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Abstract

The interface between bone and connective tissues such as the Anterior Cruciate Ligament (ACL) constitutes a
complex transition traversing multiple tissue regions, including non-calcified and calcified fibrocartilage, which
integrates and enables load transfer between otherwise structurally and functionally distinct tissue types. The
objective of this study was to investigate region-dependent changes in collagen, proteoglycan and mineral
distribution, as well as collagen orientation, across the ligament-to-bone insertion site using Fourier transform infrared
spectroscopic imaging (FTIR-I). Insertion site-related differences in matrix content were also evaluated by comparing
tibial and femoral entheses. Both region- and site-related changes were observed. Collagen content was higher in
the ligament and bone regions, while decreasing across the fibrocartilage interface. Moreover, interfacial collagen
fibrils were aligned parallel to the ligament-bone interface near the ligament region, assuming a more random
orientation through the bulk of the interface. Proteoglycan content was uniform on average across the insertion, while
its distribution was relatively less variable at the tibial compared to the femoral insertion. Mineral was only detected in
the calcified interface region, and its content increased exponentially across the mineralized fibrocartilage region
toward bone. In addition to new insights into matrix composition and organization across the complex multi-tissue
junction, findings from this study provide critical benchmarks for the regeneration of soft tissue-to-bone interfaces and
integrative soft tissue repair.
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Introduction

The interface between soft tissue and bone is essential for
physiologic musculoskeletal motion, and serves to integrate
and minimize stress concentrations between distinct tissue
types. A functional interface with bone is especially important
for the Anterior Cruciate Ligament (ACL), the primary
tibiofemoral intra-articular ligament and joint stabilizer [1]. The
biomechanical functionality of the ACL is rooted in the
organized ligament structure, with biological fixation to bone
facilitated by complex fibrocartilaginous insertions into the
femur and tibia [1–3]. Specifically, the interface between ACL
and bone is divided into four distinct yet continuous tissue
regions, with region-specific distributions in cell type and matrix
composition [3–10]. The first region is the ligament proper, in
which fibroblasts reside in a matrix rich in types I and III

collagen. Contiguous with the ligament is the fibrocartilage
interface, which is subdivided into non-calcified and calcified
regions. The non-mineralized fibrocartilage (NFC) is composed
of fibrochondrocytes in a matrix consisting of types I and II
collagen, while hypertrophic chondrocytes within a type X
collagen-containing matrix are found in the mineralized
fibrocartilage (MFC) region, which finally transitions into bone.
This region-dependent matrix organization and the subdivision
of the interface into non-calcified and calcified regions lead to a
gradual increase in mechanical properties across the interface
regions, thereby minimizing stress concentrations and allowing
for effective load transfer from ligament to bone [3,11,12].

This complex ligament-to-bone transition, however, is not
maintained or re-established following ACL reconstruction.
Absence of this functional interface may compromise graft
stability and long-term clinical outcome [13–16]. Developing an
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understanding of the structure-function relationship inherent to
the ACL-bone interface is a prerequisite for its regeneration
[13–17] and ultimately the seamless formation of complex
tissues. While the ACL insertions have been extensively
characterized using histological [3,6–8,10] and, more recently,
mechanical [11,18] analyses, there is a critical need for
quantitative assessment of the various components
contributing to regional matrix organization. Therefore, the goal
of this study is to utilize Fourier transform infrared
spectroscopic imaging (FTIR-I) [19] to construct quantitative
spectroscopic maps of matrix composition, distribution, and
organization. An in-depth understanding of interface matrix
distribution and organization is essential for relating structure to
function, and for establishing benchmark criteria for interface
tissue engineering.

Spectroscopic imaging methods such as FTIR-I [20–24] and
Raman [25,26] spectroscopy have been used to analyze
musculoskeletal tissues. This study utilizes FTIR-I as it is a
sensitive and high-throughput imaging modality which is
capable of mapping the matrix composition and distribution of a
relatively large sample area, thereby making it well suited for
examining multi-tissue regions. Published studies confirm that
spectroscopic mapping correlates directly with histological
analysis [21,27], albeit without the inherent shortcomings of
histology (e.g. staining solution variations and subjective
interpretation). Moreover, FTIR-I analyses have been shown to
correlate with quantitative biochemical analysis of
proteoglycans [21], collagen and aggrecan model compounds
with varying proportions of the two constituents [28], and
mineral ash weight [29]. Specifically, high correlation has been
reported by Kim et al. between FTIR-I measurements and total
proteoglycan content in tissue engineered cartilage [21]. In
addition, FTIR-I analysis of canine bone revealed that the
mineral-to-matrix peak area ratio correlates linearly with tissue
ash weight [29]. Furthermore, the ratio of amide I to amide II
band areas can be used to determine collagen orientation [24]
as the transition moments for the amide I and amide II bond
vibrations are approximately perpendicular [23]. Therefore, in
addition to being a well-validated method, FTIR-I is
advantageous in that the distribution and organization of key
matrix components can be quantified concurrently on the same
sample, making it an efficient and informative method for the
characterization of multi-tissue transitions such as the ACL-to-
bone interface.

