. The simulation results revealed that not only the
interaction effect can be accurately estimated but also all other
parameters, including the correlation between G and E (see
Fig. 1).

Effect of non-normality of Eor ϵ. First, we explored the effect of
skewness and kurtosis of the environmental variable (E) on the
estimation bias. For this set of analyses, we fixed other parameters
(n= 10,000, α21 ¼ 0:1; α2 ¼ 0, β2= 0.3, γ2= 0, ϵ � Nð0; 1Þ,
f(t)= t) and varied only these two (E[e3] and E[e4]) in the
simulations. We also explored the effect of skewness and kurtosis
of the residual noise (ϵ) on the estimation bias in the same way
but setting e � Nð0; 1Þ and varying E[ϵ3] and E[ϵ4]. We ran
simulations for all 21 possible (skewness2+ 1 < kurtosis) pairs of
skewness (0, 1, 2, 3, 4, 5) and kurtosis (2, 3, 6, 11, 18, 27) of the
environmental or noise variables and for each setting we repeated
the simulation 100 times. Our results confirm that already at
relatively low sample size (n= 10,000), the central limit theorem
ensures unbiased results for all explored non-normal distribu-
tions for both the environmental variable and the noise (Fig. 2).
Similar results are obtained in case of true interaction effect (see
Supplementary Fig. 3 for γ2= 0.025).

We also observed that the bootstrap procedure ensures good
coverage of the 95% confidence interval, for a wide range of
distributions of the environment and noise (Supplementary
Fig. 4). In almost all scenarios, ~95% of the time the true
parameter fell into the 95% confidence interval. Note that for
lower sample size (e.g., n= 1000), the coverage probability may
deviate slightly from the nominal 95% for high kurtosis
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(Supplementary Fig. 5). The results are qualitatively identical for
simulation settings when γ= 0 was replaced with γ2= 0.025 (see
Supplementary Fig. 6). Note that the root-mean-square error
(RMSE) and power change with skewness and kurtosis of both
the environment (Supplementary Fig. 7) and noise (Supplemen-
tary Fig. 8).

Outcome modelled on transformed scale. Modelling the out-
come variable on a transformed scale can introduce bias in the
estimation of the interaction effect size on the original scale. Since
the bias is dependent on the transformation function and on the
true interaction effect size, it cannot be reliably estimated in most
situations. It is critical, however, to be able to distinguish between
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Fig. 1 Parameter estimation as a function of the G–E correlation. The correlation between the environmental variable (E) and the GRS (G), ranging from 0
to 0.3. Panels (a–c) show the boxplot of the estimates (from 500 simulated data sets) for parameters β0, γ0 and δ0 , respectively. Other parameters were
fixed as n= 10,000, α0 ¼ 0:1, β02 ¼ 0:3, γ02 ¼ 0:05, E � Nð0; 1Þ and ϵ � Nð0; σ2Þ. Boxes mark the first (q1) second (q2) and third quartiles (q3), and the
lower/upper whiskers are at q1 − 1.5 ⋅ (q3 − q1), q3 + 1.5 ⋅ (q3 − q1), respectively. Horizontal dashed lines indicate the true parameter values.
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Fig. 2 Interaction effect estimation bias as a function of skewness and kurtosis. Panels (a, b): skewness/kurtosis of the environmental variable (E),
panels (c, d) for the noise (ϵ). For a fixed skewness, we pooled the estimates for all possible (tested) kurtosis values and vice versa. Parameters were fixed
as n= 10,000, α21 ¼ 0:1, α2= 0, β2= 0.3, γ2= 0. Boxplots are based on 500 simulated data sets. Boxes mark the first (q1) second (q2) and third quartiles
(q3), and the lower/upper whiskers are at q1 − 1.5 ⋅ (q3 − q1), q3 + 1.5 ⋅ (q3 − q1), respectively.
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null and non-null interaction effects. For this, we generated data
with γ= 0 and γ2= 0.05, while fixing other parameters as n=
10,000, α21 ¼ 0:1, α2= 0, β2= 0.3. We then transformed the
outcome (Y) using power transformations (f(t)= tp) with differ-
ent exponents (p= 0, 1, 2). As described in the “Methods”, we
also generated a fake GRS (fGRS) as a control to see how specific
the observed GRS interaction is and to what extent it is due to
scale/transformation effect. Results show (Fig. 3a, e) that even
when the true interaction effect is null, but the outcome is
transformed there is an apparent (counterfeit) interaction effect,
which is negative for concave and positive for convex transfor-
mations. In case of zero-skewed error, the fGRS analysis can help
distinguishing between true and counterfeit interactions by
revealing whether the interaction is specific to the GRS itself. If
the fGRS x E interaction estimates are close to those from the
GRS x E analysis, the interaction is likely due to non-linear effects
of the GRS on the scale of the observed outcome. In case of true
non-zero interaction (Fig. 3b, d, f), the interaction effect estimates
are also biased (except when p= 1), but they are significantly
different from those obtained from the fGRS analysis. These
results indicate that—in the case of transformed outcome and
Gaussian noise—comparing interaction effect estimates coming
from data with true vs counterfeit GRS can clearly distinguish
null vs non-null interaction effects in most tested outcome
transformation scenarios. However, more extreme transforma-
tions (f(t)= t3, see Supplementary Fig. 9) or large kurtosis (>10)
or skew (>2) lead to discrepancy between bγ and bγK under the null.
Although such large kurtosis and skew values are very rare for
real data (see Supplementary Table 1 for 32 traits in the UK
Biobank), it is recommended to claim non-zero interaction only
when bγ is significantly different both from zero and from bγK . To
investigate whether inverse normal quantile transformation
(INQT) of the observed outcome can improve the estimations, we
applied the method to INQT versions of the outcome (Supple-
mentary Fig. 10). These results show that when the skewness and
kurtosis of E (or ϵ) is similar to the skewness/kurtosis of a
Gaussian random variable upon applying the scale transforma-
tion function (f(t)), INQT of the outcome before applying our
method can reduce type I error rate and increases power. For
example when E (or ϵ) has positive skewness and f(t) is convex
(e.g., t2), INQT is beneficial, because the transformation that
renders the outcome normally distributed reasonably agrees with
the inverse of the scale transformation (f−1). On the other hand
when positive skewness is combined with a concave transfor-
mation (e.g., log ðtÞ), INQT increases type I error and decreases
power at the same time.

Note that even if there is no transformation (p= 1) but a true
interaction effect exists for the GRS, the interaction estimate for
the GRS imitation will be non-zero (Fig. 3d) because the fGRS is
—by construction—somewhat correlated to both G and E, hence
it is bound to show some interaction. We cannot control for it as
E is unobserved, hence cannot be regressed out. Finally, we also
performed simulations mimicking UK Biobank BMI and leg
impedance data and found good discriminatory power between
null and true interaction scenario (Supplementary Fig. 11).

