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Abstract

The stratification of patients at risk of progression of COVID-19 and their molecular characterization is of extreme
importance to optimize treatment and to identify therapeutic options. The bioinformatics community has responded to the
outbreak emergency with a set of tools and resource to identify biomarkers and drug targets that we review here. Starting
from a consolidated corpus of 27 570 papers, we adopt latent Dirichlet analysis to extract relevant topics and select those
associated with computational methods for biomarker identification and drug repurposing. The selected topics span from
machine learning and artificial intelligence for disease characterization to vaccine development and to therapeutic target
identification. Although the way to go for the ultimate defeat of the pandemic is still long, the amount of knowledge, data
and tools generated so far constitutes an unprecedented example of global cooperation to this threat.

Introduction

The crisis generated by the spread of the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) and the corresponding
COVID-19 disease was declared a pandemic by the World Health
Organization on 11 March 2020. The origin of SARS-CoV-2 was
traced to the Huanan Seafood Wholesale Market in the city of

Wuhan, China. The causative pathogen was identified as a beta-
coronavirus with high sequence homology to bat coronaviruses
(CoVs) using angiotensin-converting enzyme 2 (ACE2) receptor
as the dominant mechanism of cell entry [1]. Human-to-human
transmission events were confirmed with clinical presentations
ranging from no symptoms to mild fever, cough and dyspnea
to cytokine storm, respiratory failure and death. The scientific
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community responded to the crisis with an extraordinary effort
involving thousands of scientists and hundreds of laboratories
worldwide. This produced a vast amount of biological data allow-
ing the computational biology community to characterize the
molecular bases of the diseases, the spread and evolution of the
virus and the identification of potential drugs.

The identification of biomarkers for stratification of patients
at risk of progression of COVID-19 and their molecular charac-
terization is of extreme importance to optimize treatment and
to identify therapeutic options.

We refer to a biomarker as a measurable characteristic—e.g.
expression level of a group of genes—used as an indicator of
normal biological processes, pathogenic processes or responses
to an exposure or intervention [2, 3]. Depending on the context
of use, a biomarker can be categorized as susceptibility/risk,
diagnostic, monitoring, prognostic, predictive, pharmacodynam-
ic/response and safety biomarker. It is important to distinguish
between the prognostic biomarkers that are useful to identify
patients more likely to have a particular outcome independently
from treatment and predictive biomarkers that involve a com-
parison of a treatment to a control in patients with and without
the biomarker.

Several prognostic COVID-19 biomarkers predicting disease
severity have been already validated in clinical settings [4].
Among biomakers that segregate severe from non-severe
patients, obtained by retrospective analysis of large cohorts,
of particular interest are those associated to dysregulation
of immune response. Infection-related biomarkers, such as
inflammatory cytokines TNFα, interleukines IL-2R and IL-6 and
other blood cell counts, are seen in much higher dosage in
severe groups with respect to the non-severe group [5], whereas
the platelet count tends to be significantly decreased in severe
cases [6]. Genomewide association studies have also identified
a gene cluster on chromosome 3 as a the major genetic risk
factor for severe SARS-CoV-2 infection and hospitalization [7, 8].
This genomic segment of 50 kb is inherited from Neanderthals
and is carried by about 50% of people in South Asia and
about 16% of people in Europe today [9]. Other prognostic
biomarkers of disease progression and mortality are related to
cardiovascular damages involved in COVID-19 and make use of
the cardiac troponin [10] or to the occurrence of chronic kidney
diseases where an increase of creatinine levels is observed
in severe patients [11]. Other than these clinical biomarkers,
there is already a vast literature of molecular biomarkers that
characterize the disease associated with SARS-CoV-2 viral
infection and that can be exploited to identify therapeutic
targets.

In this paper, we focus on Bioinformatics resources, tools and
approaches connected to molecular COVID-19 biomarkers. To
this aim, we needed to address the vast amount of information
produced by the recent explosion of COVID-19-related scientific
literature.

The paper is organized following the induced set of
biomarker-related topics as follows: the next section describes
the methods adopted to mine COVID-19-related scientific
literature and to extract relevant topics; in Section 5, we report
machine learning tools developed to characterize COVID-19
disease, especially from the image scans; Section 6 describes the
relevant molecular datasets available for the characterization
of COVID-19 biomarkers from genomics and proteomics
profiling; Section 7 focuses on immune repertoire sequencing
and antibody isolation; Section 8 collects methods and tools
related to vaccine development; and finally Section 9 reports
approaches and tools for the discovery of therapeutic targets.