The objective of this study is to characterize the complex
matrix organization at the ACL insertions using FTIR-I,
mapping region-dependent changes in collagen, proteoglycan,
and mineral content as well as collagen orientation across the
multi-tissue transition. As this is the first reported study to
utilize FTIR-I for the characterization of the ACL-to-bone
interface, image acquisition as a function of sample preparation
(sagittal vs. transverse) will be compared. The second
objective of this study is to identify any insertion site-dependent
changes in matrix content and distribution by comparing
spectroscopic mapping of the femoral and tibial insertions. Both
region- and insertion site-dependent differences are anticipated
across the interface regions. Findings from this study will lead
to new insights into matrix composition and organization at this

critical soft tissue-to-bone junction, while providing the much
needed benchmarks for interface regeneration and integrative
soft tissue repair.

Methods

Sample Isolation
The insertion site samples were isolated from neonatal

bovine tibiofemoral joints obtained from a local abattoir (n = 6,
Green Village Packing Company, Green Village, New Jersey,
USA). After removal of surrounding muscle, subcutaneous
fascia, and collateral ligaments, the patella and patellar tendon
were removed, followed by the underlying adipose tissue as
well as both medial and lateral menisci. The cruciate ligaments
were transected, and both the femoral and tibial ACL insertions
were identified and excised. Transverse or sagittal incisions
approximately 7 mm apart were made through the insertion
specimens to isolate samples containing regions of ligament,
fibrocartilage, and bone.

Sample Preparation for Matrix and Mineral Analysis
Both decalcified and non-decalcified samples were evaluated

in this study. To prepare the decalcified samples, transverse
and sagittal samples of the insertions (n=3 per insertion site
from each of three specimens) were immediately fixed with
80% ethanol and 1% cetylpyridinium chloride (CPC, Sigma, St.
Louis, Missouri, USA) for 24 hours following the methods of Bi
et al. [24]. Ethanol was chosen as the fixative to minimize the
effect of fixation on the IR spectral parameters [30], while CPC
was added to preserve proteoglycans [27,31]. Following
fixation, samples were rinsed in distilled water to remove the
CPC, and subsequently demineralized in tris-
hydroxymethylaminomethane (Tris, Sigma) buffer containing
10% ethylenediaminetetraacetic acid (EDTA, Sigma) for three
weeks, after which the insertion samples were dehydrated
using an ethanol series, cleared with xylenes, and embedded
in paraffin (Fisher Scientific, Pittsburgh, Pennsylvania, USA).
The embedded samples were sectioned using a microtome
(Reichert-Jung RM 2030 Microtome, Leica, Bannockburn,
Illinois, USA), and sections (7 µm) were placed immediately
onto barium fluoride infrared-transmissive windows (Spectral
Systems, Hopewell Junction, New York, USA). The sections
were subsequently deparaffinized in xylenes to minimize
paraffin interference with the IR spectra, rehydrated with an
ethanol series, and then dried overnight under vacuum. A
second barium fluoride window was placed over the sample
prior to infrared analysis.

Non-decalcified samples were used for mineral analysis. To
this end, transverse insertion samples (n=3 per insertion site
from each of three specimens) were fixed after isolation with
90% ethanol for 24 hours [30,32]. Following fixation, samples
were embedded in polymethylmethacrylate (PMMA) using a
modification of methods described by Erben [33]. Ethanol
fixation and PMMA embedding have been shown by Aparicio et
al. to minimize interference that would otherwise be obtained in
the acquired spectra from other fixation and embedding
methods [30], and have been employed successfully in prior
infrared evaluations of mineralized tissues [34–36]. The
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samples were then sectioned (2 μm) with a sliding microtome
(SM2500S, Leica Microsystems Inc., Deerfield, Illinois, USA)
fitted with a tungsten carbide blade (Delaware Diamond Knives
Inc., Wilmington, Delaware, USA). Individual sections were
dried and placed between barium fluoride windows for analysis.

Fourier Transform Infrared Spectroscopic Imaging
(FTIR-I)

Fourier transform infrared imaging (FTIR-I) analysis was
performed using an FTIR spectrometer (Spectrum 100,
PerkinElmer, Waltham, Massachusetts, USA) coupled to an
FTIR microscope imaging system (Spotlight 300, PerkinElmer).
Spectra were acquired between 2000-800 cm-1 with a spectral
resolution of 8 cm-1 and a spatial resolution of ~6.25 μm
[27,34]. Using FTIR-I, the content and distribution of collagen
and proteoglycans were mapped in the decalcified samples,
while mineral content and distribution were determined across
each insertion site in the PMMA-embedded samples. For each
sample, three regions of interest (~400 x 1250 μm/region) were
randomly selected for imaging and analysis, with each region
spanning across the entire interface progressing from ligament
to fibrocartilage and finally into bone, constituting about 10,000

points of spectral data acquisition per region analyzed or a total
of 30,000 spectra collected per sample. Ligament,
fibrocartilage, and bone regions were discerned based on
tissue morphology evaluated using light micrographs (Figure 1-
A) combined with histology.

