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Abstract

The processes involved in soil domestication have altered the soil microbial ecology. We

examined the question of whether animal manure application affects the soil microbial ecol-

ogy of farmlands. The effects of global animal manure application on soil microorganisms

were subjected to a meta-analysis based on randomized controlled treatments. A total of

2303 studies conducted in the last 30 years were incorporated into the analysis, and an

additional 45 soil samples were collected and sequenced to obtain 16S rRNA and 18S

rRNA data. The results revealed that manure application increased soil microbial biomass.

Manure application alone increased bacterial diversity (M-Z: 7.546 and M-I: 8.68) and inhib-

ited and reduced fungal diversity (M-Z: −1.15 and M-I: −1.03). Inorganic fertilizer replaced

cattle and swine manure and provided nutrients to soil microorganisms. The soil samples of

the experimental base were analyzed, and the relative abundances of bacteria and fungi

were altered compared with no manure application. Manure increased bacterial diversity

and reduced fungal diversity. Mrakia frigida and Betaproteobacteriales, which inhibit other

microorganisms, increased significantly in the domesticated soil. Moreover, farm sewage

treatments resulted in a bottleneck in the manure recovery rate that should be the focus of

future research. Our results suggest that the potential risks of restructuring the microbial

ecology of cultivated land must be considered.

Introduction

Arable land is under unprecedented pressure due to the continual increases in global popula-

tion and food demand [1–3]. Forests and grasslands have been reclaimed as cultivated land to
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obtain more grain. With the development of agricultural activities, soil has gradually become

domesticated [4]. Soil and rhizosphere microbial communities can affect plant growth. Thus,

in order to produce more food, the soil microbial ecology has been altered due to soil domesti-

cation [5, 6].

The soil microbial community is an important natural carbon sink and plays important

roles in the carbon cycle and in greenhouse gas emissions (S1 Fig) [6, 7]. Soil microbial com-

munities have the capacity to maintain themselves in terms of stability and self-healing abilities

in case they are damaged or destroyed [8]. Manual application is a process of enrichment of N,

P, K, and carbon. When applied microbial communities are combined with a natural soil

microbial communities, an ecological balance will be reestablished through competition.

Many studies have been conducted concerning the effects of animal manure application on

soil microorganisms in farmlands [9, 10]. Manure has its own microbial community [11] and

is a traditional fertilizer that has been used for thousands of years. In recent years, animal

manure has no longer been the most commonly used type of fertilizer. In the carbon cycle,

refractory veterinary drugs used to prevent and control animal diseases enter the soil, leading

to soil pollution. Additives and heavy metals in animal feed also enter the soil and affect the

normal growth and development of plants as well as and crop yields [12]. Under these condi-

tions, manure use should be limited.

Soil microorganisms have been divided into five groups: soil bacteria, soil actinomycetes,

soil fungi, soil algae, and soil protozoa [13]. Some studies suggest that manure application can

improve soil microbial biomass carbon (MBC), while others suggest that it can reduce soil

MBC [14, 15]. A recent meta-analysis found that the soil microbial biomass in China has

changed due to manure application [16]. However, it is necessary to conduct a meta-analysis

at a global scale to investigate the effects of animal manure application on soil

microorganisms.

Meta-analysis is a useful technique for analyzing and summarizing results of studies focused

on the same field [17, 18]. In this meta-analysis, two independent analyses based on random

control treatments were used. Soil MBC can be used to measure soil microbial biomass, and

Shannon’s diversity index (i.e., Shannon–Wiener or Shannon–Weaver) can be used to measure

soil microbial diversity. A trial sequential analysis (TSA) was used to determine the reliability of

our findings. To study the effect of fertilization on soil microorganisms, the changes in the abun-

dance of different microorganisms in the microbial community were assessed. We collected soil

samples from the demonstration base and performed a verification experiment. These results

will serve as a reference concerning the effects of animal manure application on the community

structure of soil microorganisms, and the findings will provide theoretical guidance for the sus-

tainable development of agriculture and ecological protection at a global scale.

Materials and methods

Database search strategy and data extraction

Two independent meta-analyses systematically searched the following databases for studies

published from January 01, 1990 to July 01, 2020: Ovid, Proquest, ScienceDirect, and Google

Scholar. The following search terms were used in the MBC meta-analysis: (animal OR pig OR

hog OR swine OR porcine OR cattle OR cow OR bovine OR poultry OR chicken OR sheep

OR goat OR horse OR livestock) AND (manure OR compost OR mud OR sludge OR ooze OR

effluent OR waste OR dung OR slurry) AND ((microbial biomass carbon) OR MBC). For the

soil microbial diversity meta-analysis, the following search terms were used: ((Shannon index)

OR (Shannon–Weaver index)) AND ((microbial community) OR (bacterial community) OR

(fungal community)). The study inclusion and exclusion criteria are described in Table 1.

