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mTORC1 and AMPK are mutually antagonistic sensors of nutrient and energy status that
have been implicated in many human diseases including cancer, Alzheimer’s disease,
obesity and type 2 diabetes. Starved cells of the social amoeba Dictyostelium discoideum
aggregate and eventually form fruiting bodies consisting of stalk cells and spores. We
focus on how this bifurcation of cell fate is achieved. During growth mTORC1 is highly
active and AMPK relatively inactive. Upon starvation, AMPK is activated and mTORC1
inhibited; cell division is arrested and autophagy induced. After aggregation, a minority of
the cells (prestalk cells) continue to express much the same set of developmental genes as
during aggregation, but the majority (prespore cells) switch to the prespore program. We
describe evidence suggesting that overexpressing AMPK increases the proportion of
prestalk cells, as does inhibiting mTORC1. Furthermore, stimulating the acidification of
intracellular acidic compartments likewise increases the proportion of prestalk cells, while
inhibiting acidification favors the spore pathway. We conclude that the choice between the
prestalk and the prespore pathways of cell differentiation may depend on the relative
strength of the activities of AMPK and mTORC1, and that these may be controlled by the
acidity of intracellular acidic compartments/lysosomes (pHv), cells with low pHv
compartments having high AMPK activity/low mTORC1 activity, and those with high
pHv compartments having high mTORC1/low AMPK activity. Increased insight into the
regulation and downstream consequences of this switch should increase our
understanding of its potential role in human diseases, and indicate possible therapeutic
interventions.
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INTRODUCTION

Individual starved amoebae of D. discoideum aggregate to form loose mounds, which are
transformed into “tight aggregates”, in which the amoebae are closely associated via lateral and
polar contacts and become surrounded by a complex extracellular matrix of protein and cellulose to
create, in effect, a multicellular organism (Kessin, 2001; Pears and Gross, 2021). Once within the
mounds, the cells become divided into two cell types, prestalk and prespore cells, defined by myriad
differences in gene expression. The two types of cell are initially distributed in a salt and pepper
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manner within mounds (Thompson et al., 2004) but soon
separate, with the prestalk cells moving first to the periphery
of the mound and then to its apex; the aggregate then elongates to
form a “first finger” or “standing slug” divided into a leading zone
made up of prestalk (pst) cells, and a posterior zone of prespore
(psp) cells. This standing structure can fall over onto the
substratum and migrate for a period as a migratory slug or
proceed immediately to form a fruiting body consisting of
mature spores held up by a cellular stalk made up of stalk cells.

Early attempts to answer the question of how the divergence of
cell type is achieved focused on the stalk cell-inducing factor DIF-
1 (Town et al., 1976; Kay and Jermyn, 1983). DIF-1 is a low
molecular weight chlorinated alkyl phenone that was purified
from the conditioned medium of developing amoebae and
induces isolated amoebae to differentiate into vacuolated stalk
cells following pre-treatment with a high concentration of
extracellular cyclic AMP (cAMP). A number of different
models have been proposed in which DIF-1 plays a central
role in controlling cell type divergence (Gross et al., 1981;
Meinhardt, 1983; Gruenheit et al., 2018). Factors such as the
glycogen content of amoebae grown in high glucose and the cell
cycle phase at the onset of starvation are known to influence cell
fate preference (McDonald and Durston, 1984;Weijer et al., 1984;
Gomer and Firtel, 1987; Araki et al., 1994; Thompson and Kay,
2000a). These have been proposed to lead to differential
sensitivity to DIF-1 induction of prestalk gene expression
(Thompson and Kay, 2000a; Gruenheit et al., 2018). However,
although mutants unable to synthesise or respond to DIF-1
display a number of developmental defects, in particular
lacking one subtype of prestalk cell, they are able to form
normal developmental structures such as first fingers, slugs
and fruiting bodies with a roughly normal pattern of prestalk
and prespore cells (Thompson and Kay, 2000b; Saito et al., 2008;
Murata et al., 2016). Therefore, differential ability of cells to
respond to DIF-1 cannot explain cell type divergence.