Problems with inverse normal quantile transformation. Inverse
normal quantile transformation (INQT) transforms the outcome
to have quantiles identical to that of a Gaussian distribution,
while preserving the original ranks. For marginal effect inference,
since SNP effects are tiny, INQT has been useful to ensure the
normality of the residuals and the resulting test statistics. This
however, is not necessary when the sample size is in excess of
10,000 samples unless the minor allele frequency is very low23. It
is still a popular option to use for GxE analysis as it is expected to

transform the trait to a scale where artifactual interaction effects
disappear7,11. However, the main driver of this transformation is
to achieve normal distribution and hence can be misled by the
kurtosis of the error (ϵ) or the environmental variable (E). By
simulations, we have shown (Supplementary Fig. 2) for a wide
range of skewness combinations of E and ϵ that a true G × E effect
can be changed arbitrarily by applying INQT. Therefore, it is not
clear whether such transformation alleviates or aggravates the
problem of a potential transformation. Instead of applying this
transformation, we proposed two different sensitivity analyses as
described in the “Methods”.

Overview of analysis framework. In the light of the extensive
simulation and empirical results, we can formulate the following
recommendation for analysis. In case we lack evidence for (sig-
nificantly) non-zero interaction effect estimate bγ, we should not
claim the existence of a G × E interaction. If bγ is significantly non-
zero and also significantly different from bγK and either bβ is dif-

ferent from bβL or bγ is different from bγL, we have reasonable
evidence that a G × E interaction is present and specific to the
examined GRS. In other situations, we cannot exclude the pos-
sibility that the observed G × E is not specific to the tested GRS,
and the observed trait may result from an interaction-free linear
model with transformed outcome. Note that this latter situation
could happen even if the observed trait can be described by a
linear interaction model (without transformation) with hetero-
scedastic error showing similar mean–variance relationship as
(Y∣G), thus our recommendation is conservative.

Power analysis. Application to real data suggests that GRSxE
interactions contribute ~0.1–2% of the GRS. Therefore, we
explored the range of γ2 2 0:002; 0:02½ � and realistic GWAS
sample sizes (n= 10,000–100,000). The simulation experiment
showed that studies with sample size of n= 20,000 are well-
powered (>80% power at P < 10−3) to detect interaction effects
(γ2) of at least 2% and applying it to (currently considered as)
large studies n= 100,000 we can detect effects as low as 0.005
(Fig. 4). We have also compared the power of our method to
simple linear regression interaction models, when E is observed.
The test statistic for the latter is between 4.5 and 6 times larger
than for our method with unobserved E, depending on skewness
and kurtosis of E (Supplementary Fig. 12). This means that as
long as we observe a surrogate environment that has > 0.22
correlation with the true E, we have more power to detect the
interaction with the GRS via a linear interaction model including
the proxy for E than using our method without any E observed.

We have also compared the power of our method to that of the
most widely used and best-performing variance test, the
Brown–Forsythe (BF) test used in most recent vQTL
applications18,20. For these simulations, we set n ¼ 10; 000; α1 ¼ffiffiffiffiffiffiffiffiffi
0:05

p
; β ¼ ffiffiffiffiffiffi

0:3
p

and varied γ ¼ 0;
ffiffiffiffiffiffiffiffiffi
0:01

p
;
ffiffiffiffiffiffiffiffiffi
0:05

p
and explored

using 10–500 bins to group the continuous GRS values so that the
test can be applied. We confirmed that, similarly to our method,
the BF test has a good type I error control, but it slightly depends
on the number of bins (more bins lead to inflation of the null P-
values). We have also observed that our approach is more
powerful than the BF test for any bin choice (see QQ plots in
Supplementary Fig. 13). For example, for γ ¼ ffiffiffiffiffiffiffiffiffi

0:01
p

, the power
of our method is equivalent to the power of the BF test at 50%
larger sample.

Impact of imprecise GRS estimation. Our results showed
(Supplementary Fig. 14) that for both GRS estimations, at rela-
tively stringent P-value thresholds (P < 10−3) using the estimated
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Fig. 3 Error bars for the interaction effect estimates (bγ). Error bars show mean ± SE and are based on 100 simulated data sets. Estimates for the real data
are marked with bullets and for fake G with triangles. Rows 1–3: Transformation power (p = 0, 1, 2: f(t)= tp). Left column: without GxE interaction (γ= 0),
right column: with GxE interaction (γ ¼ ffiffiffiffiffiffiffiffiffiffi

0:05
p � 0:22). Other parameters were fixed at n= 10,000, α21 ¼ 0:05, α2= 0 and β2= 0.3. The indicated

skewness and kurtosis values refer to the error term ϵ.
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GRSs yields unbiased interaction effect estimates and inclusive
GRSs (including SNPs also with mild P-values) lead to con-
servative estimates. For this reason in all other simulation in this
paper, we assume the GRS to be known, since it gives indis-
tinguishable estimates for γ from those where the GRS is estimated
from the data. Also, these calculations confirm that although our
GRSs for traits in the UK biobank were estimated from the same
data, given the stringent P-value threshold (5 × 10−8), the G x E
estimates are not affected by the fact that the GRS coefficients are
slightly overestimated.

To re-confirm these observations using real data, we split
the filtered UK Biobank sample into two subsets (n1= 188,827,

n2= 188,826). We used the first set to select 110 SNPs
associated with BMI at (strictly) genome-wide significant level
(P < 10−8) and estimated a GRS using within-sample effect size
estimates (GRS1) and a second GRS (GRS2) using out-of-sample
effect size estimates from the second subset. We then applied
our method to the first data set using both definitions of
GRSs and obtained that the interaction estimates were not
significantly different (GRS1: bγ ¼ 0:125;CI ¼ ½0:098; 0:153�,
GRS2: bγ ¼ 0:119;CI ¼ ½0:086; 0:152�). Therefore, if summary
statistics are available from a larger external study, they could
be used to estimate the GRS in the sample where all data are
available to run the interaction test.

Application to complex traits from the UK Biobank. We next
applied our method to estimate the contribution of G x E to the
heritability of complex traits. Since the interaction effects are
generally modest and our method exploits variance differences,
very large sample sizes from a homogeneous population are
needed. For this reason, we applied our method to 32 continuous
complex traits measured in the UK Biobank24. Previous GxE
studies indicated that the contribution of G × E compared with
marginal genetic effects is very modest (less than a quarter of the
explained variance of the marginal model). Due to this fact, we
only used traits for which the GRS (built from genome-wide
significant independent SNPs) explained at least 2% of the
respective trait variance. We declared a trait to have significant
GRS × E contribution if the interaction effect estimate could be
rejected to be zero with a P-value < 1.5 × 10−3(= 0.05∕32). To be
conservative, when >10% of the bootstrap estimates ended up on
the boundary (i.e., V ar(ϵ)= 0), the trait was not analysed further.
Such situations may emerge when there is no interaction effect,
hence β cannot be estimated or the likelihood surface was difficult
to navigate. The estimates (summarised in Table 1 and visualised
in Supplementary Fig. 15) revealed several interesting properties,
which we describe below. In addition, we also applied the method

Table 1 Estimated contribution of GRS×E effects for 22 traits in the UK biobank.