Methods adopted to mine COVID-19 literature
Topic modeling

We adopted latent Dirichlet analysis to extract relevant topics
from over 27 000 research papers, appeared in the past 10
months and indexed in PubMed or uploaded on preprint servers,
such as bio and med rxiv [12]. The overall procedures imple-
mented in Python and R, including details about the adopted
analysis, are reported at https://github.com/bioinformatics-
sannio/covidLiterature. We started with a set of 27 894 articles
downloaded on 20 June 2020 from LitCovid, a curated open-
resource literature of PubMed research papers related to
COVID-19 [13] and from the COVID-19/SARS-CoV-2 collection
of medRxiv and bioRxiv preprint servers. The document text
content, composed by joining article’s title and abstract, was
tokenized, stemmed and filtered by stopwords. Duplicates, due
to PubMed edited paper available also on preprint servers, have
been removed by comparing vectors of term frequencies with
cosine distance obtaining a consolidated corpus of 27 570 papers.
In this corpus, we discovered an optimal set of 36 topics showing
the lowest perplexity (Supplemental Figure 1). Among them, we
selected five topics, topic #0, strongly related to computational
models, and four topics related to biomarker research (Figure 1).
From the consolidated corpus, we selected papers with a content
associated with such a set of topics. Specifically, we considered
papers not distributed on many topics (i.e. Shannon entropy
less than half of its maximum 1

2 log2( 1
36 )) and having one of the

biomarker-related topics shown in (Figure 1, Table S1) as the top
most probable. The final set of 3032 papers, which we made
available as Table S2, was manually evaluated and the most
relevant discussed in this work.

Attention of studied elements

COVID-19 literature can also be mined to extract valuable
information regarding molecular elements (i.e. gene, proteins,
etc.) that received more attention in this particular subset of
scientific literature. Here we considered gene attention and
reported two different analyses: the first showing genes that
received more attention in the selection of manuscripts reported
in this review compared to all manuscript published in the same
time-frame and the second showing genes that received more
attention in the first half of 2020 (the pandemic time-window)
compared to the whole 2019. The concept of attention can be
formulated in different ways; here we choose the number of
manuscripts citing a gene as a proxy for the attention received
by the gene.

The association between genes and citing manuscripts can
be obtained by the NCBI NIH gene2pubmed table [14] while the
temporal information associated to manuscript was obtained
using the NCBI NIH PMC-ids table [15] and the RISmed R package
[16]. For the analyses presented in this review, we only consid-
ered human, mouse, rat and SARS-CoV-2 genes by filtering the
gene2pubmed table for accession IDs of genes annotated for
these species and mapping the corresponding ENTREZ gene IDs
to gene symbols. Given a set of manuscripts, we computed the
attention score of a given gene in that set, by summing up the
number of times it was cited the manuscripts from the set.

For the 1st analysis, we select 15 652 gene/manuscript
associations from the filtered gene/manuscript table, covering
2904 manuscripts published from the 1 January 2020 to 17 June
2020. This latter set of articles was intersected with the selection
of COVID-19 manuscripts provided here, generating a partition of
182 COVID-19 gene citing manuscripts and 2722 non-COVID-19
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gene-citing manuscripts. For each symbol, we than compared
the number of times COVID-19 manuscripts cited the gene
with the corresponding number of citations in non-COVID-19
manuscripts and computed its statistical enrichment by using a
Fisher’s exact test and finally correcting all P-values with False
Discovery Rate (FDR) correction.

For the 2nd analysis, we selected 76 658 gene/manuscript
associations from the gene/manuscript table, with 16 480 asso-
ciations covering 3324 manuscripts published during the year
2020 and 60 178 gene/manuscript associations from the same
table, covering 20 208 manuscripts published in the year 2019. We
then selected the genes being cited in at least five manuscripts
during 2020 and ranked them based on their attention score in
each considered year (2019 and 2020). We defined �–rank as the
difference (positive or negative) in rank of each paper between
the 2 years as a measure of gain or loss of attention for each gene
between 2019 and 2020 was. We assigned an empiric P-value
to the �–rank of each gene using a bootstrap procedure (1000
iteration) where the same procedure describe above was applied
to a random selection of 16 480 gene/manuscript associations
and shuffling of gene IDs with respect to manuscripts in each
realization.

Genes/proteins with high attention score in
the COVID-19 infection process
Genes that received significant attention in the subset of sci-
entific literature considered are shown in Figure 1A–B, both in
terms of enrichment of attention score and significant �–rank,
include important genes involved in SARS-CoV-2 parthenogene-
sis (Figure 1C). The main mechanism of adhesion and viral entry
into the cell involves the viral protein Spike (S), which binds the
human ACE2 receptor through its receptor-binding domain (RBD)
with a binding affinity 10 times higher than that of the spike
protein of the SARS virus. The very efficient cellular entry of
SARS-CoV-2 is also due to the action of the Furin enzyme that is
expressed in significant concentrations in the lung and activate
the spike protein [17, 18]. Some recent evidence suggests that
many other genes may contribute to virus entry and are being
studied as potential therapeutic targets in the treatment of coro-
navirus infections. For example, the host cell protease TMPRSS2
acts as a primer for the spike protein [19, 20]; the membrane
protein DPP4 acts as a co-receptor of SARS-CoV-2 and is a key
factor for the hijacking and virulence in the respiratory tract [21];
the AAK1 gene is a known regulator of the clathrin-mediated
endocytosis [22]. The uncontrolled and excessive release of pro-
inflammatory cytokines and chemokines (like IL-1β, IL-6, IL-12,
CXCL8, CXCL9, CXCL10, IFNs, TNF, etc.) is the most damaging
and potentially fatal effect related to the COVID-19 and therefore
it is the subject of several studies. The IL-6 gene is the main
prognostic biomarkers since it plays a key role in cytokine storm,
and high levels of this cytokine are associated with respiratory
failure and mortality risk [23]. Unfortunately, the efficacy of
cell-mediated immunity against SARS-CoV-2 is still unclear and
many studies are aimed at clarifying the role of T cells in the
resolution of COVID-19 [24]. Some recent evidence has shown
an increase in the expression of the CD8 T cell marker (CD8A)
in COVID-19 patients to support hyper-activation of cytotoxic T
lymphocytes [25].