Spectral Analysis – Matrix Distribution and Collagen
Alignment

The FTIR spectra were analyzed and spectroscopic images
generated using ISYS 3.1.1 chemical imaging software
(Spectral Dimensions Inc., Olney, Maryland, USA) and
MATLAB 7.10 R2010b (The MathWorks Inc., Natick,
Massachusetts, USA). Prior to analysis, spectra were corrected
by baseline subtraction using the ISYS software. Collagen
content was estimated by integrating the peak area under the
Amide I band (1720-1590 cm-1), and glycosaminoglycan (GAG)
content was estimated by integrating the area under a
carbohydrate band associated with C-O-C and C–OH
vibrations (1140-985 cm-1), according to previous studies that
have correlated collagen and GAG content to these respective
band areas (Figure 1-B) [21,22,28]. Although more recent
studies have shown some improvement in specificity of

Figure 1.  ACL insertion matrix parameters and analyzed IR bands.  A) Light microscopy image of a decalcified ACL insertion
from which the spectral scan areas were selected. B) IR peaks analysed include amide I, amide II, phosphate, and carbohydrate
bands to quantify collagen content, collagen orientation, mineral distribution, and proteoglycan content, respectively. C)
Representative infrared spectra of the tissue regions found across the ACL-to-bone insertion (ligament, fibrocartilage, and bone)
normalized by the amide I peak.
doi: 10.1371/journal.pone.0074349.g001

ACL Insertion Matrix and Mineral Content

PLOS ONE | www.plosone.org 3 September 2013 | Volume 8 | Issue 9 | e74349



proteoglycan (PG) assessment using a multivariate analysis
methodology [37], the PG parameters used in the current study
had previously been validated by correlation to both
biochemical and histological data [21,38].

Additionally, collagen alignment was determined by scanning
the demineralized samples with a gold-wire polarizer grid
(PerkinElmer) inserted into the path of the IR light, with the
polarizer aligned at 0° with respect to the interface between
ligament and bone. As Amide I and amide II bond vibrations
are approximately orthogonal [23], previous studies have
shown that the ratio of their band areas is an indicator of
collagen fibril orientation when spectra are collected under
polarized light [24,28]. Therefore in this study, spectra obtained
with the polarizer were integrated under the amide I
(1720-1590 cm-1) and amide II bands (1590-1480 cm-1), and
numerical indices for collagen orientation were obtained by
calculating the amide I: amide II band area ratio. Collagen
orientation was categorized according to the parameters
previously reported for cartilage analysis and a 0° polarizer
setting, whereby amide I: amide II ratio values ≥2.7 and ≤1.7
indicate fibrils parallel and perpendicular to the bone-
fibrocartilage interface, respectively, while a ratio ranging from
1.7-2.7 indicates mixed or random fibril orientation [24].

Spectral Analysis – Mineral Distribution
The relative mineral-to-matrix ratio was calculated by

integrating the area under the ν1, ν3 phosphate band contour
(1200-900 cm-1) and dividing by the amide I band area (Figure
1-B). Prior to analysis of mineral distribution in transverse
sections, the collected spectra were corrected for contributions
of the PMMA embedding material [30]. Specifically, spectra of
pure PMMA were acquired, baseline corrected, and normalized
to the highest peak in the PMMA spectra (1728 cm-1). Sample
spectra were likewise baseline corrected and normalized, and
a pure PMMA spectrum was subtracted from the sample
spectra to eliminate the PMMA background. This method of
normalization and subtraction was implemented in order to
compensate for different degrees of PMMA penetration into the
multiple tissue types evaluated across the insertions.

Line Profiles of Matrix and Mineral Distribution
To assess matrix and mineral distribution in the fibrocartilage

interface, line profiles of collagen, proteoglycan and mineral
extending across the fibrocartilage region progressing from
ligament to bone, as identified based on tissue morphology
assessed from corresponding light micrographs, were
generated and values for 100 equally spaced points were
interpolated using a MATLAB bicubic least squares method.
This normalization method is advantageous since it allows for
an expression of matrix content as a function of percent
distance across the insertion, thereby accounting for any
variation in fibrocartilage thickness between insertion samples.
Line profiles were performed repeatedly across the interface
spectroscopic maps on a pixel-by-pixel basis and then
averaged, resulting in a single average line profile representing
all the data collected for the fibrocartilage region. Regions
exhibiting anomalies such as holes or folds in the sections
were excluded. For region-dependent mineral content, tissue-

specific mineral-to-matrix ratios were determined by averaging
values for approximately 25 positions randomly selected within
each interface region.