Trait bα1 bα2 bβ bγðPÞ cγK PΔ β̂L γ̂L
Body mass index (BMI) 0.232 0.013 0.65 0.139 (4.3e−78) 0.126 2.8e−01 0.65 0.14
Trunk fat-free mass 0.310 0.007 0.32 0.120 (9.0e−53) 0.193 1.3e−15 0.25 0.14
Whole-body fat-free mass 0.301 0.007 0.39 0.119 (5.4e−43) 0.191 3.7e−05 0.72 0.14
Whole-body fat mass 0.225 0.011 0.72 0.124 (3.5e−42) 0.117 6.3e−01 0.72 0.13
Leg fat mass 0.217 0.015 0.68 0.161 (3.6e−36) 0.149 5.0e−01 0.69 0.15
Whole-body water mass 0.301 0.007 0.39 0.125 (3.8e−31) 0.190 4.2e−02 0.36 0.14
Waist circumference 0.198 0.011 0.65 0.099 (1.7e−30) 0.111 3.9e−01 0.62 0.10
Hip circumference 0.221 0.010 0.69 0.119 (8.3e−29) 0.146 4.8e−02 0.69 0.11
Arm predicted mass 0.270 0.006 0.41 0.117 (9.3e−29) 0.203 3.0e−13 0.35 0.14
Weight 0.257 0.011 0.69 0.123 (2.2e−26) 0.122 9.3e−01 0.65 0.14
Arm fat mass 0.217 0.017 0.70 0.180 (3.6e−25) 0.140 6.3e−02 0.72 0.19
Arm fat percentage 0.204 0.006 0.26 0.108 (1.1e−24) 0.148 1.5e−03 0.28 0.11
Trunk predicted mass 0.309 0.007 0.32 0.120 (2.2e−24) 0.195 4.1e−09 0.24 0.14
Leg fat-free mass 0.276 0.008 0.54 0.126 (2.6e−23) 0.179 1.9e−04 0.62 0.14
Arm fat-free mass 0.271 0.006 0.41 0.120 (3.1e−23) 0.199 8.1e−03 0.35 0.14
Basal metabolic rate 0.287 0.009 0.48 0.136 (4.8e−23) 0.187 2.9e−02 0.48 0.14
Leg predicted mass 0.275 0.008 0.56 0.124 (4.2e−11) 0.181 2.7e−02 0.63 0.14
Impedance of leg 0.255 −0.001 0.08 0.070 (1.4e−07) −0.162 1.7e−57 0.13 0.12
Leg fat percentage 0.203 0.005 0.45 0.064 (7.7e−07) 0.108 5.1e−03 0.33 0.08
FVC 0.235 0.008 0.56 0.071 (3.1e−05) 0.189 2.2e−10 0.29 0.06
Sitting height 0.357 0.001 0.09 0.059 (2.9e−03) −0.258 1.7e−55 0.07 0.09
Impedance of whole body 0.264 0.003 0.29 0.048 (8.2e−03) 0.141 8.1e−07 0.25 0.11

Only those 22 (of the 32) continuous traits are shown for which no maximum likelihood estimation convergence issues were detected. Column label abbreviations are as follows: α1: GRS effect, α2: GRS2

effect, β: environmental effect, γ: interaction effect, γK: interaction effect of fake GRS, PΔ: P-value for testing γ = γK, bβL : β estimate for the fake-Y approach, bγL : γ estimate for the fake-Y approach. Note that
significantly non-zero interactions are claimed only when the P-value of the estimate (bγ) is below 0.05/32, i.e., Pγ < 1.5 × 10−3, which is based on the Bonferroni correction for multiple testing (ensuring
family-wise error rate control at 5%). Pγ was calculated based on the Wald test (two-sided), and PΔ was derived from a two-sided Z test.
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Fig. 4 Power curves as a function of the underlying (squared) interaction
effects (γ2). Different curves correspond to power at P-value threshold of
10−3 for various sample sizes (10–100 k). Error bars represent mean ± SE
(standard error) calculated from 100 simulation runs.
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to the inverse normal quantile transformed version of the 32 traits
(see Supplementary Table 2) and noticed that apart from one
exception (waist-to-hip ratio) the fake GRS gave close to zero
interaction effect with large variance. In addition, INQT traits led
to parameter estimates sitting on the boundary on average 88% of
the starting points, which is a consequence of two facts. First, the
interaction effect estimate is shrunk to zero when INQT is applied
to right-skewed outcomes (Supplementary Fig. 2), which is true
for most of the examined UK Biobank traits (Supplementary
Table 1). Second, our likelihood function stops to depend on β as
γ approaches zero, making the identification of β impossible due
to the degenerate likelihood surface (Supplementary Fig. 16),
which results in estimates sitting on the boundary. In particular,
we have shown (see Supplementary Note 3) that when γ → 0, the
likelihood is maximised when σ2= 0, i.e., the parameter estimates
end up on the boundary.

While BMI shows the strongest interaction effect (bγ ¼ 0:14
(P= 4.3 × 10−78)), the interaction is not specific to the GRS and
any similarly correlated variable would exhibit comparable
interaction effect (bγK ¼ 0:126). The similarity is visible when
comparing the relationship between the GRS (or fGRS) and the
residual variance of the outcome in the respective GRS subgroup
(Fig. 5a). This means that the heteroscedastic nature of BMI is most
likely due to a transformation and not driven by G × E. Our second
sensitivity analysis approach (generating a counterfeit Y) confirmed
that such apparent interaction estimate could be obtained from
a transformed version of an interaction-free trait (see Supplemen-
tary Table 3). Interestingly, we also obtain that the unobserved

“interaction partner” (E) explained 42% (bβ2) of BMI variance and
the quadratic GRS significantly (Pα2

¼ 4´ 10�40) contributes
beyond the linear term, reflecting either correlated G−E or true
quadratic G2−Y effect or transformed trait. It is important that the
generated counterfeit GRS mimics not only the GRS-Y correlation,
but also the non-zero GRS2-Y correlation. A fake GRS not fulfilling
both properties resulted in almost doubled counterfeit interaction
effect (bγK ¼ 0:213). To lend further credibility to our finding, we
explored the total G × E contribution once BMI is adjusted for
previously reported G-alcohol intake frequency interaction in the
UK Biobank14. Our method (re-)estimated the global uncorrected
G × E contribution (γ̂), decreasing it by 0.15%, as expected.
Similarly, Townsend deprivation index (TDI)–GRS interaction

explained 0.09% of BMI15, and once BMI is adjusted for this
specific interaction, our method yielded an interaction estimate
reduced by 0.11%. To explore how the GRS interaction properties
change when using not only genome-wide significant SNPs to
derive the GRS, we have computed a GRS for BMI based on a
pruned sets of SNPs with marginal BMI-association P < 0.1, using
PRSice2 (https://www.prsice.info/). The estimates for the marginal
effect (bα1) was 0.388 (explaining 15% of BMI variance as opposed
to the GW significant GRS explaining 5.3%) and the interaction
effect estimate (bγ) was 0.275 (SE= 0.0024), i.e., explaining an
additional 7% BMI variance. Interestingly, the corresponding
fake GRS is estimated to yield only half of that interaction
effect (bγK ¼ 0:152), which is significantly different from bγ.
In addition, applying our method to the INQT BMI indicated
slightly attenuated, but still very significant bγQQ ¼ 0:227ðSE ¼
0:0042Þ interaction.