Main topics in COVID-19 biomarker research
We adopted a semiautomatic approach, based on topic analy-
sis, to select from over 27 000 research papers, appeared from
September 2019 and indexed by PubMed or uploaded on preprint

servers such as bio- and med- rxiv, a manageable set of resources
that can be manually revised. From the overall corpus of docu-
ments, we induced 36 relevant topics, 5 of which are associated
to biomarkers and are depicted in Figure 2, whereas the break-
down of the papers per topic is summarized in Table S1.

Topic #0 refers to the use of artificial intelligence (AI),
in particular deep learning approaches for the analysis of
biomedical images, such as computed tomography (CT) scans or
ultrasonography (LUS) images, to diagnose and predict the
prognosis of COVID-19 patients. Topic #1 is related to the study
of neutralizing antibodies and cellular immune response to
SARS-CoV-2 and focuses on the design of serological tests to
identify seroconversion prognostic biomarkers. Topic #20 is
about drug discovery and is specific to structural and functional
analysis of SARS-CoV-2 to identify therapeutic targets. Topic #27
is related to the discovery of biomarkers that trigger an immune
response and could be adopted for vaccine development.
Topic #33 encloses genome- and proteome-wide studies with
publicly available datasets, a valuable source of information for
biomarker discovery.

Machine learning and AI for image-based
disease characterization
Imaging is the main tool for the identification of patients
with higher risks of developing acute respiratory failure due to
SARS-CoV-2 virus pneumonia [26]. Lesion characteristics such
as number, size, density and bilateral and multi-lobar glass
ground opacifications (mainly posteriorly and/or peripherally
distributed) are indicators of lung damage and remaining lung
reserve [27]. They are effectively used as biomarkers to train an
automatic diagnostic system or to assist the accurate diagnosis
of disease severity and to distinguish between normal and SARS-
CoV-2 virus pneumonia. In [28] the authors collected a dataset of
532 506 CT scans from 3777 patients for the purpose of training
a diagnostic system (Table 1) and showed that a convolutional
neural network, adapted from 3D ResNet-18, trained on lung-
lesion maps, obtained by different automatic segmentation
algorithms, achieves 92.49% accuracy, 94.93% sensitivity, 91.13%
specificity and an area under the curve (AUC) of 0.9797 [29].
The use of multiple features, such as texture, surface, volume
histogram and intensity, has also been shown to improve the
diagnostic accuracy [30] of chest CT scans up to 93.9%. As an
alternative to CT scans, lung ultrasound (LUS) has been shown
to be a more widely available, cost-effective, safe and real-time
imaging technique [31].

Virus and host genomics, transcriptomics and
proteomics profiling
The genomic sequence of SARS-Cov-2 has 29 903 nucleotides [1]
and is available with accession number NC_045512.2. It has 89.1%
similarity with a bat SARS-like coronavirus (CoV) isolate-bat SL-
CoVZC45 (accession number MG772933) and is organized in repli-
case ORF1ab (21,291 nt), spike (3,822 nt), ORF3a (828 nt), envelope
(228 nt), membrane (669 nt) and nucleocapsid (1260 nt). As of 21 June
21 2020, a total number of 49 239 sequences have been deposited
on GISAID EpiFlu Database (www.gisaid.org), which is the main
source of genomic data associated with SARS-Cov-2 [32]. To get
insight into the complex pathogenesis caused by novel coron-
avirus, sequencing of single cells (scRNA-seq), RNA (RNA-seq),
adaptive immune receptor repertoire (AIRR-seq), image datasets
and proteomic assay have been massively adopted to unveil the

www.gisaid.org
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Figure 1. (A) the P-value of the gene with significant attention score enrichment, (B) right panel shows the genes with a significant (P-value ¡ 0.1) �–rank. (C) SARS-CoV-2

infection. The Sars-Cov-2 virus adheres to and enters human cells through the interaction of the viral Spike protein and the human ACE2 receptor. The virus entry

mechanism is favored by the presence of some cleaving enzymes, such as TMPRSS2 and Furin, which activate the Spike protein. Virus endocytosis within clathrin-

coated vesicles is regulated by the AAK1 gene. The release of the viral RNA, the subsequent replication and assembly of new particles cause pyroptosis of the host cell

and the release of damage-associated molecular patterns. These molecules are recognized by adjacent cells that secrete pro-inflammatory cytokines and chemokines.