PLOS ONE Meta-analysis of manure and soil microbial ecology

PLOS ONE | https://doi.org/10.1371/journal.pone.0262139 January 21, 2022 2 / 17

Competing interests: The authors declare that they

have no conflict of interest to report.

https://doi.org/10.1371/journal.pone.0262139


The included studies consisted of different comparisons with manure application; thus, the

control groups were considered zero fertilization (Z) and/or inorganic fertilization (I). Other

fertilization conditions were abbreviated as manure (M), manure plus inorganic fertilization

(MI), and fallow (F). Seven dataset types were defined in this study: MBC response to manure

application compared to an unfertilized control (M–Z) and six other groups: I–Z (inorganic

fertilization application compared to an unfertilized control); MI–Z (manure plus inorganic

fertilization compared to an unfertilized control); M–I (manure fertilization compared to an

inorganic fertilization control); MI–I (manure plus inorganic fertilization compared to an

inorganic fertilization control); MI–M (manure plus inorganic fertilization compared to a

manure control), and F–Z (fallow compared to an unfertilized control) [19]. Each dataset

group was extracted separately and analyzed as independent data. The Shannon index repre-

sents the diversity of microorganisms, and the Shannon index based on 16S or 18S sequencing

represents the relative abundance of microorganisms. Therefore, the Shannon index based on

16S or 18S sequencing was not considered in our meta-analysis.

Data analysis

There are many methods for MBC content measurement. The fumigation increment method

and the fumigation extraction method are the most commonly used, but the results can be

quite different. Thus, the present study used the MBC change rate (MBCR) to estimate the

change in value [20]. The MBCR for each of the seven datasets was calculated as follows:

MBCR ¼
Xn

i¼1

MBCM � MBCC

MBCC

� �

�
1

n
� 100%;

where MBCM is the MBC of manure application, and MBCC is the control group. Standard

errors (SE) were calculated as follows:

SE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1

MBCM � MBCC
MBCC

� �

i
� MBCR

h i2
r

n
:

Review Manager v5.3 (Nordic Cochrane Centre, Copenhagen, Denmark) and R v3.2.2 soft-

ware (R Development Core Team, Auckland, New Zealand) were used for the meta-analyses.

A TSA was used to evaluate the reliability of the data and was conducted using Trial Sequential

Analysis Viewer (Copenhagen Trial Unit, Copenhagen, Denmark).

Shannon index changes were calculated using the same method as that used for MBCR.

When the bacterial data and fungal Shannon index changes were present in the same literature

and when the change value did not conform to a normal distribution, a Mann–Whitney U test

was used to detect differences between groups using SPSS software (SPSS Inc., Chicago, IL,

USA). The effects of manure on yield and MBCR were calculated by regression analysis. Since

Table 1. Inclusion and exclusion criteria.

Inclusion Exclusion

Randomized controlled trials (RCT) Not RCT

English Non-English

Control group included (M–Z or M–I) No control group

For the microbial biomass carbon (MBC) meta-analysis: MBC data included No MBC data

For the soil microbial diversity meta-analysis: Shannon data included No Shannon data

Original research Review

https://doi.org/10.1371/journal.pone.0262139.t001
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the application amount of manure in our study did not exceed 5 T/ha, a maximum application

amount of 30 T/ha was applied in the calculations.

We analyzed the effects of manure on MBCR according to the type of manure. This study

also attempted to determine the relationship between each factor and MBCR increase through

a network meta-analysis or regression analysis, but it became obvious that the application rate

was the most important factor; therefore, an analysis of the application rate along with soil

conditions such as pH and depth was unnecessary.