While for the majority (59%) of the 22 traits the interaction
effect of the GRS was not specific, 9 traits yielded significant
difference between the interaction estimate and that for a
counterfeit GRS (see Table 1; Supplementary Fig. 15) indicating
a true non-null interaction. Reassuringly, eight out of the nine
significant interactions were confirmed by the fake-Y-based
sensitivity analysis. The strongest difference was observed for
leg impedance where fGRS shows negative interaction
(bγK ¼ �0:16 (P < 10−175)) in sharp contrast to the actual GRS,
which shows a positive and significant interaction (bγ ¼ 0:07 (P <
1.4 × 10−7)). The result is a consequence of a very different
mean–variance relationship for the true GRS and the fake GRS as
shown in Fig. 5b. Additional sensitivity analysis confirmed that
the observed interaction effect could not be obtained as a
transformed version of an interaction-free trait, as such trait
would yield almost double interaction estimate bγL ¼ 0:12 (see
Table 1; Supplementary Table 3). Slightly different situation was
observed for sitting height: borderline significant positive GRS
interaction vs strong negative interaction for the counterfeit GRS.
However, our counterfeit Y sensitivity analysis showed that the
observed data could result from an interaction-free trait with
leptokurtic noise transformed by a tail-expanding function,
producing similar parameter estimates bβL ¼ 0:07;bγL ¼ 0:09.
The disagreement between the two sensitivity analyses is due to
the fact that the fake-Y approach pointed to a non-Gaussian noise
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Fig. 5 Conditional variance vs GRS plots for true and fake GRS. UK Biobank participants were binned into 100 equal sized groups according to their GRS
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in the underlying trait, violating the assumption of the fake GRS-
based sensitivity analysis.

For trunk fat-free mass, the GRS shows pronounced
interaction effect (bγ ¼ 0:120 (P < 10−52)), however, the coun-
terfeit GRS reveals a significantly (P= 1.3 × 10−15) stronger
interaction effect (bγK ¼ 0:193 (P < 10−300)). This indicates that
the observed heteroscedasticity is due to the observed trait
being a result of a convex transformation and on the
untransformed scale the GRS would have a negative interaction.
Forced vital capacity (FVC) and both arm and trunk predicted
mass show a similar pattern, whereby the fGRS yields close to
double-sized interaction effect as the true GRS. The robustness
of these findings is corroborated by the fake-Y sensitivity
analysis, which showed that such data could not be produced as
a transformed version of an interaction-free trait, as such traits
would result in discordant β or γ estimates.

We further explored why the observed GRSxE interaction was
not specific to the GRS in case of BMI. For this, we applied our
method to each constituting SNP of the GRS to obtain bβj and bγj
for SNP j of the GRS. We then established the relationship
between marginal- and interaction effects driven by the general
heteroscedasticity of BMI. It was noted that for the 376 BMI-
associated SNPs, the estimated bβj and bγj values were highly
correlated (r= 0.27), but upon correction for overall hetero-
scedasticity the correlation was substantially reduced
(corrðbβ;bγKÞ ¼ 0:17) and only two SNPs survived Bonferroni
correction (P < 0.05∕376) (see Fig. 6). Similar plot of leg
impedance is shown in Supplementary Fig. 17.

Discussion
We have proposed a maximum likelihood-based method to infer
the extent of the total G × E interaction between a genetic risk
score (which could be composed of a single SNP) and the com-
bination of all possible continuous environmental variables. Our
method is designed for a continuous outcome, but it can be
extended to binary traits (see Supplementary Note 1). However,
the interaction effect estimates may depend too strongly on the
choice of the fitted link function, thus this application requires
further research. Unlike most G × E methods, it does not test a
specific environment, but infers the extent of the joint contribu-
tion of all factors, while requiring none of them to be observed or
measured. Since many different environmental factors potentially
interact with a genetic risk score, even if some of them are binary,
the (optimal) linear combination that collects all interaction
partners is likely close to continuous. Thus, our modelling
assumptions remain rather general. Also, testing individual
interaction partners in isolation may give a false confidence of a
specific modifier effect, when the tested environmental factor may
simply be correlated to the true modifier. Hence, the tested and
significant interaction partner may not be as specific as one might
think. Similarly, some G × E1 may represent G ×G1 or E × E1
interactions, where G1 is a genetic factor associated with E1 and G
with environment E, respectively. Still, such identified G × E is an
informative starting point for further investigations narrowing
down the most plausible E.

We have shown that our approach—despite its derivation
relying on the normality of both the environmental factor and
residual noise—provides unbiased estimates and accurate cover-
age probabilities of the 95% confidence interval for a wide range
of environmental and noise distributions. In addition, we can also
estimate the explained variance of the global interaction partner.
Furthermore, our power analysis found that in modern biobank-
sized studies (n > 100,000) our method is well-powered to detect
GRS × E contribution even as low as 0.5%, but this is still 2.5

times larger than the largest detected interaction for an FTO
variant and alcohol consumption frequency14. Therefore, even in
such large data sets, our method is underpowered to detect
interaction between an environmental factor and individual
SNPs. Its primary use is therefore for GRS × E interaction, which
does implicitly assume that SNP × E interaction effect sizes are
proportional to the marginal effect of the SNPs, and only captures
the contribution of an environmental variable interacting with
many SNPs of the GRS. Others have explored evidence for trait
variability at the single SNP level, but found very little evidence
for it19. They also attempted to account for inherent
mean–variance relationship of heteroscedastic traits (such as
BMI), although their approach assumed that the majority of SNP
should show no real interaction effect and the function of the
mean–variance relationship was very simplistic, which may not
be accurate for SNPs (like the one near FTO) with larger effects.
Our approach to control for transformation-induced hetero-
scedasticity instead tested for the interaction effect expected for
an artificial GRS with similar correlation with the outcome as the
true GRS.

Recently, a similar (SNP-by-SNP) variance QTL analysis was
performed for 13 traits in the UK biobank and found several
associations using the Levene test20. However, they did not
attempt to apply any correction for general heteroscedastic
effects and the test is only applicable to discrete predictors, not
for GRS. In the general setting variance QTLs can be detected
using double generalised linear models (DGLMs)25. We, how-
ever, used a specific model (σ2i � g2i þ gi þ σ20 relationship) that
assumes that variance QTLs are given rise entirely by a simple
linear GxE model. Note that Young et al.19 assumed that the
conditional variance is expðaþ b � giÞ, which approximates well
our quadratic form in case of single SNP analysis, but may be
inaccurate for GRS-based analysis. This way, we could assess
their total contribution to complex trait heritability. Assess-
ment of the overall genomic contribution to variance modula-
tion has been proposed26, however, due to its computational
complexity, it may not be suitable for large human population
cohorts.

For main effect GWAS, the outcome is often inverse normal
quantile transformed (only the ranks are kept and values are
replaced by corresponding standard normal quantiles). We
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believe that this is not necessarily the right approach for G × E
interaction analysis, as such transformation will also introduce
bias (usually towards the null). Our simulation studies con-
firmed (Supplementary Fig. 10) that when the transformation
function is concave, even small positive skew (=1) leads to
substantial bias. The reason for this is that the negative skew
induced by the trait transformation (f(t)) can be attenuated,
masked or even reversed by the positive skew of the noise,
hence the INQT function becomes very different from f−1. We
have also shown that when the trait is not transformed and true
interaction exists, INQT can introduce bias in arbitrary direc-
tion, depending on the skewness of E and ϵ (Supplementary
Fig. 2): In >12% of the 1681 different skewness combinations,
the estimated interaction effect drops to half of the true value
upon INQT. We have derived an analytical formula to estimate
the impact of bias on any transformation (Supplementary
Note 4), which is aggravated by increased second derivative of
the transformation function, large skewness and kurtosis of E.
Importantly, INQT seems to have a much more drastic effect
on variance QTL-based G × E estimation, as such transforma-
tion introduces additional interactions (between G and ϵ) and
hence may distort the G × E estimation even further.