Statistical Analysis
Results are presented in the form of mean ± standard

deviation, with n equal to the number of specimens analyzed.
Weighted averages, based on the dimension of each region of
interest and corresponding number of individual line profiles,
were calculated for each specimen, and the resulting profiles
were subsequently averaged and standard deviation calculated
for each group of specimens. Two-way analysis of variance
(ANOVA) was performed to determine region- and insertion-
dependent differences in matrix or mineral content. Tukey HSD
post-hoc tests were performed for all pair-wise comparisons
with significance declared for p<0.05. Statistical analysis was
performed using the Minitab 16 statistical software package
(Minitab, Inc., State College, Pennsylvania, USA).

Results

Effects of Sample Preparation on FTIR Spectra
Distinct spectra were obtained for ligament, fibrocartilage,

and bone regions (Figure 1-C). Both Amide I (1720-1590 cm-1)
and amide II (1590-1480 cm-1) peaks were evident in all three
tissue regions. The carbohydrate band related to proteoglycans
(1140-985 cm-1) was present in the fibrocartilage spectra, and
an intense phosphate ν1, ν3 band (1200-900 cm-1) was evident
in the bone spectra. No difference in collagen distribution was
observed in the PMMA-embedded, non-decalcified sections
when compared to the paraffin-embedded, decalcified
samples, but the phosphate band was absent from the
decalcified samples (data not shown). In addition, similar
trends in collagen (Figure 2 and Figure 3) and proteoglycan
(Figure 4 and Figure 5) distribution were found for both
transverse and sagittal sections.

Region-Dependent Matrix Distribution at the Insertion
Collagen Content and Distribution.  Spectroscopic

mapping of transverse (Figure 2-B) and sagittal (Figure 3-B)
sections revealed that, compared to the fibrocartilage interface,
the estimated collagen content from FTIR-I was higher in the
ligament and bone regions. Collagen content also decreased
progressing from non-mineralized to the mineralized
fibrocartilage regions for both femoral and tibial insertions as
indicated in the line profiles in Figure 2-C and Figure 3-C. A
significant decrease in average collagen content was seen
between 20% and 80% distance across the fibrocartilage
interface for both types of insertions and for both transverse
(Femoral: p=0.002, Tibial: p=0.006) and sagittal (Femoral:
p=0.043, Tibial: p=0.011) sections. Line profile analysis (Figure
2-C and Figure 3-C) revealed a consistent decrease in relative
collagen content across the fibrocartilage as evident by the
small deviations, with overall about two-fold decrease in
collagen content across the interface. Regression analysis of
line profile data revealed that collagen decreased exponentially
with a constant of (-5.8 ± 0.7) x 10-3, R2 = 0.96.

ACL Insertion Matrix and Mineral Content
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Collagen Orientation.  Sagittal sections were analyzed for
collagen orientation since the insertion of collagen fibrils from
the ACL into bone through the fibrocartilage interface can only
be visualized in this orientation. Progressing across the
fibrocartilage interface from ligament to bone, collagen fibrils
were observed to initially be oriented parallel (Amide I:II ratio)
to the fibrocartilage-bone interface. This orientation changed

continuously, with a more mixed or random collagen fibril
orientation (Amide I:II ratio) observed toward the center and
MFC region of the fibrocartilage interface for both femoral
(Figure 6) and tibial insertions (Figure 7).

Proteoglycan Content and Distribution.  The proteoglycan
content and distribution at the femoral and tibial insertions were
highly variable. Specifically, proteoglycan content varied

Figure 2.  Collagen distribution in transverse sections of femoral and tibial ACL insertions.  A) Light microscopy images
showing ligament, fibrocartilage, and bone regions for which IR spectra were collected (bar = 200 μm). B) Corresponding
spectroscopic maps of collagen content and distribution. Blue and red colors indicate low and high matrix content, respectively. High
collagen content was found in the ligament and bone regions, with a gradual decrease in collagen observed within the fibrocartilage
interface progressing from ligament to bone for both femoral and tibial insertions. C) Average collagen distribution within the
insertion fibrocartilage, normalized for percent distance from ligament (0%) to bone (100%), revealing a gradient of collagen content
across the fibrocartilage interface (Blue and red lines represent mean values and standard deviation, respectively; n=3; NFC = Non-
Mineralized Fibrocartilage, MFC = Mineralized Fibrocartilage).
doi: 10.1371/journal.pone.0074349.g002
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laterally throughout the fibrocartilage regions spectroscopically
in both transverse (Figure 4-B) and sagittal (Figure 5-B) planes.
Line profiles (Figure 4-C and Figure 5-C) revealed that on
average, proteoglycan content was relatively constant across
the fibrocartilage from ligament to bone, with slightly higher
levels of proteoglycans seen in the center of the fibrocartilage
compared to the interfaces with ligament and bone. The high

lateral variability was evident by the large deviations,
particularly in the femoral insertions.

