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Abstract: Exposure to polycyclic aromatic hydrocarbons (PAHs) through diet is gaining concern due
to the risk it poses to human health. This study evaluated the bioaccessibility of PAHs contained in
charcoal-grilled beef and chicken in different segments of the gastrointestinal tract (GIT) with regard
to the degree of doneness and fat content of the meats. The levels of 15 PAHs in the grilled meat
samples and bioaccessible fractions were determined using high-performance liquid chromatography
(HPLC) equipped with PAH column, and UV and fluorescence detectors. Total PAHs were found in
beef (30.73 ng/g) and chicken (70.93 ng/g) before its digestion, and different PAHs’ bioaccessibility
were observed in the different segments of GIT, with the highest in the stomach followed by the small
intestine, despite the relatively higher bioaccessibility of individual PAHs in grilled beef as compared
to those in grilled chicken. Additionally, the PAHs’ bioaccessibility increased with the increase in the
degree of doneness. Positive linear correlation was observed for the PAHs’ bioaccessibility and the
fat contents of grilled meat. Overall, this study highlights the influence of meat doneness (cooking
time) and fat contents on the bioaccessibility and bioaccumulation of PAHs.

Keywords: bioaccessibility; polycyclic aromatic hydrocarbons (PAHs); grilled meat; meat doneness;
fat content

1. Introduction

Polycyclic aromatic hydrocarbons (PAHs) are organic pollutants released into the
environment through incomplete combustion of organic materials, with the emission from
anthropogenic events predominant [1]. Chemically, PAHs are compounds containing only
carbon and hydrogen atoms, arranged in two or more fused aromatic rings by sharing a
pair of carbon atoms between the rings. These compounds are mainly colorless, white, or
pale-yellow solids. PAHs are deleterious to the human body because of their toxic, muta-
genic and carcinogenic properties. They alter the DNA sequence and, hence, are increasing
the risk of cancer [2]. In fact, the International Agency for Research on Cancer (IARC) has
classified some PAHs as known, possibly or probably (Group 1, 2A or 2B) carcinogenic
to humans [3]. Among these, benzo[a]pyrene is recognized as carcinogenic to humans
(Group 1), while cyclopenta[cd]pyrene, dibenz[a,h]anthracene and dibenzo[a,l]pyrene are
probably carcinogenic to humans (Group 2A), and benz[j]aceanthrylene, benz[a]anthracene,
benzo[b]fluoranthene, benzo[j]fluoranthene, benzo[k]fluoranthene, benzo[c]phenanthrene,
chrysene, dibenzo[a,h]pyrene, dibenzo[a,i]pyrene, indeno [1,2,3-cd]pyrene and 5-methylchrysene
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are possibly carcinogenic to human (Group 2B). The harmful effects of PAHs depend on
the route of exposure, and a mixture of two or more PAHs is likely to be more carcinogenic
than an individual PAH [4].

Besides smoking and occupational exposure, diet is one of the major sources of
exposure to PAHs. Raw food usually does not contain high levels of PAHs. The occurrence
of PAHs in food is usually due to the food’s processing, such as drying and smoking, as well
as cooking of food at high temperature, such as grilling, frying and roasting [5]. Among
various kinds of food, consumption of grilled, barbecued and smoked meat serves as a
major means of exposing the body to PAHs Grilled, roasted and smoked foods especially
are gaining popularity nowadays, both in restaurants and at home [6]. The occurrence of
PAHs in meat can result from the pyrolysis of organic matter in meat, as well as from the
smoke produced by the incomplete combustion of fat in meat drippings dripped over the
fire during grilling using charcoal [2]. However, the levels of PAHs formed are dependent
on several factors, such as method of cooking, time, type of fuel, distance of food from the
heat source and fat contents [5,7,8]. In relation to the fat contents, studies have observed
the increase in PAH levels with the increase in fat contents in the food, which could mainly
be due to the fat pyrolysis process [9].

In the human gastrointestinal tract (GIT), not all ingested contaminants are available
for absorption. Those bound to the food matrices are not digested and, hence, are not
available for intestinal absorption and will be excreted through the feces. To this end,
contaminant bioaccessibility, which is defined as the fraction of contaminant released from
its matrix (food or soil) during digestion, has become an important tool to measure the risk
of contaminants from food [10]. Bioaccessibility of food contaminants can be assessed using
an in vitro digestion model that mimics the physiological/biochemical conditions in the
human GIT [10]. Regarding the bioaccessibility of PAHs, most of the studies focus on soil as
the matrix, assessing human uptake of PAHs in soil [11–14], while limited study has been
performed for the bioaccessibility of PAHs contained in food. Few studies have reported
on the bioaccessibility of PAHs in seafood, uncooked animal-based foods and cereal after
an in vitro human digestion [15–18]; however, little is known about the bioaccessibility of
PAHs contained in charcoal-grilled meat in the human GIT. It is worth mentioning that
different food matrices can be a factor affecting the bioaccessibility of PAHs in the human
GIT system, since different dietary components such as fats and fibers will influence the
bioaccessibility of PAHs [12].