Soil sample collection and analysis

To study the effect of fertilization on soil microorganisms, the change in abundance of differ-

ent microorganisms in the microbial community was assessed. Forty-five soil samples were

collected from Qingfeng village, Tangyuan county, Jiamusi city, Heilongjiang Province, and

from the combined farming and animal husbandry demonstration base of the Animal Hus-

bandry Research Institute, Heilongjiang Academy of Agricultural Sciences (longitude 129.68,

latitude 46.67). The site is situated at an altitude of 79 m, with an annual precipitation of 520

mm, an average annual temperature of 3˚C, and black soil. Sampling commenced on 21

November 2020. The cultivation conditions included rotary tillage to 20 cm with a mixture of

pig manure and chicken manure. Five types of non-rhizosphere soil, uncultivated U, Z, I, M,

and MI, were collected and applied for three to six years. The sampling depths were 0–10 cm,

10–20 cm, and 20–30 cm, and each sampling plot included three different locations. The

grouping method was as follows: U01 represents U0–10 cm, U02 represents U10–20 cm, U03

represents U20–30 cm, and the other groups followed the same pattern.

The soil samples were frozen in liquid nitrogen in a centrifuge tube. Soil DNA was extracted

using a Soil DNA Extraction Kit (Omega, Doraville, GA, USA), and the quality of the extracted

DNA was assessed for the construction of 16S and 18S rDNA libraries. The PCR products

were purified by Agencourt AMPure XP beads (Beckman Coulter, Indianapolis, IN, USA) and

quantified by a PicoGreen double-stranded DNA quantitative detection kit (Invitrogen, Carls-

bad, CA, USA). The V3-V4 hypervariable region of the 16S rDNA and V4 region of 18S rDNA

were detected by an Illumina NovaSeq6000 sequencing platform to analyze the community

structure of the soil microorganisms.

After the original sequencing data were obtained, clean data were obtained by sequence fil-

tering and splicing, and operational taxonomic unit (OTU) clustering was conducted using

USEARCH software (v9.2.64). The sequence with the highest abundance was selected from the

same OTU as the representative sequence of the OTU. For bacteria and fungi, QIIME (v1.9.1)

software was used to compare the representative sequences with the Silva 132 and PR2

(v4.12.0) databases to obtain species annotation information. Welch’s t-test was used to com-

pare the species differences between groups. R software (v3.6.0) was used for correlation analy-

sis of species abundance, and Cytoscape software (v3.6.0) was used for mapping.

Results

Initially, a total of 2303 studies (MBC, 1264; soil microbial diversity, 1039) were found from

the literature search. The study selection process is presented in Fig 1A and 1B. Ultimately,

134 reports (MBC, 79; soil microbial diversity, 55) and 871 datasets (MBC, 703; soil microbial

diversity, 168) were included in the meta-analysis. The characteristics of all of the included

studies are provided in S1 and S2 Tables. Our results found that seven datasets showed

improved MBCR (Fig 2A).

A total of six merged datasets showed improved microbial diversity of the soil (Fig 2B).

Interestingly, the application of manure alone increased bacterial diversity (M-Z: 7.546 and

PLOS ONE Meta-analysis of manure and soil microbial ecology

PLOS ONE | https://doi.org/10.1371/journal.pone.0262139 January 21, 2022 4 / 17

https://doi.org/10.1371/journal.pone.0262139


M-I: 8.68) as well as inhibited and reduced fungal diversity (M-Z: −1.15 and M-I: −1.03) (Fig

2C). The TSA indicated that the analysis results were reliable (Fig 2D–2F). The TSA also

showed that the results of the manual effect MBC test exceeded the threshold value, and there

Fig 1. Summary of the study selection processes for MBC (A) and Shannon index (B) meta-analyses.

https://doi.org/10.1371/journal.pone.0262139.g001
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was no need to conduct further manual effect MBC tests in the future. Thus, it was determined

that the soil microbial ecology was altered during the soil domestication process.

The effects of different factors on MBCR were also investigated. The examined factors were:

the type of manure, pH, rhizosphere and bulk soils, latitude, texture, rotation, tillage, depth,

duration, and application rate. The majority of the four dataset results indicated that the test

group increased MBCR compared to the control group (Fig 3A–3D). All of the results men-

tioned above were possibly affected through publication bias; therefore, all of the results should

be treated with caution.

At the phylum level, the top five bacterial phyla exhibited little change among the exper-

imental groups, while the fungi had relatively significant changes. The top five bacterial

and fungal taxa at the genus level differed significantly among the experimental groups

(Fig 4A–4D).