The pro-inflammatory stimulus attracts monocytes, macrophages and T cells to the site of infection, which contribute to the inflammatory process with a positive

feedback loop. In the physiological immune response, antigen-presenting cells engulf the viral particles and stimulate the activation of T-helper cells. The latter trigger

the adaptive immune response by stimulating B cells to produce antibodies against the virus and T cytotoxic cells that recognize and destroy other virus-infected

cells. On the other hand, the accumulation of immune cells at the site of infection due to excessive pro-inflammatory stimulus, such as the release of IL-6, causes the

cytokine storm, damage to lung tissues and increases the risk of death.
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Figure 2. Main topics associated to biomarkers research activity automatically extracted from a corpus of 27 894 scientific papers.

characteristics of the immune response triggered in patients
affected by COVID-19. Single cell sequencing is often combined
with RNA or AIRR sequencing as the pulmonary microenviron-
ment and peripheral immune response allow to reveal potential
mechanisms underlying the pathogenesis of COVID-19 and the
identification of diagnostic and therapeutic biomarkers. Most of
data are available on public databases, such as Gene Expression
Omnibus (GEO) [33], Sequence Read Archive (SRA) [34], Euro-
pean Nucleotide Archive (ENA) [35], European Genome-phenome
Archive (EGA) [36] and Genome Sequence Archive (GSA) [37].
Single cell transcriptomic data can be interactively explored
through the Single Cell Portal [38]. Table 1 provides a curated
list of 28 transcriptomic, 2 image datasets and 6 proteomic
studies, publicly available datasets. The list contains 14 scRNA-
seq studies derived from peripheral blood mononuclear cells
(PBMCs) (n = 8), nasopharyngeal swabs and bronchial branches (n
= 1), bronchoalveolar lavage fluid (BALF) (n = 1) and lung tissue (n
= 1) in COVID-19 patients. There are also scRNA-seq datasets of
lung organoids (n = 2) and human cell lines infected with SARS-
CoV-2 (n = 3). Similarly, there are 9 RNA-seq studies that include
datasets of infected human cell lines (n = 4) and organoids
(n = 3), nasopharyngeal swabs (n= 1), BALF and PBMC (n = 1)
and several tissue (i.e. lung, heart, liver, kidney, bowel, skin, fat,
marrow) (n = 2) from COVID-19 patients. The AIRR-seq datasets,
including data of BCR, TCR, IGH and antibody sequencing, were
derived from PBMCs (n = 10) and BALF (n = 1) in COVID-19
patients.

Proteomics datasets are created in this context to character-
ize the set of SARS-CoV-2 encoded proteins and to investigate
their interaction with the human proteome during the different
phases of the infection. Gordon et al. [71] recently developed a
protein interaction map by expressing all of the 29 SARS-CoV-2
proteins in human cells and then assessing their affinity with
human proteins by means of affinity-purification mass spec-
trometry, obtaining a list of 332 SARS-CoV-2-human protein–
protein interactions that is available as a supplementary file
at [72]. Bojkova et al. analyzed human cell lines infected with
SARS-CoV-2 [73] and characterized their translatome and the
proteome at different time points after the infection and made
this dataset available at [74]. Li et al. [75] by using genome wide
yeast-two hybrid and co-immunoprecipitation approach, iden-
tified 58 distinct intra-viral protein–protein interactions. In the
same study, the authors studied the viral–host interactome by
over-expressing all the SARS-CoV-2 genes into HEK293 cells and
defined a list of 631 viral–host protein–protein. Interaction data
from this work are available in the IntAct database (imex:IM-
27901).

Knowledge of the SARS-CoV-2-encoded proteins structure
can be exploited to search for molecules showing structural
affinity and hence acting as potential inhibitors of these latter.
Protein Data Bank is a public resource collecting user deposited
structures of all of the 29 COVID-19-related PDB structures [76].
Using used model-validation metrics Wlodawer et al. [77] defined
a refined version of COVID-19-related PDB structures present in
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Table 1. Transcriptomics and proteomics datasets