Roles of AMPK and mTORC1 in Cell Fate
Choice
The proposal we wish to make is based on the behavior of the
nutrient and energy sensors mTORC1 (mechanistic target of
rapamycin complex 1) and AMPK (AMP-activated protein
kinase), and on the fact that Dictyostelium development takes
place during starvation. The universal serine/threonine protein
kinases mTORC1 and AMPK (Hardie, 2007; Saxton and Sabatini,
2017) have emerged as major nutrient sensors that control the
responses to changes in nutrient and energy levels by activating
complex downstream networks of signaling proteins such as
other protein kinases and transcription factors. When
eukaryotic cells are incubated in the presence of adequate
concentrations of amino acids and glucose, mTORC1 is
activated and AMPK activity is inhibited; cells multiply and
autophagy is reduced. In response to starvation, mTORC1
activity declines and AMPK activity increases, resulting in
arrest of cell division in G1 (Rattan et al., 2005) and the
induction of autophagy which has the effect of conserving
energy and obtaining a minimal level of nutrients from

catabolism (Hardie, 2007; Jung et al., 2010; Saxton and
Sabatini, 2017).

This response is conserved when amoebae of D. discoideum
are starved: mTORC1 activity is rapidly down-regulated and
AMPK activity increases (Rosel et al., 2012; Jaiswal and
Kimmel, 2019); cell division and DNA replication soon cease,
autophagosomes appear in increased numbers (Zimmerman and
Weijer, 1993; King et al., 2011) and autophagy genes are
upregulated (Jaiswal et al., 2019). At the same time,
development is initiated and transcription switches from the
growth transcriptome to the early aggregative transcriptome
(Jaiswal and Kimmel, 2019). However, while cell division
ceases at the onset of development, it recommences post
aggregation in the posterior region of slugs containing the
prespore cells [(Zimmerman and Weijer, 1993; Muramoto and
Chubb, 2008) and references therein]. At the same time
autophagic activity declines, but does not altogether cease, in
the prespore population.

It occurred to us that this reversal of activities in the prespore
cells could be the consequence of a reversal of the relative
activities of AMPK and mTORC1 in these cells; in other
words, that prespore gene expression might be initiated in the
future prespore cells when AMPK activity was down-regulated
and mTORC1 activity restored. It has already been proposed that
the mutual inhibition betweenmTORC1 and AMPK constitutes a
regulatory switch responsible for initiating development (Jaiswal
and Kimmel, 2019), and our suggestion is just an extension of this
idea to account for the bifurcation of cell fates. The most
straightforward test of our proposal would be to follow the
phosphorylation activities of AMPK and mTORC1 during
early development to determine if AMPK activity declines and
mTORC1 activity increases prior to the appearance of prespore
cell-specific markers.

FIGURE 1 | Suggested roles of AMPK and mTORC1 activities in the
prestalk (pst) and prespore (psp) pathways. During growth, mTORC1 is active
(upward arrow) and AMPK activity is low (not shown). Upon nutrient
withdrawal, mTORC1 activity is rapidly switched off and AMPK activity
upregulated (upward arrow); as a result, aggregative stage gene expression is
turned on, growth is arrested and autophagy activated. At the mound stage,
mTORC1 is re-activated in some 80% of the amoebae (and AMPK
downregulated) and expression of the prespore transcriptome is initiated;
AMPK continues to be highly active in the remaining 20% of amoebae, which
eventually form vacuolated stalk cells. The prestalk pathway is represented by
a continuous straight line with the prespore pathway diverging from it to
emphasise the asymmetry of the proposed bifurcation process. Only the
member of the AMPK/mTORC1 pair that is highly active at any one time
is shown.
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This hypothesis for the relationship between the pst and psp
pathways envisages the stalk cell pathway as a continuous
pathway starting from starvation and the onset of
development and proceeding all the way through aggregation
to the formation of vacuolated stalk cells (Figure 1). The spore
pathway, on the other hand, is seen as deviating from the prestalk
pathway. This asymmetry is consistent with the observation that
many “prestalk-specific” genes are first expressed during the
aggregation stage (Jermyn et al., 1987; Tsujioka et al., 2001)
whereas prespore-specific genes tend to be first expressed after
aggregation, at around 8–10 h into development (Iranfar et al.,
2001). We refer to the point at which this deviation occurs as the
bifurcation point. The spore pathway can include novel products
not present during growth, such as the spore coat proteins, since
cells entering the spore pathway contain transcriptional
machinery made during the aggregation stage.