Region-Dependent Mineral Distribution
Region-dependent changes in the mineral-to-matrix ratio

were detected at the interface. As expected, higher relative
mineral-to-matrix ratios were found in the bone and mineralized

Figure 3.  Collagen distribution in sagittal sections of femoral and tibial ACL insertions.  A) Light microscopy images showing
ligament, fibrocartilage, and bone regions for which IR spectra were collected (bar = 200 μm). B) Corresponding spectroscopic
maps of collagen content and distribution. Blue and red colors indicate low and high matrix content, respectively. High collagen
content was found in the ligament and bone regions, with a gradual decrease in collagen observed within the fibrocartilage interface
progressing from ligament to bone for both femoral and tibial insertions. C) Average collagen distribution within the insertion
fibrocartilage, normalized for percent distance from ligament (0%) to bone (100%), revealing a gradient of collagen content across
the fibrocartilage interface (Blue and red lines represent mean values and standard deviation, respectively; n=3; NFC = Non-
Mineralized Fibrocartilage, MFC = Mineralized Fibrocartilage).
doi: 10.1371/journal.pone.0074349.g003
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fibrocartilage regions when compared to both the ligament and
non-mineralized fibrocartilage regions (Figure 8 and Figure 9).
An abrupt increase in mineral content was observed between
the non-mineralized and mineralized fibrocartilage regions, as
seen in the line profiles (Figure 8-D and Figure 9-D), as
opposed to a gradual gradient in mineral content extending
from ligament to bone. Based on average mineral distribution,
obtained through line profile analysis, the mineralized
fibrocartilage region accounted for approximately 30% of the
fibrocartilage interface. Within this calcified region, regression

analysis revealed that the mineral:matrix ratio increased
exponentially (R2 = 0.98) with an exponential constant of (5.8 ±
0.3) x 10-2. In addition, the mineral-to-matrix ratio was
significantly higher in the mineralized fibrocartilage and bone
regions compared to the ligament and non-mineralized
fibrocartilage regions (p<0.001, Figure 10-A).

Figure 4.  Proteoglycan distribution in transverse sections of femoral and tibial ACL insertions.  A) Light microscopy images
showing ligament, fibrocartilage, and bone regions (bar = 200 μm). B) Spectroscopic maps of proteoglycan distribution. Blue and
red colors indicate low and high matrix content, respectively. Proteoglycan distribution was found to be highly variable, with regions
of high and low PG content seen in both insertions. C) The high lateral variability in proteoglycan distribution is revealed by the large
deviation (red) from the mean (blue) peak area values, and is more evident in the femoral insertion compared to the tibial insertion
(n=3; NFC = Non-mineralized Fibrocartilage, MFC = Mineralized Fibrocartilage).
doi: 10.1371/journal.pone.0074349.g004
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Insertion Site-Dependent Differences in Matrix and
Mineral Distribution

Relative collagen content decreased across the femoral and
tibial insertion fibrocartilage from ligament to bone, although
the consistency, based on standard deviation, was found to be
greater for the femoral insertion compared to the tibial (Figure
2-C and Figure 3-C). The location of the insertion (i.e. femoral,
tibial) was found to have a significant effect on collagen content
for transverse cuts (p=0.033); however, comparisons at either

20% or 80% distance across the fibrocartilage transition were
not significant (20%: p=0.556; 80%: p=0.179). Relative
collagen content was not significantly different between femoral
and tibial insertion fibrocartilage for sagittal cuts (p=0.150).
Regression analysis of line profile data of the transverse
sample revealed that collagen decreased exponentially with
constants of -6.0 x 10-3, R2 = 0.96 for the femoral and -4.9 x
10-3, R2 = 0.98 for across the tibial fibrocartilage regions. A
similar trend was observed in the sagittal samples, with a
constant of -5.9 x 10-3, R2 = 0.98 and -6.5 x 10-3, R2 = 0.93 for

Figure 5.  Proteoglycan distribution in sagittal sections of femoral and tibial ACL insertions.  A) Light microscopy images
showing ligament, fibrocartilage, and bone regions (bar = 200 μm). B) Spectroscopic maps of proteoglycan distribution. Blue and
red colors indicate low and high matrix content, respectively. Proteoglycan distribution was found to be highly variable, with regions
of high and low PG content seen in both insertions. C) The high lateral variability in proteoglycan distribution is revealed by the large
deviation (red) from the mean (blue) peak area values, and is more evident in the femoral insertion compared to the tibial insertion
(n=3; NFC = Non-mineralized Fibrocartilage, MFC = Mineralized Fibrocartilage).
doi: 10.1371/journal.pone.0074349.g005
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femoral and tibial insertions, respectively. In general, little
difference in proteoglycan content and distribution was
observed between femoral and tibial insertions, although
variability was greater within the femoral insertion, with more
consistent proteoglycan distribution observed at the tibial
insertion site (Figure 4 and Figure 5).