To further highlight this issue, we applied INQT to the 32
complex traits in the UK Biobank and found that in 88% of the
case the best fitting parameters ended up on the boundary,
implying that such strong transformation yields data that is
incompatible with the tested model. In general, there is a key
distinction in the motivations for trait transformation. One might
choose to transform the trait in the hope that the residual noise
will become more normally distributed and hence the P-values
well-calibrated, however, in case of G × E interaction models, the
aim is to obtain a trait on which the genetic and environmental
effects act as linearly as possible. In our view, the latter is far more
important for large data sets, where the normality of the test
statistic is ensured by the central limit theorem even in case of
non-Gaussian residuals. In addition, our bootstrapping procedure
ensures valid confidence intervals regardless of noise distribution.
Still, analysing INQT traits can be a useful sensitivity analysis to
corroborate G × E findings.

Applying our method to complex traits from the UK Biobank
revealed that modelling untransformed BMI would point to
substantial GRS × E contribution (increasing the 5% explained
variance of the GRS by 2%), however this contribution is not
specific to the GRS, any variable with comparable effect on BMI
would yield very similar interaction effect. In line with this claim,
log(BMI) or INQT(BMI) show no interaction effect. Note, how-
ever, that this observation is specific to the GRS and when a more
inclusive GRS (all SNPs with marginal P < 0.1) was tested, the
interaction effect was double of the one obtained for the corre-
sponding fake GRS. In general, if any two variables that are
correlated with an outcome also show an interaction effect, we
suspect that it is due to the trait being observed on a transformed
scale, and hence an observed interaction effect may not be spe-
cific. Instead of trying to guess the underlying transformation, we
rather estimate how much interaction effect is attributed to a
non-specific correlate of the outcome, mimicking the original risk
factor. However, published G × E studies do not correct for this
phenomenon. Note that our reported uncorrected total GRS × E
contributions are typically much larger than any of the previously
reported ones using specific environmental factors. In the UK
Biobank, alcohol intake frequency—GRS interaction explained
0.19% of the BMI, representing less than the tenth of the global
uncorrected G × E contribution of 1.93% estimated by our
method.

Significant interaction effect observed for the fGRS may indi-
cate an interaction due to transformation and/or a non-Gaussian

noise (ϵ) distribution. Both excess skew of ϵ and convex trait
transformation can lead to positive interaction estimate for the
fGRS. While the latter situation equally biases the interaction
estimate of both the real GRS (bγ) and fake GRS, we have shown
that the excess skew of the noise does not lead to biased bγ. In real
data situations, both excess skew and trait transformation can be
present simultaneously and such scenarios can be very difficult to
disentangle because the observed data does not allow us to
separate those two factors. For this reason, we devised an addi-
tional sensitivity analysis that tests whether the observed phe-
notype could be mimicked by a transformed version of an
interaction-free underlying trait and whether this counterfeit Y
would produce similar parameter estimates (bβL;bγL) as the original
Y. The advantage of this approach is that it does not rely on
normally distributed errors, however, it can explore only a finite
underlying error distributions and trait transformations. These
two sensitivity checks yielded excellent agreement, due to the fact
that in case of 16 out of the 22 phenotypes the underlying pre-
transformation trait seems to have Gaussian error. The only
disagreement was for sitting height, where the underlying
interaction-free trait may have leptokurtic error. Nevertheless,
having a bγ that is significantly different from both zero and bγK
and ðbβ;bγÞ different from bβL;bγL is a reasonable indicator of true
interaction.

As any method, ours has its own limitations. It requires
access to the individual-level genetic and phenotypic data to be
able to estimate the G × E contribution to a trait. Fitting a
likelihood function can be time consuming, but even for UK
Biobank-scale data it takes only a few seconds on four CPUs
and a further 10 min to perform the 100 bootstraps. The pro-
posed method assumes that any outcome heteroscedasticity
(conditional on the GRS) is driven by G × E interaction,
although it could be due to variance controlling genetic
effects27. Such effects are inherent features of biological net-
works, and are expected to control the impact of the environ-
mental variance28, which can be interpreted as a G × E in the
broad sense. Our model assumes that the combination of the
underlying environmental factors, summarised as E, is the same
across SNPs and moreover it speculates that the interaction
effect of each SNP is proportional to its marginal effect, which
may be an oversimplification or even incorrect. It can be shown
that the estimated interaction effect is proportional to the
correlation between the per SNP marginal and interaction
effects (see Supplementary Note 2). We have, however, assessed
the general mean–variance relationship for each trait and still
found many traits with interaction effect sizes deviating from
the expected, suggesting that the interaction effect is indeed
somewhat proportional to the marginal effect, even after the
general heteroscedasticity is accounted for. This supports an
underlying interaction mechanism that impacts the overall
genetic predisposition to obesity and not separately its con-
stituents. When E or ϵ are heavily skewed or leptokurtic and the
trait is observed on a transformed scale, distinguishing null and
true interaction scenarios becomes very hard and even our
method fails to do so. Real complex traits, however, only very
rarely exhibit such extreme skewness and kurtosis. To be on the
safe side, we recommend claiming non-zero interaction only
when (i) the interaction effect estimate (bγ) is significantly dif-
ferent from zero; (ii) the real and counterfeit GRS produce
interaction estimates that are significantly different; (iii) eitherbβ is significantly different from bβL or bγ is significantly different
from bγL. Note that in situations where a transformed trait is
modelled, the exact size of the estimated interaction effect is not
relevant, because without knowing the underlying transforma-
tion this quantity can never be recovered. A further limitation is
that the current implementation cannot handle family data and
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not designed for admixed populations, where the variance
structure can be more complicated. If the outcome mean and
variance varies across different populations, our method would
interpret it as interaction, but its interpretation can be pro-
blematic. A further limitation is that the obtained results may
be specific to the UK Biobank participants, which is a selected
subpopulation of the UK. Since the BMI difference between
age-matched general population and the UK Biobank is
≈0.1SD unit29, equivalent to selection OR= 1.1, the relative
difference between the reported effect and the effect in the full
UK population is expected to be extremely negligible (<3%) for
this range of selection strength30. Finally, our tool is not
designed to pick up interaction with non-continuous E, e.g., a
G-sex interaction, which may be the most important con-
tributor for WHR.

The proposed method could be used as a tool to establish the
contribution of G × E to different traits and subsequently prior-
itise those with substantial global interaction effect for follow-up
G × E analysis with specific environmental factors. Such traits
may show particular potential for public health interventions,
where the genetic predisposition could be modified the most by
lifestyle changes.