Evidence for Stalk Pathway Control by
AMPK
In vivo Stalk Cell Formation
If the choice of the prestalk pathway is controlled by the
activation of AMPK we might expect that overexpressing
AMPK would increase the ratio of prestalk: prespore cells, and
an effect of this kind has been observed by several workers.
AMPK, as its full name of 5′AMP-activated protein kinase
indicates, is activated by an increase in the AMP:ATP ratio.
Mutants lacking AMP deaminase cannot deaminate AMP
(adenosine 5′-monophosphate) to IMP (inosine 5-
monophosphate) and as a result accumulate abnormally high
levels of AMP (Chae et al., 2002). These strains form fruiting
bodies with short, thick stalks and fewer than 5% of the usual
number of spores; levels of prestalk-specific mRNAs are more
than two-fold higher than those in wild-type strains and
prespore-specific mRNAs are reduced. Slugs formed by the
mutant strain have twice the normal number of prestalk cells,
and enlarged prestalk zones. Similarly, expression of a truncated
(and hence deregulated) form of the Dictyostelium AMPK
catalytic subunit to increase AMPK activity led to the same
kind of “stalky” phenotype as over-expression of AMPK
(Bokko et al., 2007). Similar developmental effects have been
observed in strains with defective mitochondrial function, which
is thought to lead to reduced ATP synthesis and an elevated
AMP/ATP ratio, and so to hyper-activation of AMPK. However,
we note that, in contradiction to the above findings, fruiting
bodies from cells lacking the catalytic subunit of AMPK have
been reported to have increased prestalk zones (Maurya et al.,
2017). However, late developmental phenotypes were not
complemented by re-expression of the relevant subunit. Also
AMPK transcripts were found to be restricted to the pst cells of
slugs (Maurya et al., 2017), supporting the idea that AMPK
activity is downregulated in the prespore “compartment”.

In vitro Stalk Cell Formation in Response to DIF-1
As mentioned, DIF-1 does not seem to play a decisive role in the
initial cell fate choice in normal development and yet it
dramatically stimulates stalk cell formation when cells are

starved in monolayers in the presence of cAMP (Town et al.,
1976). If AMPK controls the stalk pathway in vivo as we propose,
we would expect it also to play a role in DIF-induced stalk cell
formation. In agreement with this suggestion, exposure of
Dictyostelium amoebae to DIF-1 leads to extensive changes in
protein phosphorylation at sites many of which fit the AMPK
consensus motif (Sugden et al., 2015), and DIF-1 activates AMPK
in mouse 3T3-L1 fibroblasts (Kubohara et al., 2021). Also there is
substantial evidence that DIF-1 acts by increasing cytosolic Ca2+,
which is known in other systems to activate AMPK via the Ca2+/
calmodulin-dependent protein kinase, CaMKK2 (Hurley et al.,
2005) (Figure 2). Addition of DIF-1 has been shown to induce a
rapid increase of intracellular Ca2+ (Azhar et al., 1997; Traynor
and Kay, 2017), as well as a gradual and sustained rise in cytosolic
Ca2+ (Schaap et al., 1996), and the stalk-cell inducing activity of
DIF-1 is mimicked by the Ca2+-ATPase inhibitors BHQ and
thapsigargin, which raise cytosolic Ca2+ by inhibiting
sequestration of Ca2+ into intracellular stores (Schaap et al.,
1996; Kubohara et al., 2007; Kubohara et al., 2021). Moreover
DIF-1 fails to induce a rise in cytosolic Ca2+ in mutants lacking
IplA, the putative endoplasmic reticulum IP3 receptor (Traynor
and Kay, 2017), and also fails to induce stalk cells in these mutants
(Lam et al., 2008).

Evidence for Control of the Spore Pathway
by mTORC1
Prespore-specific gene expression requires exposure to
extracellular cAMP, which acts on cell surface receptors
(cARs) [see (Yamada and Schaap, 2019)]. A provisional
prespore pathway (Grimson et al., 2000) derived from the
work of several groups and based on mutants with reduced
proportions of prespore cells is:

cAMP receptor → Zak1 → GskA--→ Aar (a β-catenin
homolog)→ psp gene expression.

For reasons that are not understood, mutations affecting this
pathway have very variable effects on the extent of prespore and
spore cell formation [see for example (Schilde et al., 2004)]. On
the other hand, strains with disruption of the genes encoding any
of these proteins that have been tested have the same effect in the
monolayer differentiation system: they render stalk cell induction
by DIF-1 insensitive to inhibition by the presence of cAMP
(Harwood et al., 1995), because of partial or complete
elimination of the psp pathway as a competitor to the stalk
pathway (Early and Williams, 1988; Berks and Kay, 1990). A
corollary of this is that stalk cell induction in these mutants is
hypersensitive to DIF-1 (needs lower concentrations of DIF-1)
when the assay is performed with cAMP present along with the
DIF-1.