In view of the effects of various factors on the occurrence of PAHs in grilled meat, and
the lack of information regarding the bioaccessibility of PAHs in grilled meat, this study
evaluates the bioaccessibility of PAHs in grilled beef and chicken in the different segments
of the human GIT in relation to the degree of doneness of meats. The relationship between
fat contents of grilled meats and the bioaccessibility of PAHs is also investigated.

2. Materials and Methods
2.1. Chemicals and Materials

The standard mixture of 15 PAHs, consisting of naphthalene (Na), acenaphthene
(Ac), fluorene (F), anthracene (A), phenanthrene (Phe), fluoranthene (Fl), pyrene (P),
benzo(a)anthracene (BaA), chrysene (Ch), benzo(b)fluoranthene (BbF), benzo(k)fluoranthene
(BkF), benzo(a)pyrene (BaP), indeno(1,2,3-cd)pyrene (IP), benzo(ghi)perylene (BgP) and
dibenzo(ah)antracene (DhA) was supplied by Supelco (Bellefonte, PA, USA). All solvents
used were of HPLC grade. Acetonitrile, dichloromethane, n-hexane and petroleum ether
were purchased from Merck (Darmstadt, Germany). Deionized water was obtained from
PURELAB® Classic Water Purification System (ELGA LabWater, High Wycombe, UK).
Components used to simulate juices for the in vitro human digestion model, including
potassium chloride (KCl), disodium sulfate (Na2SO4), sodium bicarbonate (NaHCO3) and
hydrogen chloride (HCl), were also supplied by Merck (Darmstadt, Germany). Potas-
sium thiocyanate (KSCN), sodium dihydrogen phosphate (NaH2PO4), sodium chloride
(NaCl), ammonium chloride (NH4Cl), glucuronic acid, uric acid, mucin and pancreatin
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were supplied by Accot (Shah Alam, Selangor, Malaysia). Albumin from bovine serum,
alpha amylase, pepsin and lipase were purchased from Sigma Aldrich (St. Louis, MO,
USA). Urea, glucose and bile extract were obtained from R&M Chemicals (Essex, UK).
Diatomaceous earth extraction cartridges (Extrelut, 20 mL) and refill materials were pur-
chased from International Sorbent Technology Ltd. (Hengoed, UK). Propylsulfonic acid
(PRS, 500 mg) solid-phase extraction (SPE) columns and silica gel were purchased from
Silica Chemical Division (Quebec City, QC, Canada).

2.2. Meat Sample Preparation and Marination

The raw meat, including beef fillet and chicken breast, was purchased from a local
market in Seri Serdang, Selangor and stored at −20 ◦C. To prepare the meat for marination
and grilling, frozen raw meat was thawed at 4 ◦C for 6 h and cut into cubes (1 cm × 1 cm). A
total of 82 meat samples were prepared. For marination, marinade was prepared according
to the recipe adapted from Jinap et al. [19], as shown in Table 1. All the ingredients were
purchased from a local grocery store. To prepare the marinade, ingredients were mixed
and blended using a kitchen blender (Blendforce BL4291 model, Tefal, Rumilly, France) for
2 min. The beef and chicken meat samples were marinated according to the Malaysian
satay preparation [19]. Bamboo sticks were used to skew the marinated meats.

Table 1. Amount of ingredients used for the preparation of marinades (for 1 kg meat).

Ingredient Amount (g)

Cumin 50
Shallots 150

Coriander powder 100
Lemongrass 100

Turmeric powder 50
Sugar 100
Salt 10

Cooking oil 10

2.3. Charcoal Grilling of Marinated Meat Samples

The marinated beef and chicken meat samples were placed on a satay-type grill
(fueled by charcoal) and grilled to three different degrees of doneness (rare, medium and
well-done). Grilling times and surface browning/charring were used to determine the
degree of doneness. These parameters were according to the report of Jinap et al. [19] and
are summarized in Table S1. When it was halfway through the cooking time, the meat
samples were turned and grilling continued. The grilled meat samples were homogenized
in a blender and stored at −20 ◦C before PAH extraction or bioaccessibility testing.