Methods
Overview. In the past, methods have been proposed to detect G × E based on
variance heterogeneity of the outcome in different genotype groups18. These
methods, like ours, do not need to observe the interacting environment, as they
treat the environment as a nuisance variable and integrate it out. This results in loss
of statistical power, as we only look at the consequence of such interaction in terms
of the change in the outcome distribution as a function of the GRS value. The
presence of G × E would lead to a different distribution of the outcome (principally
characterised by increased variance) in higher genetic risk groups, which is cap-
tured by the fitted likelihood function. Our maximum likelihood approach does not
require any arbitrary grouping of the population into subgroups according to their
genetic predisposition and the interaction effect size is directly estimated.

Derivation of the likelihood function. Let us define a set of n individual and
y 2 Rn denotes the observed outcome variable, e 2 Rn is an (unobserved)
environmental factor and the g 2 Rn is the available GRS (or as a special case the
genotype of a single SNP) in this sample. The central focus of our paper is to detect
the presence of environmental influence that modifies the effect of the genetic risk
score (g) on the outcome (gene–environment interaction) and to quantify the
extent of this modification. Here, we are particularly interested in an abstract
environmental variable (which captures the impact of several measurable exposures
such as socio-economic status, physical activity, alcohol consumption, etc.) that
modifies the genetic predisposition of a complex trait (y). The corresponding
capital letters represent the random variables. We assume that the true underlying
model is as follows

Y ¼ y0 þ α0 � Gþ β0 � E0 þ γ0 � ðG � E0Þ þ ϵ; ð1Þ
where, for notational simplicity, we assume that variables Y, G and E0 have zero
mean and unit variance. The term y0 refers to the constant intercept. We allow for
E0 and G being correlated (with correlation δ0) and for simplicity we assume linear

relationship E0 ¼ δ0 � Gþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� δ02

p
� E, where G and E are independent and E has

zero mean and unit variance. Hence, E can be viewed and the part of the inter-
acting environment E0 that is orthogonal to the genetic risk (G). The model can
then be rewritten as

Y ¼ y0 þ α0 � Gþ β0 � δ0 � Gþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� δ02

p
� E

� �
þγ0 � G � δ0 � Gþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� δ02

p
� E

� �� �
þ ϵ

¼ y0 þ ðα0 þ β0δ0Þ � Gþ ðγ0δ0ÞG2 þ β0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� δ02

p� �
� E

þ γ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� δ02

p� �
� ðG � EÞ þ ϵ;

where ϵ is assumed to be normally distributed with zero mean. Note that due to the
properties of G, E and Y, all terms on the right hand side have zero mean, except
E½ðγ0δ0ÞG2� ¼ ðγ0δ0Þ, hence y0 ¼ �ðγ0δ0Þ. Therefore, the model simplifies to

Y ¼ ðα0 þ β0δ0Þ � Gþ ðγ0δ0ÞðG2 � 1Þ þ β0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� δ02

p� �
� E

þ γ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� δ02

p� �
� ðG � EÞ þ ϵ;

This model is equivalent (and can be reparameterized) to

Y ¼ α1 � Gþ α2 � ðG2 � 1Þ þ β � E þ γ � ðG � EÞ þ ϵ; ð2Þ

with σ2 :¼ V arðϵÞ ¼ 1� α21 � 2α22 � β2 � γ2. Here, we defined α1 :¼ α0 þ β0δ0 as
the observed linear genetic effect, α2 :¼ γ0δ0 is the quadratic effect due to a non-

zero interaction and G� E0 correlation, β :¼ β0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� δ02

p
is the G-independent

environmental effect and γ :¼ γ0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� δ02

p
stands for the interaction effect between

G and the G-independent environment. Note that we cannot distinguish between
an interaction model with pure linear G term with correlated G–E (Eq. (1)) and a
model with uncorrelated G–E, but with quadratic relationship between Y and G
(Eq. (2)). Since the two models are mathematically equivalent, we will continue
working with the latter parameterisation. Note that the model is parameterised
such that the variance explained by the G × E term is simply γ2. If one wishes to
recover the interaction effect size of the original E0 (i.e., γ0), it is given by
signðγÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ2 þ α22

p
.

We can write the density function of (Y∣G= g) as

PrðY ¼ yjG ¼ gÞ ¼
Z 1

�1
PrðY ¼ yjG ¼ g; E ¼ eÞ ´ PrðE ¼ eÞde:

We assume that E and ϵ are normally distributed, i.e., Pr(E= e) = ϕ(e) and Pr(ϵ=
e) = ϕ(e), where ϕ( ⋅ ) is the probability density function of the standard normal
distribution. Therefore, the integral simplifies to

PrðY ¼ yjG ¼ gÞ ¼
Z 1

�1
PrðY ¼ yjG ¼ g; E ¼ eÞ ´ PrðE ¼ eÞde

¼
Z 1

�1
PrðϵjG ¼ g;E ¼ eÞ � ϕðeÞde

¼
Z 1

�1

1
σ
ϕ

y � α1 � g � α2 � ðg2 � 1Þ � β � e� γ � g � e
σ

� �
ϕðeÞde

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðβþ γ � gÞ2 þ σ2

q ´ϕ
y � α1 � g � α2 � ðg2 � 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðβþ γ � gÞ2 þ σ2
q

0B@
1CA

¼ 1
σθ;g

´ϕ
y � μθ;g
σθ;g

 !
;

where θ= {α1, α2, β, γ}, μθ,g= α1 ⋅ g + α2 ⋅ (g2− 1) and σ2θ;g ¼ ðβþ γ � gÞ2 þ σ2.
The likelihood function (for observed data (Y, G)) can be written as

LðθÞ ¼ PrðY ¼ y;G ¼ gjθÞ ¼ PrðG ¼ gÞ � PðY ¼ yjG ¼ gÞ

¼ PrðG ¼ gÞ � 1
σθ;g

´ϕ
y � μθ;g
σθ;g

 !

To estimate the underlying parameters, we need to maximise the log-likelihood
function, i.e.,

log
Y
i

Prðyi; gijθÞ
 !

/ � 1
2
log σθ;gi

� �
þ
X
i

logϕ
yi � μθ;gi
σθ;gi

 !

/ �log σθ;gi

� �
�
X
i

ðyi � μθ;gi Þ
2

σ2θ;gi

ð3Þ

Note that the minimisation was constrained such that α21 � 2α22 � β2 � γ2 ≤ 1 so
that Var(ϵ) ≥ 0. Covariates, (e.g., age, sex, ancestry principal components) can be
incorporated into the model by modifying μθ,g to α1 ⋅ g + α2 ⋅ (g2 − 1) + C ⋅ c,
where C is the matrix with all the covariates listed as columns and c is the
coefficient vector that will be estimated in the ML procedure.