Until recently there was no evidence connecting the spore
pathway with mTORC1. Any effect of mTORC1 could involve a
parallel pathway or mTORC1 could influence the activity of the
above pathway. There is clearly a complex interaction between
mTORC1 and Gsk3 activity in humans which is not fully
understood (Sun, 2021) and has been implicated in tumour
resistance to mTORC1 inhibition. Recently a Dictyostelium
mutant has been described in which the gene encoding
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1-phosphatidylinositol-3-phosphate 5-kinase (PIKfyve) has been
disrupted (Yamada et al., 2021), and properties of the mutant
strain point to involvement of mTORC1 in the psp/spore
pathway. PIKfyve converts PtdIns3P to PtdIns3,5P2 (PIP2),
and there is strong evidence that PIP2 is located on the
vacuole membrane of yeast and on acidic vesicle/endosomal
membranes in mammalian cells and act as an anchor to
associate mTORC1 to these membranes (Bridges et al., 2012),
a precondition for its activation. The mutant has enlarged lower
stalks; spore coat protein synthesis is initiated in Golgi-derived
prespore vesicles as in the wild type, but mature spore
formation is highly defective. Most importantly, in vitro
observations show that the mutant is clearly DIF-1
hypersensitive, as defined above. Since this seems to be a
characteristic of all mutants blocked in the spore pathway, it is
consistent with the inference that PIKfyve, and, by extension,
mTORC1, is a key player in that pathway. This conclusion could
be tested by measuring mTORC1 activity in the mutant; also by
seeing whether mTORC1 inhibitors render stalk cell induction in
cell monolayers hypersensitive to DIF-1 in the presence of cAMP
and block in vitro psp/spore formation in response to cAMP (in
the absence of DIF-1).

In humans, the central roles of PIKfyve in endosomal
trafficking and autophagy make it an attractive candidate for
treatment of a number of diseases, using PIKfyve inhibitors such
as apilimod. These diseases include cancer and neurodegenerative
conditions as well as viral infections including those due to
coronaviruses (Ikonomov et al., 2019; Huang et al., 2021).
Understanding its interplay with the mTORC1 and AMPK
pathways in Dictyostelium will have a bearing on the
development of such inhibitor treatments.

pHv and Symmetry Breaking
If we accept that the prespore pathway is initiated when AMPK is
downregulated, and mTORC1 upregulated, in some 80% of the
aggregated cells, what might be responsible for this switch?
During growth and early in development, the acidic
intracellular compartments of amoebae [although these are of

various kinds, we will refer to them throughout as acidic vesicles
(AVs)] are highly acidic and are stained by the weak base, neutral
red, whereas at the first finger and slug stage of development, the
AVs of prespore cells have lost their acidity and are unstained
(Bonner, 1952). We suggest that this change in acidic vesicle pH
(pHv) is responsible for downregulating AMPK and upregulating
mTORC1 in these cells, although we cannot exclude the
possibility that it is simply a consequence of their differences
in gene expression. Support for the former possibility is based
primarily on the finding that exposure of developing amoebae
in vitro to weak bases switches them from the stalk to the spore
pathway, whereas weak acids have the opposite effect (Gross et al.,
1983; Kubohara and Okamoto, 1994) while at the same time
altering the pH of their AVs (Yamamoto and Takeuchi, 1983;
Marchetti et al., 2009). Although the differential neutral red
staining pattern is sometimes not evident until slugs have
migrated for some time, it is revealed within minutes by
covering the slugs with mineral oil, which provides an
impermeable barrier to the diffusion of ammonia (Feit et al.,
1990). This effect can be explained if there is already a substantial
difference in pHv between the cell types at the beginning of the
experiment, but that for loss of neutral red staining of the
prespore cells to occur, ammonia must accumulate in the AV’s
of these cells to a level at which their pHv is above the pKa
(pH6.7) of neutral red.