In particular, the abundances of Anaeromyxobacter, Anaerolineaceae, vadinHA17 (S2A–

S2C Fig) andMrakia frigida (Fig 5A) were lower in U01 and U02 than in the other groups. In

addition, the abundance of Endogenone in U02 was lower than that in the other groups (S2D

Fig). The abundances of Xanthobacteraceae and Bryobacter in U01 and U02 were higher than

in the other groups (S2E and S2F Fig). Interestingly, Burkholderiaceae, which causes disease in

Fig 2. Forest plot of the effects of manure on microbial biomass carbon (MBC) (A) and the Shannon index (B). Confidence interval (CI)

= 95%. Mann–WhitneyU test of the Shannon index (C). � indicates a significant difference (p< 0.05). Trial sequential analysis (TSA) of

the effects of manure on I-Z (D), M-Z (E), and M-I (F).

https://doi.org/10.1371/journal.pone.0262139.g002
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gramineous plants, also increased in the soil under land reclamation (S2G Fig). In addition,

Betaproteobacteriales increased significantly in the soil supplied with manure (Fig 5B).

Discussion

Land management is one of the biggest factors contributing to soil production and climate

change. In addition, one of the core components of sustainable agricultural development is the

carbon cycle [20]. In this cycle, animal manure applied to farmland is the main source of crop

nutrients [21].

Swine manure is rich in proteins and fats and easy to decompose. It contains several humic

substances with high water content [22, 23]. The nutrient content of cattle manure is low; it

decomposes slowly and has poor air permeability and so it is not used as poultry manure [22,

23]. Sheep (goat) manure has good texture and contains more organic compounds than other

animal manure. It is a neutral fertilizer suitable for sandy soil and clay [24]. Poultry manure is

rich in nitrogen (N) but contains parasite oocytes and heavy metals [22, 23].

All fertilizers can be used in fermentation treatments. In this study, two independent analy-

ses based on randomized controlled treatments were used to measure soil microbial biomass

and Shannon diversity index. Our results revealed that there were no differences in the sources

of cattle manure and swine manure in the MI–I group, indicating that inorganic fertilizer can

completely replace cattle and swine manures and provide nutrients to soil microorganisms.

There was no difference in poultry manure in the MI–M group, indicating that poultry

manure had a unique promoting effect on soil microorganisms.

Factors affecting manure efficiency

In terms of soil depth, the content of soil total nitrogen and organic carbon increased after the

application of organic fertilizer [25]. Based on our field experience, the average application

rate of manure is 1–3 T/ha. The density is estimated to be 1, which is equivalent to an increase

of 0.2 mm in the soil layer. This is much faster than the natural formation rate of soil. Of

course, the annual production of grain and fertilizer and output of cultivated land are also

included in the calculations of land carrying capacity. It is generally believed that there are

fewer microorganisms in the plow pan than in the plow layer. Our results revealed that the

MBCR increased at all depths. Under the same volume, different soil textures have different

surface areas, so the attached bacteria are completely different, resulting in different MBC con-

tents [14]. Compared with inorganic fertilizer, manure increases water-stable aggregates [25].

The application rate is the key factor affecting MBC; different application rates resulted in dif-

ferent MBC values.

Plant roots can be used as a channel for material exchange [26, 27]. Rhizosphere and bulk

soils contain different amounts of MBC. Fertilization can improve the decomposition rate of

roots [28]. There is a mutualistic relationship between soil microorganisms and plants [29].

Rhizosphere microbial ecology can affect the secretion of plant root metabolites [30], and

plants can also affect rhizosphere microbial activities [5]. Rice (Oryza sativa L.) planting can

change the soil microbial ecology due to the secretions and metabolism of rice plants [4]. Spe-

cific metabolites produced by Arabidopsis thaliana can selectively change the microbial com-

munity in rhizosphere soil to meet the needs of plants [31].

Fig 3. Forest plot based on effects of different factors on MBC: type of manure (A), pH (B), rhizosphere soil (C), and

latitude (D). CI = 95%.

https://doi.org/10.1371/journal.pone.0262139.g003
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Fig 4. Microorganism composition of the five soil types. Bacterial phylum level (A), fungal phylum level (B),

bacterial genus level (C), and fungal genus level (D).

https://doi.org/10.1371/journal.pone.0262139.g004

Fig 5. Inter-group difference test of microorganism relative abundance.Mrakia frigida (A), Betaproteobacteriales (B).

https://doi.org/10.1371/journal.pone.0262139.g005
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In different latitudes, the effects of temperature are different, and the activities of microor-

ganisms are also different [32]. Tillage farming is a traditional agricultural method, and cur-

rently, there have been many studies on no-tillage management [33]. In the process of tillage,

the soil is disturbed and the porosity changes accordingly. Although no-tillage soil fertilizer is

placed below the seeds, the porosity of no-tillage soil is poor, resulting in the reduction of fer-

tilizer nutrient diffusion.