Variance of parameter estimates. When the error term substantially deviates
from normal distribution (the deviation limit depending on sample size), the

variance of the parameter estimates (bβ and bγ) cannot be derived reliably from the
log-likelihood function (Eq. (3)), e.g., by computing the Fisher information matrix
or via likelihood ratio test. Instead, we performed 100 bootstrap samples to obtain
robust variance estimates. Note that this is preferable to a permutation procedure
since—due to the special nature of our likelihood function—the estimator variance
is larger under the null than under the true interaction model, hence it would lead
to decreased power and conservative confidence interval. For real data application,
when >10% of the bootstrapped data yielded estimates with Var(ϵ)= 0 (i.e.,
maximisation stuck at the boundary) the analysed trait was discarded to be on the
safe side. To reduce computational time when testing large number of single SNPs
(instead of one GRS), one can compute the Fisher information matrix to obtain
standard error for the interaction estimates and use bootstrapping only for SNPs
showing the most evidence for interaction. Note that when γ= 0, parameter β
cancels out in the formula and hence not identifiable. For this reason, likelihood
ratio test is not ideal to derive confidence interval for bγ.
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Accounting for transformation of the outcome variable. It is possible that the
linear interaction model does not describe the observed outcome, but only a
transformed version of it, i.e., our observed data is {y= f(z), g} with the model Z=
α1G + α2(G2− 1)+ βE+ γ(G × E)+ ϵ. Such a transformation may induce general
heteroscedasticity, which translates to mean–variance relationship that is not
specific to any predictor of Y. In Supplementary Note 4, we derived an analytical
formula for the bias in the interaction estimation.

Assuming normally distributed error term: We can test the specificity of the
interaction effect identified through our variance modelling (Eq. (3)) by simulating
a counterfeit G (termed ~G) with properties similar to those of G. Specifically, we
ensure it is similarly distributed and identically correlated to Y in terms of first and

second moments (E ~G � Y� � ¼ E G � Y½ � and E½~G2 � Y� ¼ E G2 � Y½ �, respectively). If
the interaction obtained from applying the model described in Eq. (2) is not due to
a transformation of the outcome, applying the same model to ~G should yield no
interaction. A similar interaction obtained using the fake ~G would indicate that the
G × E we detect is not specific to G, and is most likely due to observing a trait that
can be described only by a transformed linear model. Here, we assume that ϵ is
Gaussian, and hence Varðϵj~G ¼ gÞ does not depend on g.

To create a fake G, we use the data (g, y) to estimate E G � Y½ � ¼ g 0 � y=n ¼: b1
and E½G2 � Y � ¼ g 02 � y=n ¼: b2. We choose to create a ~G of the following form

~G ¼ a0 þ a1Y þ a2 � Y2 þ η

with η � Nð0; τ2Þ and E[η ⋅ Y]= E[η ⋅ Y2]= 0. Let us define μi= E[Yi] for
i = 1, 2, …, 5 with μ1= 0 and μ2= 1. These can be estimated from the data asbμi ¼Pjy

i
j=n. Note that if Y were normally distributed, μ3= μ5= 0 and μ4= 3. To

find a0, a1, a2 that satisfies E½~G� ¼ 0;E½~G2� ¼ 1;E½~G � Y � ¼ b1 and E½~G2 � Y� ¼ b2
we need to solve the following equations

0 ¼ E½~G� ¼ a0 þ a2

1 ¼ E½~G2� ¼ E½ða0 þ a1Y þ a2 � Y2 þ ηÞ2� ¼ a20 þ a21 þ a22μ4 þ 2a0a2 þ 2a1a2μ3 þ τ2

b1 ¼ E½~G � Y � ¼ E½ða0 þ a1Y þ a2 � Y2 þ ηÞ � Y� ¼ a1 þ a2μ3

b2 ¼ E½~G2 � Y � ¼ E½ða0 þ a1Y þ a2 � Y2 þ ηÞ2 � Y �
¼ E½ða20 þ a21Y

2 þ a22 � Y4 þ η2 þ 2a0a1Y þ 2a0a2Y
2 þ 2a1a2Y

3Þ � Y �
¼ a21μ3 þ a22μ5 þ 2a0a1 þ 2a0a2μ3 þ 2a1a2μ4

From the first equation we have a0=−a2, the second yields τ2 ¼ 1� 3a22 þ a21 þ
a22μ4 þ 2a1a2μ3 and the third equation gives a1= b1− a2μ3. Therefore, knowing a2
directly yields a0, a1 and τ. Plugging these into the last equation gives

b2 ¼ ðb1 � a2μ3Þ2μ3 þ a22μ5 � 2a2ðb1 � a2μ3Þ � 2a22μ3 þ 2ðb1 � a2μ3Þa2μ4
¼ a22 � ðμ33 þ μ5 � 2μ3μ4Þ þ a2 � ð�2b1 þ 2b1μ4 � 2μ23b1Þ þ b21μ3

¼ a22 � ðμ33 þ μ5 � 2μ3μ4Þ þ a2 � ð2b1ðμ4 � μ23 � 1ÞÞ þ b21μ3

which is a second order polynomial in a2 and hence its solution is

a2 ¼
�ðb1ðμ4 � μ23 � 1ÞÞ±

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb1ðμ4 � μ23 � 1ÞÞ2 � ðμ33 þ μ5 � 2μ3μ4Þðb21μ3 � b2Þ

q
ðμ33 þ μ5 � 2μ3μ4Þ

Having estimated μis and bis from the data, we can obtain ais and τ2, which can be
used to simulate many counterfeit egðkÞs. In practice, we generate 100 different
counterfeit variables. Finally, we fit the likelihood function (Eq. (3)) to this data
(y;egðkÞ) to generate a null distribution of bγks. We then can compare the bγ best
fitting the true data (y, g) to the distribution of bγks best fitting the counterfeit
(genetic) data (y;egðkÞ) to test whether the observed interaction effect is specific to
the GRS or common to any variable identically correlated with the outcome. In
case G represents a GRS with only a few SNPs, its distribution is not Gaussian and
hence ~G and G do not come from the same distribution. This can be solved by
using a permuted version of G multiplied by τ to generate η. The comparison was
done using the test statistic ðbγ� bγK Þ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VarðbγÞ þ VarðbγK Þp � Nð0; 1Þ. Note,
however, that when ϵ is not Gaussian, Varðϵj~G ¼ gÞ may depend on g, i.e., the
counterfeit G can show apparent interaction, which is not due to a potential
transformation, but to the non-normality of ϵ.

Alternative approach: Instead of simulating a counterfeit G variable, another
option is simulate a counterfeit Y, while explicitly modelling the trait transformation.
In particular, we will generate an underlying trait z ¼ α?1g þ α?2ðg2 � 1Þ þ ϵ and a
transformation f( ⋅ ), such that for trait y⋆, defined as f(z), the following hold: (i)
y⋆ ~ α1g + α2(g2− 1); (ii) the distribution of y⋆ matches that of y; (iii) applying our
MLE method to (y⋆, g) yields estimates for α, β, γ as similar as possible to the ones
obtained for (y, g). Note that it is relatively easy to find parameters to fulfil the first
two criteria, but the third is more difficult to satisfy. To simplify computation, in the
following we ignored the α2(g2− 1) term, as for most traits α2= 0.