In contrast to the marked difference between prestalk and
prespore cells in terms of pHv, their cytosolic pH values are either
not different (Kay et al., 1986; Town et al., 1987) or differ by at
most 0.2 pH units (Inouye, 1988), so the effects of pH on cell type
choice are unlikely to depend on a difference in cytosolic pH.
Exposure to 50 mM ammonia lowered the acidity of AVs by at
least two orders of magnitude but had no detectable effect on
cytosolic pH (Davies et al., 1993), thus identifying AVs as the
likely target of weak base action. These effects are seen at the level
of prestalk versus prespore gene expression, as well as in terms of
the final mature cell types (Bradbury and Gross, 1989), and are
most easily accounted for if vesicle pH controls the pathway of
gene expression.

FIGURE 2 | Proposed pathway of stalk cell induction by DIF-1. DIF-1 triggers an increase in cytosolic Ca2+, a process dependent on IplA, a protein related to the
mammalian IP3 receptor, which triggers Ca2+ release from the endoplasmic reticulum (Traynor and Kay, 2017) and may also induce Ca2+ entry into the cell via a store-
operated calcium channel. The concentration of Ca2+/calmodulin in turn increases, binding to and activating the calmodulin-dependent protein kinase CaMKK2. This
then phosphorylates and activates AMPK, which phosphorylates various target proteins, activating some (including calcineurin and inhibiting others (Sugden et al.,
2015) and initiating the prestalk/stalk (ST) pathway.
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Further evidence that pHv influences cell fate choice comes
from the remarkable 1-dimensional differentiation system
devised by Bonner (Bonner et al., 1995). In this system an
extracellular pH gradient is generated by spontaneous
ammonia production (Sawai et al., 2002), and cells expressing
a prespore gene appear at the alkaline end of the pH gradient
while those expressing prestalk genes are found at the more acidic
end (Sawai et al., 2002) where AV’s have been shown to be acidic
(Azhar et al., 1996).

The idea that AV acidification status influences cell fate choice
is not as strange as it might once have seemed since, in addition to
their well-known activities in degradation and recycling,
lysosomes are now seen to be organizing hubs regulating such
processes as signaling, nutrient sensing, metabolic adaptation,
organellar interactions and aging (Savini et al., 2019). Moreover,
both AMPK and mTORC1 are thought to be present on
lysosomes, and to be physically associated with the lysosomal
V-ATPase responsible for acidifying the lysosomal lumen (Zhang

et al., 2014) (Figure 3), potentially via PIP2 (Ho et al., 2012; Jin
et al., 2014). In many cases activation of mTORC1 appears to
require lysosomal acidification and/or V-ATPase activity
(Laplante and Sabatini, 2012). In the case of Dictyostelium, the
proposed association between loss of acidity and initiation of the
prespore pathway at the bifurcation point would require that it is
AMPK activity that is dependent on vesicle acidification. If that is
the case, we would expect that reduced vesicle acidification at the
point when amoebae are starved to initiate development would
interfere with the activation of AMPK and the corresponding
downregulation of mTORC1 activity. In agreement with this
expectation, the loss of mTORC1 activity upon starvation is
delayed in a Dictyostelium mutant defective in acidifying AVs
(Chang et al., 2020). Interestingly, loss of presenilin genes in
Dictyostelium has been shown to block development by reducing
vesicular acidification (Sharma et al., 2019). Mutations in
presenilins in humans associated with Alzheimer’s disease also
result in elevated lysosomal pH and defects in autophagy (Lee
et al., 2010). Other neurodegenerative disorders such as
Parkinson’s disease also show alterations in this pathway
(Nixon, 2013). Thus, understanding the mechanisms and
consequences of alterations in pHv in Dictyostelium will have
an impact on our understanding of Alzheimer’s disease and other
neurogenerative diseases and on the eventual development of
treatments.

An alternative interpretation of the mode of action of
ammonia has been proposed to explain its well-known
inhibitory effect on cAMP levels (Singleton et al., 1998), in
which ammonia transporters act as ammonia sensors
activating or inhibiting the hybrid histidine kinase DhkC in
response to the local ammonia level; the level of DhkC
activation would then be relayed to the RegA cAMP
phosphodiesterase which would in turn be activated or
inhibited. The authors discount a role for vacuolar pH in this
process. While a role for DhkC in the cAMP response to
ammonia levels has been established, it seems unlikely that the
ammonia transporters are acting directly as sensors, since many
other weak bases affect cAMP levels in the same way as ammonia
and are not substrates of the ammonia transporters. Moreover,
mutants in the V-ATPase itself cause the same developmental
defects as exposure to weak bases (including prolonged slugging)
(Davies et al., 1996), which would not be the case if these defects
were due to ammonia transport activity. Instead, we suggest that
defects in vesical acidification have two, probably independent,
consequences: on the one hand they result in activation of the
DhkC phosphorelay and breakdown of cAMP, on the other they
inhibit AMPK activation (and/or promote mTORC1 activation).