Crop rotation is a common farming management method. Our farm rotates soybeans (Gly-
cine max L.) once every few years, as soybeans can improve soil fertility. A previous study

showed that the continuous monoculture of rice would affect soil microorganisms [4]. MBC is

also different due to different crops [14]. Groundnuts have rhizobia, and recent studies have

found that, similar to legumes, native Z.mexicana varieties can fix nitrogen without fertiliza-

tion [34].

We found that the abundance of Xanthobacteraceae in uncultivated land was higher than in

the other groups. Xanthobacteraceae tends to utilize natural nitrogen sources [35]. After

domestication, the proportion of bacteria in this family decreased with the increase of fertiliza-

tion. When we collected samples from paddy fields, the abundances of three anaerobic bacte-

ria, Anaeromyxobacter, Anaerolineaceae, and vadinHA17, were higher than in the uncultivated

land. Due to rice cultivation, Burkholderiaceae was also more abundant in the uncultivated

land [36].

Our previous studies have shown that feed can change the intestinal flora of animals [37].

Another study showed that the dominant intestinal microflora could be detected in manure

[11]. Without fermentation treatment, manure microorganisms enter the biosphere and may

cause animal diseases. In the process of manure fermentation, temperatures can reach 70˚C so

as to reconstruct the microbial community, and this effect is closely related to pH [38]. Manure

maintains soil pH, while inorganic fertilizer can lead to soil acidification [25].

Soil microbial metabolism not only affects the material circulation and ecological balance

but also promotes soil fertility and nutrient transformation in plants [7, 28]. The changes in

soil microbial metabolism are influenced by carbon fixation [39], nutrient acquisition [40],

decomposition, soil enzyme activity [41], soil formation [42], and carbon and nitrogen cycling

[39, 43].

The importance of soil microorganisms to agriculture

Microorganisms play an important role in improving soil fertility, crop characteristics, and

grain yield as well as controlling diseases and pests. Piriformospora indica protects the growth

of tomato under salt stress [44]. The combination of Pseudomonas and Bacillus improves the

health of plants [45]. Beneficial soil microorganisms improve soil health, promote plant

growth, and finally promote the sustainable development of agriculture [8]. Researchers have

recognized the need for beneficial microorganisms [46]. Improving soil beneficial microorgan-

isms is one of the approaches for soil remediation and improvement. Compared with manure,

this will reduce the damage to the soil microbial community. Our results showed that the addi-

tion of manure improved soil microbial diversity and increased microbial biomass; however,

highly active soil microorganisms in soil carbon sinks will be reduced [47].

Applying fertilizers (M–Z and M–I) alone increases bacterial diversity, and inhibits and

reduces fungal diversity. Compared with animals and plants, soil microorganisms are more

likely to evolve with environmental changes. Interestingly, soil microorganisms have evolved

their own competitive characteristics. Due to the limitation of soil migration, it is difficult for

microorganisms to disperse far away. Streptomyces colonies that release a unique odor attract

springtails that can transport the microorganisms to a distant location [48]. Interestingly, our

PLOS ONE Meta-analysis of manure and soil microbial ecology

PLOS ONE | https://doi.org/10.1371/journal.pone.0262139 January 21, 2022 11 / 17

https://doi.org/10.1371/journal.pone.0262139


results showed that the relative abundance ofMrakia frigida is low in uncultivated land.Mra-
kia frigida can inhibit the growth of other fungi [49]. Betaproteobacteriales in soil increased sig-

nificantly and inhibited the growth of other microorganisms [50].

Relationship between soil microbial ecology and human ecology

Soil microbial ecology is closely related to the global climate [6, 51]. Climate warming will lead

to a series of problems, and greenhouse gases are the leading causative factor [52]. Several stud-

ies have indicated that the application of inorganic fertilizers contributes to greenhouse gas

emissions. Mining and the transporting inorganic fertilizers can also lead to carbon emissions.

The use of inorganic fertilizer may lead to increased soil acidification and phosphorus (P)

uptake [53], thereby increasing greenhouse gas emissions [47].