# samples
Ref Data availability Biotype COVID-19 Control Data type

[39] GSE150728 Peripheral blood mononuclear cells (PBMCs) 7 6 scRNAseq
[40] GSE148697—pending hPSC-derived lung organoids na na scRNAseq
[41] Pending SARS-CoV-2 infected human bronchial epithelial cells na na scRNAseq
[42] CRA002509—pending PBMCs 2 na scRNAseq
[43] EGAS00001004481 Nasopharyngeal and bronchial 19 5 scRNAseq
[44] Under request PBMCs 10 na scRNAseq
[45] Pending PBMCs 4 na scRNAseq
[46] CNP0001102 PBMCs 16 3 scRNAseq
[47] GSE147507 SARS-CoV-2 infected human cell lines and Lung 23 2 RNAseq
[48] CRA002390 Bronchoalveolar lavage fluid (BALF) and PBMCs 7 3 RNAseq
[49] GSE152075 Nasopharyngeal 430 54 RNAseq
[50] GSE150392 SARS-CoV-2 infected iPSC-cardiomyocyte cells 3 3 RNAseq
[51] GSE150819 SARS-CoV-2 infected human bronchial organoids 6 9 RNAseq
[52] GSE150316 Various 83 5 RNAseq
[53] GSE149312 SARS-CoV-2 infected intestinal organoids 8 10 RNAseq
[54] PRJNA628125 PBMCs 14 na AIRRseq
[55] PRJNA630455 PBMCs 42 na AIRRseq
[56] PRJNA633317 PBMCs 120 na AIRRseq
[57] Web page at [58] PBMCs 149 na AIRRseq
[59] Web page at [60] PBMCs na na AIRRseq
[61] Pending PBMCs na na AIRRseq
[62] PRJEB38339 PBMCs 215 na AIRRseq
[63] GSE148729 SARS-CoV-1/2 infected human cell lines 167 na RNAseq + scRNAseq
[64] GSE151803 SARS-CoV-2 infected human cell lines, organoids and lung 12 9 RNAseq + scRNAseq
[65] Pending PBMCs na na AIRRseq + scRNAseq
[66] Pending PBMCs na na AIRRseq + scRNAseq
[67] EGAS00001004412 PBMCs na na AIRRseq + scRNAseq
[68] GSE145926 BALF 12 9 AIRRseq + scRNAseq
[28] Web page at [69] Chest scan of COVID-19 patients and normal controls 1386 1105 CT images
[31] Web page at [70] LUS images of COVID-19 patients and normal controls na na LUS images
[71] Web page at [72] Infected human kidney derived cell lines na na interactome
[73] Web page at [74] Infected human colon derived cell lines na na Translatome + Proteome
[75] Intact imex:IM-27901 PBMCs na na interactome
[76] Web page at [76] Various na na Protein structures
[77] Web page at [78] Various na na Protein structures
[79] IPX0002106000 and

IPX0002171000
Blood serum 46 53 Proteomic and metabolomic

Protein Data Bank and made them available at [78]. As of July
2020, this repository hosts 285 SARS-CoV-2 protein structures
and 23 additional structures of other coronaviruses. A recent
study, based on the analysis of proteomic and metabolomic
profiles from COVID-19 patients, identified possible biomark-
ers related to the severity of the pathology [79]. The machine
learning-based approach has highlighted important changes in
the serum of COVID-19 patients involving the deregulation of
complement system processes, macrophage and platelet activity
and metabolic suppression. All data are deposited in ProteomeX-
change Consortium (Table 1).

Immune repertoire sequencing and antibody
isolation
SARS-CoV-2 infection affects adaptive immunity, immune cell
architecture and function [80]. Exposure to viral antigens stim-
ulates the cellular immune response of T cells and the humoral
immune response of B cells, which can be studied in detail
through the immune repertoire high-throughput sequencing.
The analysis of the sequences of T and B cells repertoires for

different cohorts of patients, from non-hospitalized infected
patients to patients with severe symptoms, may reveal the
nature of protective versus detrimental B and T cell responses
and can be be used as a prognostic biomarker. For example,
significant highly clonal T cell repertoires in active COVID-
19 patients versus patients recovered from COVID-19 without
medical intervention has been recently reported [62]. The
Adaptive Immune Receptor Repertoire Community (AIRR-C)
has defined standards for sharing and interoperability of B-cell
and T-cell receptor repertories [81], and sequences of are being
deposited in multiple repositories such as [82] which (at the date
of writing this paper) contains 178 190 149 sequences from 285
patients.

T and B cell sequencing is important for the development
of monoclonal antibodies against SARS-CoV-2 but also to deter-
mine the optimal T cell engagement strategy for vaccine devel-
opment. SARS-CoV-2-reactive and neutralizing antibodies have
now been isolated from COVID-19 survivors. Neutralizing anti-
bodies could block viral entry by preventing the S protein from
binding to host cell receptors, such as ACE2. Neutralizing anti-
bodies could also mimic receptor binding and prematurely trig-
ger fusogenic conformational changes in the S protein before it
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Figure 3. A general in silico vaccine development workflow.

engages ACE2. The Coronavirus Antibody Database, CoV-AbDab
[83], is a publicly available resource to query and download
coronavirus-binding antibody sequences and structures. It actu-
ally contains 460 records. A recent study isolated 19 antibodies
with high neutralizing power from infected SARs-Cov-2 patients
[84]. This collection includes antibodies directed towards the
spike protein RBD domain, which compete strongly with the ACE
protein and are promising candidates for vaccine development,
and non-RBD antibodies, which are instead mainly directed
towards the NTD domain. The sequences of these 19 antibodies
are deposited on Genbank.

Vaccine development
Although several research groups around the world are engaged
in the development of a vaccine against SARS-CoV-2, currently
there are no approved treatments for humans.