The question remains of how the cells of aggregates become
split into those with acidified vesicles and those with neutralized
vesicles. One mechanism for creating such a division would be a
process of local self-activation and lateral inhibition (Meinhardt,
1983), with ammonia as inhibitor, taking place within small
random groups of cells in cell aggregates. However, the sorting
behavior of mutants defective in vesicle acidification casts doubt
on this idea. We would expect that on a lateral diffusion model,
cells defective in acidification would sort preferentially to the
prespore region in mixtures with wild type cells, since that is the

FIGURE 3 | The proposed role of acidic vesicle pH (pHv) in control of the
prestalk and prespore pathways at the mound stage of development. Multiple
factors including AMPK and mTORC1, cell cycle stage at the time of
starvation, glycogen content, V-ATPase activities, cell adhesion and cell
movement probably contribute to the division of a population of aggregated
amoebae into those with acidified acidic vesicles (right-hand side of diagram).
and those with neutralised acidic vesicles (left-hand side of diagram). We
suggest that AMPK remains activated in the former group of cells, leading to
continued prestalk gene expression, whereas it is downregulated in the latter
group of cells and mTORC1 activated, initiating prespore gene expression.
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region occupied by cells with neutralized AVs; instead, they show
a remarkable preferential localization in the anterior, acidified,
compartment (Kirsten et al., 2008; Sharma et al., 2019). This
indicates that pHv influences cell fate choice in someway, perhaps
associated with the cell cycle, since cell fate is also strongly
influenced by the stage of the division cycle at which cells are
starved (McDonald and Durston, 1984; Araki et al., 1994; Huang
et al., 1997; Jang and Gomer, 2011; Gruenheit et al., 2018) and
other factors (Figure 3). Thus, the mechanism controlling
differences in pHv appears to be complex and is elusive.

DISCUSSION

Gene expression in response to cAMP signaling in Dictyostelium
is thought to involve two processes: firstly activation of poorly
understood intracellular pathways by extracellular cAMP signals
acting on cell surface G protein-coupled cAMP receptors, and
secondly activation of cAMP-dependent protein kinase by cAMP
synthesized within the cell by the actions of three distinct
adenylate cyclases. According to our proposal, cell-type
specialization, with its accompanying differential gene
expression, is controlled by the opposing actions of mTORC1
and AMPK acting on this background of cAMP signaling.
mTORC1 and AMPK, are often viewed as predominantly
controlling responses to variations in food and energy supplies
by phosphorylating cytoplasmic factors such as p70S6K and 4E-
BP1. If those were their only targets it would be hard to see how
they could control differential gene transcription on the two
differentiation pathways. However, both agents are now known
to also have profound effects on cell type-specific gene
transcription in mammalian cells (Laplante and Sabatini, 2012;
Sukumaran et al., 2020). The genome ofD. discoideum contains at
least 245 genes predicted to encode transcription factors, more
than half of which are restricted to either prestalk or prespore cells
(Forbes et al., 2019). Of these 245 transcription factors, just 34
have been examined in gene disruption or knockdown
experiments, and nine of them caused defects in one specific
cell type. There would therefore be ample opportunity for
phosphorylation by mTORC1 and AMPK to control the
differential production and/or activities of particular
transcription factors and thus differential gene transcription in
the two pathways. Interestingly, in the similar system involving
the choice between adipocyte and osteocyte differentiation in
human mesenchymal stem cells, which is controlled by mTORC1
and AMPK (Chen et al., 2017), recent work has revealed a
network of transcription factors and enhancers that control
adipogenesis (Rauch et al., 2019).

As well as this choice between the osteoblast and adipocyte
fates of mesenchymal stem cells (Chen et al., 2017), many other
cell fate choices in metazoans are also controlled by the mutually
antagonistic effects of mTORC1 and AMPK. This applies for
example to alternative T cell differentiation pathways in response
to antigen (Chi, 2012), and the control of ageing in both yeast and
higher organisms (Hindupur et al., 2015). Similarly, the
inflammatory cells activated by pathogens and tissue damage
are mTOR-dependent while anti-inflammatory cells are AMPK-

dependent (O’Neill and Hardie, 2013). However, although the
bifurcation of cell fates in Dictyostelium as we envisage it would
reflect the same mutual antagonism between AMPK and
mTORC1, it is unlike those situations in that it takes place
under starvation where mTORC1 is not normally activated. In
fact, according to our suggestion, prespore/spore pathway cells
would resemble more closely tumour cells since in both mTORC1
activation is uncoupled from normal regulatory nutrient signals.