However, our study found that this may not be the case. Application of inorganic fertilizer

and manure increased MBC, but inorganic fertilizer did not contain a carbon source. Most of

the increased MBC is absorbed from the gas and soil as a carbon source. Hyperactive soil

microorganisms decrease terrestrial carbon sinks [47]; therefore, it seems that increasing the

MBC of agricultural activities will reduce carbon sinks. Other studies have shown that both

organic and inorganic fertilizers should be properly evaluated; otherwise the carbon sinks of

soil carbon pools will be incorrectly evaluated [28]. Fresh manure cannot be directly applied to

farmland. Many greenhouse gases will be produced in the process of manure fermentation,

resulting in energy waste. Therefore, the effect of greenhouse gas emission may not signifi-

cantly differ from that of inorganic fertilizer.

Farm manure treatments

Animal husbandry produces about 4.6 billion tons of fertilizer every year. However, due to the

high labor cost of collecting, transporting, and transferring manure to farmland and the lack

of appropriate storage and treatment facilities, only a small portion of manure fertilizer is

applied to farmland [16, 54]. The TSA verified the reliability of our results and showed that

previous reports on fertilizer increasing soil microorganisms are valid. Future studies should

focus on how to reduce costs and improve the use of manures. For example, some countries

have enacted laws requiring the use of anti-seepage septic tanks for manure application. This

study also suggested that the field manure application should be enforced through legislation,

although this will undoubtedly increase the cost of livestock products, and consumers will

eventually bear the burden of this cost. First, it should be ensured that grain production meets

demand. Second, environmental protection and sustainable development should be consid-

ered. The large-scale development of agriculture is the trend of future development. Cultural

enterprises can carry out manure fermentation treatments. However, some farms in some

areas do not have the proper fermentation conditions and depend on assimilation capacity of

land, while farmland accumulation depends on natural fermentation.

We do not encourage the use of inorganic fertilizer, but advocate the use of fertilizers. This

study advocates combining inorganic fertilizer and organic fertilizer based on soil and envi-

ronmental factors. Therefore, it is recommended to make rational use of biogas [54], incinera-

tion, and power generation [55]. Biogas and circular agriculture can be carried out in

temperate regions. However, in cold regions, biogas production is difficult, especially in win-

ter. Therefore, more research on manure incineration and power generation should be carried

out in cold regions. In tropical areas, the removal of heavy metals in septic tanks requires the

use of a chelating agent or electrode. The contents of N and P in manure are high, so it is diffi-

cult to meet crop demands by applying fertilizer alone. Inorganic fertilizer is applied under the
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seed, while fertilizer is applied by spreading. With the large-scale agricultural mechanization,

fertilizer application has gradually lost its competitiveness [56].

Every crop has its own form of nutrient guidance. The application of inorganic fertilizer

can be completed during sowing, and the effect is rapid [16]. At least two manual steps should

be added for fertilizer application, but these will eventually increase costs. Environmental pro-

tection and sustainable development are the starting points of many studies [20], but the econ-

omy is the key factor in market dynamics. Farmers believe that the application of inorganic

fertilizer will produce higher yields than that of organic fertilizer [16]. In addition, the cost of

fertilizer is high. Only when farmers are less busy in winter can they get manure from animal

factories and send them to farmland. Therefore, inorganic fertilizer can be applied in spring

season.

Bottlenecks and other issues for future investigations

The recovery rate of fertilizer is not high, and many studies have focused on its application [38,

42]. A large amount of wastewater is produced in farm cleaning and culturing [57, 58]. At

present, there is no reasonable treatment method (manure recovery), and the known methods

include spraying foliar fertilizer or recycling green algae [59]. However, the cost of these treat-

ments is high, thus limiting the efficiency of recovery. China has introduced policies for

restricting pig breeding in warm areas in the south and moving pig farms northward. An

important reason for this is that aquaculture sewage pollutes drinking water sources [60].

Efforts have also been made to reduce the widespread use of inorganic fertilizer in cold regions

in the north. These two goals have been gradually achieved. The cold winter in the north does

not affect manure fermentation. As can be seen from the world map, 46% of the reports in this

meta-analysis are from China and 18% are from India, indicating that developing countries

are more likely to face environmental problems in agricultural development [56]. Therefore,

these issues should be considered and investigated in future studies.

Conclusions

The use of manure in farmland increases bacterial diversity, reduces fungal diversity, and

destroys the ecological balance. Of course, this change is much smaller than the use of probiot-

ics. Although soil domestication will lead to the destruction and reconstruction of the soil

microbial community, the affected soil microorganisms will increase grain production to meet

human food needs. Although these results improve our well-being, our results suggest that the

potential risks of rebuilding the microbial ecology of cultivated land must be considered.
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