Reverse vaccinology is a methodology that uses bioinformat-
ics tools and genomic data for the identification of pathogen
antigens [85]. In silico vaccine development improves the poten-
tial for successful vaccine design reducing time and cost to
identify the effective epitopes that could trigger the immune
response without causing disease [86]. Figure 3 shows a gen-
eral workflow of in silico vaccine development, including the
main resources used in COVID-19 vaccine discovery so far. Ini-
tially, amino acid sequences of proteins that are potentially
antigenic or essential for virus replication must be retrieved from
sequence databases, such as GenBank [87]. The nucleocapsid (N)
protein of SARS-CoV-2 is a suitable vaccine candidate because
it is a crucial structural protein, highly conserved with anti-
genic properties [88]. Also, other structural and non-structural
proteins, such as the membrane (M) protein, spike glycoprotein
(S), open reading frame 3a (ORF3a), etc., are putative antigenic
targets in vaccine design [89]. The identification of antigenic pro-
teins and prediction of T-cell and B-cell epitopes are major steps
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in developing in silico vaccine. Supplemental Table S3 provides
a list of the main bioinformatics resources useful for the predic-
tion of MHC Class-I and II epitopes. Prediction tools for continu-
ous B cell epitopes and T cell epitope are very similar and include
algorithms based on (i) machine learning and artificial neu-
ral network (ANN) approaches (i.e. NetMHC, NetMHCII, NetCTL,
nHLAPred, BepiPred, MHC2Pred, SVMHC, etc.); (ii) the amino
acid properties and secondary structure (i.e. VaxiJen, MHCPred,
Bcepred, SEPPA, etc.); (iii) position-specific scoring matrix (PSSM)
matrix (i.e. RANKPEP). Instead, discontinuous B cell epitope pre-
diction employs resources based on 3D structure resolution of
the antigen (i.e. Discotope, ElliPro, etc.) Many other on-line tools
are also available to analyze the physiochemical properties and
allergenicity and to predict secondary and tertiary structure of
vaccine candidate (Figure 3). The EPV-CoV19, a candidate vaccine
in the clinical trial phase, was entirely designed using the iVax
Toolkit [90], a web-based work environment including several
computational immunology tools to develop epitope-driven in
silico vaccine.

Therapeutic target identification
Biomarkers for drug repurposing (or drug targets) are molecular
elements that are part of the pathophysiologic mechanism of
action of a disease. In the context of viral infection, such ele-
ments are represented by (i) viral targets, proteins encoded by
the viral genome that are essential to the infection process; (ii)
viral/host interactors, host proteins that directly interact with
viral proteins acting as entry-points for the infection process;
and (iii) host response targets, host proteins not directly inter-
acting with the viral proteins but whose inhibition/activation is
able to block the signaling pathways that are essential for the
infection process to succeed.

Table 2 shows a list of bioinformatics tools developed for
therapeutic target identification that have been applied in the
context of COVID-19 disease. Most of them have developed in
different contexts (e.g. cancer) and can be virtually applied to
the targets categories described above. Each of the proposed
approach/tool is based on different input structures that can
be classified in the following categories: (i) protein–protein net-
works along with a selection of subsets of proteins of interest
(e.g. COVID-19 direct interactors and drug targets); (ii) tran-
scriptomic networks inferred from infected samples; and (iii)
proteins/ligands structure and composition.

Tools based on protein–protein networks

In the case of viral infections, at least three pieces of infor-
mation should be modeled within the network structure: (i)
virus–host protein interactions, (ii) host protein–protein inter-
actions and (iii) drug–protein interactions. Pure (unimodal) pro-
tein–protein network based approaches consider only proteins
as nodes of the network and protein–protein interactions as
edges. In multi-modal networks, nodes can be proteins, drugs
and diseases, while edges represent interactions among them
(protein–protein, drug–protein, drug–diseases, drug–drug, dis-
ease–protein, disease–disease). The basic idea is that the closer
are the drug targets to disease-related components (such as
viral-host interactors), the higher are the odds for the drug
to affect the adverse phenotype. A commonly used distance
measure between nodes over a graph is the length of the shortest
path connecting them. By extending this notion to a set of
nodes (e.g. candidate biomarker nodes and COVID-19 nodes), Ta
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the length of the minimum connecting shortest path (MSP) is
a proxy for the biomarker or target relevance [110]. The MSP
approach has been proved to be an effective metric for ranking
and re-purposing drugs against COVID-19 infection [92, 93]. This
approach has been originally developed to repurposing drugs
in cancer-derived networks with the GPSnet tool [91] and can
be easily adapted to COVID-19 networks as shown in [92] and
[93] where the authors integrated virus/host interactome data
from [72] (Table 1) with a human protein–protein interaction
network to rank repurposable drugs based on the distance of
their molecular targets from COVID-19 nodes.

Shortest path methods ultimately rely their estimate on the
length of a single path (i.e. the minimal one); other methods,
such as the TrustRank method [94], try to define the relevance
of a node-set (the candidate bio-marker) with respect to another
(COVID-19 targets) based on global characteristics like the con-
nectivity level between the two. It is a variant of the Google’s
PageRank algorithm and is implemented in the CoVex tool [95].
This method can be used to rank a set of protein nodes based on
how well they are connected to a set of trusted seed proteins (e.g.
SARS-CoV-2 target proteins from [72] (Table 1). In particular, the
algorithm propagates such a trustiness information from seed
nodes to other non-seed nodes and, based on these propagated
values, ranks the all other protein nodes based on their connec-
tivity with the seeds.