Mineral distribution was similar between the femoral and
tibial insertion sites, with a rapid increase in relative mineral

content at the transition between non-mineralized and
mineralized fibrocartilage (Figure 8 and Figure 9). Regression
analysis of line profile data revealed that mineral:matrix ratio
increased exponentially within the mineralized fibrocartilage
region with constants of 5.5 x 10-2, R2 = 0.97 for the femoral
and 6.0 x 10-2, R2 = 0.99 for the tibial insertion. In contrast,
there was a trend toward higher average relative mineral
content in both the mineralized fibrocartilage and bone regions

Figure 6.  Collagen orientation in femoral insertions (sagittal samples).  A) Light microscopy images showing the scan area
(bar = 200 μm). B) Corresponding spectroscopic maps showing collagen orientation as determined by the amide I: amide II peak
area ratio at 0° polarizer orientation. Values greater than 2.7 (red) and less than 1.7 (blue) indicate alignment parallel and
perpendicular to the fibrocartilage-bone interface, respectively, whereas intermediate ratios (light blue to orange) indicate random
orientation. C) Collagen orientation as visualized by polarized light microscopy of Picrosirius red histological stains. D) Average
collagen orientation (0°) within the insertion fibrocartilage progressing from ligament to bone. Collagen fibers in the fibrocartilage
region are initially parallel to the fibrocartilage-bone interface but obtain a more random orientation toward mineralized fibrocartilage
and bone (Blue and red lines represent mean values and standard deviation, respectively; n=3; NFC = Non-Mineralized
Fibrocartilage, MFC = Mineralized Fibrocartilage).
doi: 10.1371/journal.pone.0074349.g006
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of the tibial insertion site, although these differences were not
statistically different (MFC: p=0.572; Bone: p=0.175; Figure 10-
A).

Discussion

Soft tissue to bone integration is crucial to the functionality of
the musculoskeletal system, which is highly dependent on the
transition of forces between tissues with distinct mechanical
properties and functions. The objective of this study was to
characterize the content, distribution, and organization of key

Figure 7.  Collagen orientation in tibial insertions (sagittal samples).  A) Light microscopy images showing the scan area (bar =
200 μm). B) Corresponding spectroscopic maps showing collagen orientation as determined by the amide I: amide II peak area ratio
at 0° polarizer orientation. Values greater than 2.7 (red) and less than 1.7 (blue) indicate alignment parallel and perpendicular to the
fibrocartilage-bone interface, respectively, whereas intermediate ratios (light blue to orange) indicate random orientation. C)
Collagen orientation as visualized by polarized light microscopy of Picrosirius red histological stains. D) Average collagen orientation
(0°) within the insertion fibrocartilage progressing from ligament to bone. Collagen fibers in the fibrocartilage region are initially
parallel to the fibrocartilage-bone interface but obtain a more random orientation toward mineralized fibrocartilage and bone (Blue
and red lines represent mean values and standard deviation, respectively; n=3; NFC = Non-Mineralized Fibrocartilage, MFC =
Mineralized Fibrocartilage).
doi: 10.1371/journal.pone.0074349.g007
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matrix components across the multiple-region insertion. The
results of this study represent the first quantitative mapping of
matrix composition and distribution at the ACL-to-bone
interface. Utilizing Fourier transform infrared imaging (FTIR-I),
both region- and insertion-dependent variations in collagen,
proteoglycan, and mineral content, as well as collagen
orientation, were detected and quantified across the multi-
tissue regions of the interface. Characterizing these
compositional changes, as summarized in Figure 10-B, is

crucial to elucidating the role of the multi-tissue interface in
facilitating the transfer of load between soft and hard tissues.

Systematic analysis of femoral and tibial ACL insertions
revealed region-dependent changes in collagen distribution,
which is in agreement with published histological
characterizations [3,4,6–8,10]. As expected, collagen content
was the highest in the ligament and bone regions, and was the
lowest in the fibrocartilage interface. Particularly interesting
was the apparent decrease in collagen content within the
fibrocartilage region progressing from ligament to bone. This

Figure 8.  Collagen and mineral distribution across femoral insertions (transverse PMMA-embedded samples).  A) Light
microscopy images showing the scan area (bar = 200 μm). B) Confirming the analysis of the paraffin-embedded sections, high
collagen content was again found in the ligament and bone regions, with a consistent decrease in collagen within the fibrocartilage
interface progressing from ligament to bone. C) The mineral:matrix ratio was found to be high in the bone and mineralized
fibrocartilage, with D) an abrupt change in mineral content between the non-mineralized fibrocartilage and mineralized fibrocartilage
regions. Blue and red colors in the spectroscopic maps indicate low and high content, respectively (Blue and red lines represent
mean values and standard deviation, respectively; n=3; NFC = Non-Mineralized Fibrocartilage, MFC = Mineralized Fibrocartilage).
doi: 10.1371/journal.pone.0074349.g008
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decrease was found to be highly consistent among all of the
samples analyzed. This decrease in matrix content is likely
balanced by increases in hydration or overall cellularity and cell
surface area across the interface [10]. Moreover, collagen
alignment was found to vary across the fibrocartilage interface,
with collagen fibers initially parallel to the fibrocartilage-to-bone
interface and progressively more randomly oriented across the
interface toward bone. A reduction in collagen fibril alignment
at the soft tissue-to-bone interface have also been reported for
the rotator cuff tendon-to-bone insertion in the rat shoulder [9],

likely related to a change in loading profile from primarily
tensile in the ligament or tendon, to a mixture of tension and
compression at the fibrocartilage interface [18].