To obtain such y⋆, we first simulated a large number of error variables, ϵ, with
93 different combinations of skewness ( −3, −2.8, …, 2.8, 3) and kurtosis
(skewness2 + 2, … skewness2 + 4) and 51 different α?1 parameters (α1 − 0.25, α1−
0.24,…, α1+ 0.24, α1+ 0.25). Next, we generated 100 instances of z :¼ α?1g þ ϵ for
each fskewness; kurtosis; α?1g parameter set. We then chose the optimal
transformation f in order to obtain a variable (f(z)) as close as possible in

distribution to the observed phenotype y. To allows for flexible transformation
functions, we fitted polynomials up to 7th degree, where the outcome is the sorted
phenotype y and the regressors are powers of the sorted version of z. Finally, for
each skewness and kurtosis of ϵ, we chose the parameter combinations (α?1 ; f ð�Þ)
that yielded the closest match (averaged over the 100 repeats of z) with respect to
the first two criteria. For each skewness and kurtosis of ϵ, the 100 realisations of y⋆

(generated using the optimal parameter combination) were then subjected to our
MLE method to estimate α, β and γ and compared these to the ones obtained for
(y, g). We report the results for the skewness and kurtosis combination (for ϵ) that
resulted in the best match also w.r.t. α, β and γ. If we could identify a combination
of parameters fskewness; kurtosis; α?1 ; f ð�Þg that yielded y⋆ matching y in terms of
all three criteria, we conclude that the observed interaction effect of the phenotype
may be due to trait transformation.

Simulation settings. We systematically explored the robustness of our method to
various simulation settings. As a basic setting, we assume that the generated
phenotype is governed by the interaction model defined in Eq. (2). To this end we
simulated g � Nð0; 1Þ, e and ϵ. The latter two were simulated from a Pearson
distribution (R function rpearson / Matlab function pearsrnd), for which we
set the first four moments (mean= 0, variance= 1, for skewness and kurtosis see
below). First, we explored whether the correlation between G and E has any impact
on the parameter estimates. For these set of simulations, we used the original
parameterisation (α0; β0; γ0; δ0) and set n ¼ 10; 000; α02 ¼ 0:1; β02 ¼ 0:3; γ02 ¼ 0:05
and varied δ0 between zero and 0.3. Next, we explored whether violations of the
normality assumption for ϵ and e could lead to biased estimation of the key
parameters (γ and β). Therefore, we conducted extensive simulations including 21
different distributions with a wide range of values for skewness (E[X3] ∈ [0, 5]) and
kurtosis (E[X4] ∈ [2, 27]) both for e and ϵ (Supplementary Fig. 1). For these
simulations we set the (reparameterised) parameters to n ¼ 10; 000; α21 ¼ 0:1; α2 ¼
0; β2 ¼ 0:3; γ2 ¼ 0 or γ2 = 0.025. We set slightly exaggerated effect sizes in order to
keep the sample size relatively low, in order to save run time. For each parameter
setting, we repeated the simulations 100 times. When these results are presented on
boxplots, boxes mark the first (q1) second (q2) and third quartiles (q3) and the
lower/upper whiskers are at q1− 1.5 ⋅ (q3− q1), q3+ 1.5 ⋅ (q3− q1), respectively.

Next, we tested the impact of trait transformations (f(t)= tk, k= 0, 1, 2, 3),
where instead of observing/modelling (Y, G) directly, we observed (f(Y), G). Note
that k= 0 represents the log-transformation. As the interaction effects are not the
same on the transformed scale as on the original one, in these analyses our aim was
only to distinguish between true and null interaction effects. Thus, we tested γ= 0
and γ2= 0.05, while fixing other parameters at
n ¼ 10; 000; α21 ¼ 0:1; α2 ¼ 0; β2 ¼ 0:3. Furthermore, we tested the impact of
combined violations of the model assumptions and simulated more data under all
possible combination of transformations f(t)= tk(k= 0, 1, 2), skewness (E
[X3] ∈ [0, 5]) and kurtosis (E[X4] ∈ [2, 27]) both for e and ϵ, resulting in further
126 (3 × 21 × 2) parameter combinations.

We then explored the power to discover G × E interactions for various
combinations of realistic sample sizes (n= 10 K, 20 K, …, 100 K) and interaction
effects (γ2= 0.2%, 0.4%, …, 2%). Since in a typical scenario one would test a few
dozen outcome traits, we used a P-value threshold of 10−3 to establish power. For
these simulations, we set other parameters to α21 ¼ 0:1; α2 ¼ 0; β2 ¼ 0:3, and
performed 100 repeats. We have also compared power of our method working with
unobserved E against linear interaction model with observed E under fixed setting
of α21 ¼ 0:05; α2 ¼ 0; β2 ¼ 0:3; γ2 ¼ 0:05 with all possible combinations of
skewness and kurtosis for E.

Note that for real data we have to use bg ¼Pjbcj � g j instead of g= ∑jcj ⋅ gj, where cj
is the true underlying marginal effect of SNP j. However, in the simulations, the GRS
(g) was assumed to be known (i.e., observed without noise). To examine whether
using an estimate (bg) rather than the exact GRS (g) results in estimation error, we
simulated 1000 independent genotypes for a sample of 10,000 participants. The
phenotype was then generated based on a polygenic model, where the effects of SNPs
are drawn from a normal distribution and explain in total 30% of the trait variance.
We then added an environmental factor (E) and an interaction term (GRS × E) to this
genetic component, explaining 30% and 10% of the trait variance, respectively. Finally,
we added normally distributed noise, contributing the remaining 30% to the
phenotypic variance. Note that we used here larger SNP and G × E effects, because as
opposed to the other simulations, here we created GRS not only based on genome-
wide significant SNPs, while almost all previous settings mimic real scenarios, where
the GRS is composed of only genome-wide significant SNPs. Using the simulated
phenotype and genotype data, we derived GRS at different P-value thresholds. We
computed two different GRSs, one based on ordinary least squares (OLS) and another
one using the best linear unbiased predictor (BLUP). The emerging GRSs were then
plugged into the likelihood function.

Application to complex continuous traits in the UK Biobank. To explore
whether we can find evidence of interaction between GRS and environmental
variables, we looked at 32 continuous complex traits, where the GRS—composed of
all independent, genome-wide significant SNPs in the UK Biobank—explained at
least 2% of the variance of that trait. For this we first selected SNPs with association
P-value < 5 × 10−8 and pruned them based on distance, eliminating SNPs that lie
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within 1 Mb vicinity of a stronger associated variant. We define an outcome trait
continuous if the variable takes at least 100 different values in the UK Biobank
sample. The analysis was restricted to a sub-sample of the UK Biobank comprising
378,836 unrelated, white British participants. We fitted the likelihood function both
to the real data (Y, G) and ðY ; ~GÞ counterfeit data in order to assess whether the
detected interactions are specific to the GRS or generally present due to scale issues.
When measures were available from both left and right side of the body (e.g., left
and right arm fat mass), we used only the right side measures due to extremely high
correlation (>0.95) between the left and right traits.

Single SNP analysis. Single SNP interaction testing differs in two aspects from the
standard GRS analysis. On one hand, the expected interaction effects are much
smaller and the bootstrapping procedure is not feasible for millions of SNPs
genome-wide. To address the first point, we extended the simulations to smaller
interaction (γ) values down to 0.02% latter point. To reduce computational time
when testing large number of single SNPs, one can use the likelihood ratio test to
obtain standard error for the interaction estimates and use only bootstrapping for
SNPs showing the most evidence for interaction.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data used in the study is either simulated (with provided code to generate) or belong
to the UK Biobank resource. These data are available from the UK Biobank, but
restrictions apply to the availability of these data, which were used under license for the
current study (#16389), and so are not publicly available.

Code availability
R/Matlab code to generate simulated data as well as the code to analyse UK Biobank data
are available at https://github.com/zkutalik/GRSxE_software.
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