The Steiner tree problem aims at finding the minimum cost
subgraph connecting a given set of seed nodes. In the case of
COVID-19 derived networks, it can be mapped to the problem of
finding the minimal subgraph connecting a selection of COVID-
19 interactors (acting as seeds), in order to have a representation
of the mechanism of action related to such interactors and
consequently identify potential drug targets and drug candi-
dates. The Steiner tree problem belongs to the class of NP-
hard problems, but different efficient approximation algorithms
exist for this problem. An implementation based on finding and
merging multiple 2-approximate solutions to the Steiner tree
over a protein–protein network and seed nodes selected from
[72] (Table 1) is presented in the CoVex tool [95].

Diffusion based methods can be used to rank candidate drug-
related biomarkers based on a graph diffusion state similarity
measure. A diffusion state can be obtained for a node x by
computing for all the other nodes y the expected number of
random walks originating in x and passing through y. This
approach has been employed by [93] to score a set of drugs
based on a the similarity of diffusion states between each drug
target node-set and COVID-19 target nodes. This methods can be
easily implemented using the diffusion state distance (DSD) tool
available in the MONET toolbox [96]

Another interesting approach to drug-related biomarker defi-
nition is the possibility to numerically encode all of the semantic
contained in the network under study in a low-dimensional
space and look for similarities between encoded entities in
this new space using vector-based distance measures. Graph
embedding methods are based on neural networks implement-
ing an encoder-decoder architecture; this latter able to translate
network entities in numeric vectors. It is possible to represent
the knowledge network containing interactions between pro-
teins, drugs and diseases in a low-dimensional space (an hyper-
plane) where each node of the graph can be represented as
a scalar vector and distances between points in the encoded
feature space are representative of (i) the association between
drugs and diseases, (ii) the similarity between diseases and (iii)
similarities between drugs’ mechanism of action. Gysi et al. [93]
report an example of drug repositioning based on the embedding

of a multi-modal graph containing information on three distinct
types of biomedical entities (i.e. drugs, proteins, diseases) and
edges representing four types of relationships between the enti-
ties (i.e. protein–protein interactions, drug–target associations,
disease–protein associations and drug–disease treatments). This
approach can be implemented by using an adaptation of the
Decagon tool [97] that implements a graph convolutional neural
network model for detecting polypharmacy side effects.

Tools based on transcriptomic regulatory networks

While the previous strategies can be more suited to target
viral/host interactors, functional annotation-based approaches
can be used to identify biomarkers related to the host response
to the infection. These approaches can exploit omics data
generated from infected samples to infer activated protein
modules and/or biochemical pathways that in turn can be used
to produce biomarker-targets for drug repositioning.

Li et al. [111] followed this kind of approach using transcrip-
tomic data of infected NHBE, A549_ACE2 and Calu3 human lung
epithelial cells from [47] (Table 1) and their normal counterparts
to identify differentially expressed genes and dysfunctional sig-
naling KEGG pathways activated by these latter. Drug bank data
were then exploited in order to find drugs potentially inhibiting
one or more of discovered pathways.

Master regulator analysis (MRA) exploits network models
derived from omics assays [112]. In the context of viral infection,
a master regulator (MR) can be identified as a regulatory protein
whose activity is sufficient to determine the success of the
infection process. In this setting, also the concept of tumor
checkpoints [112] (i.e. a hyperconnected and autoregulated mod-
ule built around MR proteins) can be translated in the concept
of infection checkpoint and thus regarded as a biomarker. In
particular, it is possible to extrapolate a set of crucial biomarkers
of the infection process, constituted by modules (subnetworks)
linked to an MR, i.e. a key-responsive transcriptional regulator
along with its direct targets. The VIPER tool [98] can be used to
identify transcription factors controlling the infection process
given a regulatory network built over infection transcriptome
data. This approach has been implemented in Laise et al. [99]
where the authors used transcriptome data from Calu-3 lung
adenocarcinoma cells infected with SARS-CoV to identify master
regulator proteins related to SARS-CoV infection process.

These models can be further enhanced by integrating omics
derived regulators with functional networks (e.g. known protein–
protein networks, pathway-based networks, etc.) thus obtaining
functional modules linked to MRs. Such an approach has been
successfully adopted in [101] where the authors used their corto
algorithm [100] to identify disease sub-modules related to SARS-
CoV infection derived co-expression network.

The availability of omics data from infected samples makes
it possible to derive biomarkers based on omics signatures (i.e.
omics profiles that are characteristics of the particular infec-
tion). In this case, the biomarker is represented by the set of
molecular features (e.g. genes, proteins, miRNAs) differentiat-
ing COVID-19 infected tissues from the normal counterparts.
Complex biomarker such as gene signatures can also be used to
discover potential drugs that can inhibit its components’ activity.
In particular, it can be compared to known drug signatures (e.g.
drug gene expression signatures from the Connectivity Map
dataset [113]) by using a Gene Set Enrichment-based Analysis
against transcriptional signatures associated to known drugs.
This approach is implemented in the MANTRA tool [102] and
has been applied to COVID-19 in Napolitano et al. [103] where the
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authors exploited the transcriptomics data from primary human
bronchial epithelial cell line (NHBE) [47] (Table 1).