Region-dependent differences in proteoglycan content were
also detected at the ACL-to-bone insertions. In particular,
changes in proteoglycan content were evident laterally
throughout the insertion fibrocartilage, although on average,
little difference was seen across the fibrocartilage region from
ligament to bone. The absence of large differences in
proteoglycan content among the tissue regions or variations

Figure 9.  Collagen and mineral distribution across tibial insertions (transverse PMMA-embedded samples).  A) Light
microscopy images showing the scan area (bar = 200 μm). B) Confirming the analysis of the paraffin-embedded sections, high
collagen content was again found in the ligament and bone regions, with a consistent decrease in collagen within the fibrocartilage
interface progressing from ligament to bone. C) The mineral:matrix ratio was found to be high in the bone and mineralized
fibrocartilage, with D) an abrupt change in mineral content between the non-mineralized fibrocartilage and mineralized fibrocartilage
regions. Blue and red colors in the spectroscopic maps indicate low and high content, respectively (Blue and red lines represent
mean values and standard deviation, respectively; n=3; NFC = Non-Mineralized Fibrocartilage, MFC = Mineralized Fibrocartilage).
doi: 10.1371/journal.pone.0074349.g009
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within the fibrocartilage itself may be related to the neonate
state of the tissue. In addition, the type of proteoglycan and
glycosaminoglycan chain length may vary between different
regions and tissues, possibly also accounting for changes in
total GAG content found laterally in the insertions. For
example, Vogel et al. have shown that the primary
proteoglycan in the tensile-loaded region of the human tibialis
posterior tendon is decorin, which is a small proteoglycan with
only one GAG chain of varying length, whereas compressed
fibrocartilaginous regions of the tendon contain small
proteoglycans including decorin and biglycan, as well as large
proteoglycans [39]. This distribution of proteoglycans likely
reflects non-uniform compressive forces throughout the
insertions.

An exponential gradient or relatively step-wise change in
mineral content was observed between the non-mineralized
and mineralized fibrocartilage regions. This finding was in
contrast to the linear increase in mineral content reported for
mature rat supraspinatus-bone interface, as determined using
Raman spectroscopy [25,26]. Given that both the ACL and
supraspinatus exhibit direct insertions into bone, the
differences in mineral profiles likely arise due to the inherent
differences in the biomechanics of the shoulder and knee,
along with other factors such as specimen origin or age. The
significant increase in compressive modulus from the non-
mineralized to the mineralized fibrocartilage region [11] may be
attributed to the exponential increase in mineral content
observed here, with minimal contributions from other matrix
components such as collagen or proteoglycan. It is likely that
the decrease in collagen content across the fibrocartilage

transition may help to mitigate interfacial stress concentrations
that may be caused by the rapid increase in mineral content,
and the change in collagen organization is likely in response to
complex loading profiles experienced at the insertion.

The controlled spatial distribution of collagen, proteoglycans,
and mineral content across the ACL-bone interface (Figure 10-
B) can result in anisotropic mechanical properties that may
facilitate the transmission of load from ligament to bone. It has
been suggested that the function of the fibrocartilage interface
at direct insertions is to mediate load transfer through the
translation of tensile forces within the ligament into
compression and shear [3,5]. The existence of compression at
the ligament-bone interface has been shown through finite
element modeling of the medial collateral ligament femoral
insertion by Matyas et al. [12] as well as experimentally at the
neonatal bovine ACL insertions using ultrasound elastography
[18]. Transmission of loads through compression and shear
would suggest the presence of proteoglycans at the insertions
as this matrix component is often found in tissues subjected to
compression. Proteoglycans were found to be present in the
fibrocartilage interface, roughly evenly distributed across the
fibrocartilage region from ligament to bone, although the
content varied laterally within the insertion. The high lateral
variability may reflect non-uniformity in compressive loading
within individual insertion sites in the relatively young animals
used in this study.

Insertion site-dependent differences were also observed
here. While lateral variations in proteoglycan distribution were
observed in both femoral and tibial insertions, the differences
were more pronounced in the femoral insertion. Conversely,

Figure 10.  Region-dependent mineral content and overall matrix distribution across the ACL-bone interface.  A)
Mineral:matrix ratio was significantly higher in the MFC and bone regions compared to ligament and NFC for both femoral and tibial
insertions (p<0.001); however, mineral content in MFC was significantly lower than bone (p<0.001). Average relative mineral
content was higher in the tibial MFC (p=0.572) and bone (p=0.175) compared to the femoral insertion, although differences were not
statistically significant. Insert: Mineral distribution across the ACL-bone insertion as shown by von Kossa histological staining
confirms spectroscopic analysis (10x, bar = 200 μm). B) Collagen content (red) decreases across the fibrocartilage interface from
ligament to bone, while mineral content (blue) increases and proteoglycans (green) remain relatively constant (Average data from
transverse sections of femoral insertion; NFC = Non-Mineralized Fibrocartilage, MFC = Mineralized Fibrocartilage).
doi: 10.1371/journal.pone.0074349.g010
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collagen distribution was more consistent in the femoral
fibrocartilage compared to the tibial insertion. These disparities
may reflect differences in the mechanical loading profile
between insertions as well as throughout each insertion site. In
addition, although not statistically significant, average relative
mineral content was found to be higher in the tibial mineralized
fibrocartilage and bone regions when compared to the femoral
insertion, which may contribute to the higher apparent Young’s
modulus of the tibial insertion reported by Moffat et al. [11].