There is another possible parallel between tumour cells and
prespore pathway cells. Paradoxically, many tumours, though
fundamentally mTORC1-dependent and not dependent on
extensive autophagic activity nevertheless rely on a low level of
autophagy for their growth and spread, and hence on residual
AMPK activity (given that autophagy depends on AMPK
activity) (Kimmelman and White, 2017). Autophagy is thought
to supply nutrients to these tumours and confer resistance to
stressors such as starvation, anti-cancer drugs etc, and clinical
trials are currently underway to test inhibition of autophagy as
an anticancer strategy (Perez-Hernandez et al., 2019). Interestingly, a
strikingly similar observation to the situation in those tumours is
found in the case of the Dictyostelium prespore pathway (Yamada
and Schaap, 2019); mutations such as atg7 that reduce the efficiency
of autophagy virtually eliminate prespore gene expression while not
affecting prestalk gene expression. This can be understood in terms
of our basic proposal if we suppose that autophagy, while an essential
component of the prestalk pathway, is also needed at a low level in
the prespore pathway; it should therefore be fully activated by
AMPK in the pst pathway but substantially downregulated by
mTORC1 in the prespore pathway. Consequently, if the
efficiency of autophagy is reduced by a mutation such as atg7
this will virtually eliminate autophagy in the prespore pathway
and block prespore gene expression, while leaving the prestalk
pathway almost intact.

Understanding the mechanisms and consequences of mTORC1
regulation inDictyostelium has implications for treatment of a range
of human diseases. For example, ketogenic diets, which involve
intake of high levels of fat and low levels of carbohydrate, were
developed tomimic starvation (Augustin et al., 2018). Such diets are
used to treat seizures although recently it has been suggested that
their mode of action is not due to the diet itself but to a direct effect
of medium chain fatty acids such as decanoic acid, a major dietary
breakdown product of diglycerides (Chang et al., 2013; Warren
et al., 2018). Studies in Dictyostelium have demonstrated that
decanoic acid inhibits mTORC1 activity, independently of
glucose and insulin signaling (Warren et al., 2020). This work
has identified a novel pathway to regulate mTORC1 activity.
Decanoic acid inhibits mTORC1 activity in mammalian cells
including astrocytes from tuberous sclerosis complex (TSC)
patients. This syndrome is caused by mutations in TSC1 or
TSC2, resulting in epilepsy, cognitive disfunction and behavioral
abnormalities. Individuals with this neurodevelopmental disorder
have hyperactive mTORC1. This work in Dictyostelium therefore
points to decanoic acid as a promising therapy. Conversely
cannabidiol (CBD), a major component of cannabis oil,
enhances mTORC1 activity in Dictyostelium in a mechanism
dependent on inositol polyphosphate multikinase (Damstra-
Oddy et al., 2021). This pathway has been verified in
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mammalian cells and shown to increase mTORC1 activity in
primary peripheral blood mononuclear cells from patients
suffering from multiple sclerosis. This work initiated in
Dictyostelium identifies CBD as a potential therapy for multiple
sclerosis through increased mTORC1 activity. DIF-1 inhibits the
growth of a range of different cancer cells (Takahashi-Yanaga et al.,
2014; Kubohara et al., 2015; Arioka et al., 2017). Themechanisms of
action is as yet ill-defined although there is a recent report that it
supresses the growth of triple negative breast cancer cells by a
mechanism involving AMPK-dependent inhibition of mTORC1
activity (Seto-Tetsuo et al., 2021) in a pathway reminiscent of the
cell fate decision pathway we are proposing in Dictyostelium. It will
be of interest to define the role of the pH of acidic vesicles in the
effect of DIF-1 on growth of these cancer cells as alteration of this
may offer an alternative therapy route.

In conclusion, Dictyostelium may provide a tractable non-
metazoan model for examining in detail how the two ancient
sensor molecules, mTORC1 and AMPK, control the differential
gene expression underlying a cell fate choice.
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