Tools based on protein/ligand affinity structures

Structure-based approaches rely on the study of the structural
affinity between proteins and drug molecules that in turn drives
the interaction potential between these two. This approach is
particularly suited in targeting viral proteins and, in particu-
lar, in the discovery of drugs with potential inhibitory effects
against these latter. Structure-based approaches for targeting
viral proteins goes through three main steps: (i) identifications of
target viral proteins; (ii) modelling of the 3D target proteins struc-
tures; (iii) search for potentially interacting ligands. Several data
sources reporting the protein sequences of all known COVID-19
proteins along with models of their 3D structures are listed in
Section 6 and Table 1.

The search for drug repurposing biomarkers in this case
is reduced to the identification of (viral and/or host) proteins
involved in the infection process and showing structural affinity
for known compounds.

The task of determining the structural affinity can be
addressed following a rule-based approach, using molecular
docking screens, or by indirect approaches, inferring possible
protein/drug interacting pairs from molecular derived features
of these latter, given a statistical model trained on known and
validated molecule/protein interaction.

Docking simulations work by generating different poses
between a ligand and a protein given their 3D structure, obtained
by testing different orientations and conformations, and scoring
all these poses to determine the ligand affinity between the
two structures. This approach can be implemented by using
protein models from [76] (Table 1) and through different tools
like AutoDock Vina [104], applied by Yu et al. [105] to SARS-CoV-2
structural and non-structural proteins, and the Deep Docking
tool [106] applied by Ton et al. [107] to SARS-CoV-2 main protease.

Indirect approaches for structural affinity screening can be
implemented by means of machine learning tools.

These methods are capable of learning the high-dimensional
structure of a molecule starting from its raw sequence and
encode (embed) it in a low dimensional space, where the rela-
tionships between interacting proteins/ligands can be learnt by
means of (deep) neural networks or other machine learning
approaches. This approach has been implemented in the MT-DTI
tool [108] that is based on the natural language processing based
Bidirectional Encoder Representations from Transformers (BERT)
framework [114] and has been applied to SARS-CoV-2 protein
sequences extracted from the SARS-CoV-2 genome [1] (accession
NC_045512.2, see Section 6) to discover six coronavirus-related
targeted by FDA approved antivirals in [109].

Conclusion
The Bioinformatics community responded to the SARS-CoV-2
emergency with an unprecedented amount of work and research
outputs. We have shown that the vast amount of scientific
literature related to the computational approaches for the iden-
tification of biomarkers can be classified in five main categories.
Some categories are more focused on the data generation and
sharing such as transcriptomics profiling to identify the markers
of the viral infection in host tissues and to characterize the T cell
repertoire. A vast amount of work has also been performed to
develop AI-based automatic diagnostic tools to characterize the

severity of the disease image scans. However, the area where the
computational biology community has exploited all the arsenal
of approaches that were also developed in other fields such
as cancer and neuroscience is the identification of therapeutic
targets of existing molecules. However, we want also to mention
some potential limitations and opportunities for improvements
in some areas. In order to make significant inroads in terms of
diagnostic development, it would be necessary for profiles of
hundreds, if not thousands, of patients to be available. And it
seems that 9 months into this pandemic, we are still very far
from the mark. For example, regarding AIRR-seq, while sequenc-
ing performed on bulk samples can be informative it will be
at some point necessary to determine repertoires among sub-
populations separately. For TCR-seq, for instance, it would be
quite important to consider separately the repertoire of T helper
cells, effectors, memory or regulatory populations.

Overall, we have briefly described the most advanced
approaches, mainly based on the inhibition of the signaling
cascades activated by viral infection using the knowledge
encoded in gene regulatory networks and/or protein–protein
interaction networks. Indeed, a plethora of algorithms developed
in the area of systems biology has been successfully exploited
to prioritize existing drug and molecules; some of the predicted
drug are already in clinical trials. Finally, we have also reported
the main bioinformatics tools needed in the process of vaccine
development that is the ultimate way to combat the emerging
COVID-19 pandemic.

Key Points
• A vast amount of literature about COVID-19 biomarkers

has been already published so far; automatic text cate-
gorization methods are useful to identify key topics

• The analysis of a corpus of 27 000 papers resulted in 36
topics, five of them related to biomarker discovery and
drug target identification

• Selected topics span from machine learning and AI for
disease characterization to vaccine development and to
systems biology for therapeutic target identification.

• We include an up to date catalog of public transcrip-
tomics and proteomics dataset available to the compu-
tational biology community for discovery of biomarkers
and disease characterization.

Supplementary Data

Supplementary data are available online at Briefings in Bioin-
formatics.
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