This study examined the ligament-to-bone interface in an
immature model due to the need for an understanding of this
stage of enthesis formation as interface regeneration will likely
require the initial formation of a similar immature enthesis prior
to maturation. In this study, collagen fiber orientation in
neonatal insertion fibrocartilage was found to vary minimally
within the insertion, and did not yet exhibit the orientation
reported for the mature enthesis [10]. Collagen fibers were
found to be oriented parallel to the fibrocartilage-bone interface
initially, but then gradually became more randomly oriented as
they progressed toward bone. This decrease in collagen
orientation progressing toward bone may also in part be due to
the presence of type X collagen, which exhibits a hexagonal
conformation [40] and therefore cannot become aligned in the
same manner as types I and II collagen. It is fully anticipated
that the insertion site remodels with age, particularly the
fibrocartilage interface, potentially in response to mechanical
loading.

Similar to collagen distribution and orientation, it is likely that
proteoglycan content will change as the interface remodels with
age. Wang et al. observed markedly low staining intensity for
proteoglycans in the ACL-to-bone insertions of mature animals
compared to neonatal, especially as the interface progressed
from a hyaline-like cartilage to fibrocartilage [10]. Region-
dependent inhomogeneity in GAG content has also been
shown in mature articular cartilage [27,28] and intervertebral
disc [41]. In addition, histological analysis of the medial
meniscal horn attachments, which likewise exhibit
fibrocartilaginous insertions into bone, have revealed
differences in glycosaminoglycan content between the anterior
and posterior insertions that may reflect inherent disparities in
the mechanical loading profile and compressive mechanical
properties of each insertion [42]. These reports of differences in
both collagen and proteoglycan distribution between immature
and mature tissues, and between different soft tissue-to-bone
insertions, collectively suggest that insertion fibrocartilage
remodels with increasing age. Quantitative FTIR-I analysis of
these changes in the ACL-bone interface will be performed in
future studies.

While this is the first study to apply FTIR-I for interface
characterization, it is noted that collagen content across the
fibrocartilage insertion was estimated based solely on the
amide I band area, under the assumption that variations in
section thicknesses are minimal. This assumption is likely valid
given the large number of data points collected and
consistency among the specimens. It is emphasized that the
analysis performed in this study is intended to provide an
estimate of the relative amounts of matrix and mineral content
rather than absolute amounts. While the proteoglycan and

collagen spectra overlap within the fingerprint region (1800-800
cm-1) [37], it has been previously shown that the amide I and
carbohydrate peaks are linearly proportional and that
proteoglycans contribute only weakly to the amide I band [28].
In addition, it is recognized that characterizing the bovine ACL
insertion is not fully representative of the human interface. It is
emphasized here that of interest in this study are not the
specific measured values, but rather the trend or observed
gradients in matrix content across compositionally distinct
tissue regions. The advantages of the bovine model are that, in
addition to relevant large animal model comparisons to
published FTIR-I studies [27,28], bovine tissues are more
readily available for study compared to those from humans,
and samples can be obtained from young and healthy animals.

As the soft tissue-bone interface is crucial for
musculoskeletal functionality, the findings of this study are
particularly relevant for current efforts to achieve biological
graft fixation by engineering a functional interface between ACL
grafts and bone [43–46]. From a scaffold design perspective,
the exponential increase in mineral content can be represented
as a step-wise increase in scaffold mineral content in a
stratified design with contiguous mineral-free and mineral-
containing regions. In addition, in order to evaluate the
effectiveness of scaffolds and interface regeneration strategies,
it is crucial to evaluate the early healing response and interface
maturation, as represented in the young animal tissue
evaluated in this study. Collectively, the results of this study
enhance the current understanding of the complexity of soft
tissue-to-bone insertions and provide critical benchmarks for
interface regeneration, as well as for ultimately integrative and
functional soft tissue repair.

Conclusions

This study focused on quantitative mapping of changes in
matrix and mineral distribution across the ACL-to-bone
insertion sites using the FTIR-I. Both region- and insertion site-
dependent differences in collagen, proteoglycan, and mineral
distributions were observed. These controlled spatial changes
in matrix content and distribution likely contribute to the
reported increases in mechanical properties across the
insertion site, and facilitate the transition of complex loads from
ligament to bone.
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