2.4. Bioaccessibility Test of PAHs Using In Vitro Human Digestion Model

To assess the bioaccessibility of PAHs in grilled meat samples in the different segments
of the human GIT, the grilled meat samples were digested in vitro using saliva, gastric,
duodenal and bile juices, adopting the method of Maulvault et al. [20]. The digestive juices
were prepared accordingly, and their compositions were summarized in Table S2. Where
necessary, 1 M HCl was used to adjust the pH of the digestive juices. A weight of 5 g of
grilled meat samples was ground and transferred into a 50 mL centrifuge tube. For in vitro
saliva digestion, 5 mL of artificial saliva was added and the mixture was stirred for 5 min
at 37 ◦C. The saliva digestion was stopped by reducing the temperature to 4 ◦C. Then, the
suspension was centrifuged at 7000× g for 10 min and the supernatant was collected as a
bioaccessible fraction of saliva digestion. The particulate residue remaining in the tube was
further subjected to in vitro gastric digestion by the addition of 12 mL of artificial gastric
juice, and incubated for 2 h at 37 ◦C with constant rotation. After 2 h, the temperature
of the suspension was lowered to 4 ◦C to stop the gastric digestion. The suspension was
subjected to centrifugation at 7000× g for 10 min. The supernatant was collected as the
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bioaccessible fraction of gastric digestion. The remaining residue was next subjected to
intestinal digestion, where 12 mL of artificial duodenal juice was first added, followed by
6 mL of artificial bile juice (after 5 min). After incubation at 37 ◦C for 2 h with constant
rotation, the digestion by intestinal juice was stopped by lowering the temperature to 4 ◦C.
After centrifugation of the suspension at 7000× g for 10 min, the supernatant was collected
as a bioaccessible fraction of intestinal digestion. The bioaccessible fractions collected from
all digestive phases were stored at −20 ◦C until they could be further analyzed for PAH
content. A schematic representation of the in vitro digestive model is shown in Figure S1.
The bioaccessibility of PAHs in different segments of the GIT can be calculated as follows:

Bio (%) =
PAH in bioaccessible f raction (µg)

PAH in sample be f ore digestion (µg)
× 100% (1)

2.5. Extraction of PAHs and Clean-Up

Sample preparations for determination of PAH contents was performed with solid-
phase extraction (SPE) using diatomaceous earth (Extrelut-20) columns coupled with
propylsulfonic acid (PRS) columns, according to the previously described method of
Janoszka et al. [21], with some modifications. Briefly, 5 g of grilled meat samples or bioac-
cessible fractions were homogenized with 10 g Na2SO4 in 15 mL 1 M cold NaOH solution
for 3–6 h. Each of the samples was mixed with Extrelut refill material (diatomaceous earth,
17 g) and the mixture was loaded into a 20 mL Extrelut column, which was connected to
a PRS SPE column. Dichloromethane (60 mL) was used to elute the PAH fraction. For
clean-up, the dichloromethane extract was evaporated to dryness and re-dissolved in 1 mL
of n-hexane. The resulting solution was then placed on top of a column containing 10 g
of silica gel (preconditioned with 25 mL n-hexane). The column was eluted with 60 mL
n-hexane: dichloromethane (60:40 v/v), and the eluate was collected. The purified PAH’s
fraction was concentrated to dryness. Acetonitrile (250 µL) was used to dissolve the dried
PAH residue for HPLC analysis.

2.6. Preparation of Standard Solutions of PAHs

The stock standard solutions of 100 µg/mL were prepared by diluting the purchased
standards in HPLC grade acetonitrile. The working solutions at different concentrations
(0.1–100 ng/mL) were then prepared by diluting the stock solutions with the same solvent.
The stock and working standard solutions were stored at −20 ◦C prior to use. PAH standard
solutions at eight concentrations of 0.1, 0.5, 1, 10, 25, 50, 75 and 100 ng/mL were injected
into the HPLC to construct the standard calibration curve used for PAH quantification.

2.7. Determination of PAHs in the Sample Using HPLC

Quantitative analysis of 15 PAHs was performed using a previously described
method [18], with modifications. A Waters (Milford, MA, USA) high performance liq-
uid chromatography (HPLC) equipped with ultraviolet (UV, 254 nm) and fluorescence
(FLD, λex = 360 nm, λem = 460 nm) detectors was used. Compounds were separated on a
PAH column (5 µm, 250 mm × 4.6 mm; Hichrom, Reading, UK), with water (solvent A)
and acetonitrile (solvent B) flowing at 1.5 mL/min as a mobile phase. The solvent system
started with 50% B which was maintained for 5 min and linearly increased to 100% B
in 25 min. In the next 10 min, the solvent system resumed at 50% B. The excitation and
emission wavelengths were 276/330 nm for Na, Ac and F, 296/400 nm for Phe, BaA, Ch,
BkF and BaP, 340/425 nm for A, Fl, P, BbF, DhA and BgP, and 246/488 nm for IP. Before
injection into the HPLC system, each sample of PAH solution was passed through 0.45 µm
syringe filter. The PAHs were identified by comparing their retention times with those of
the standard PAHs. The concentrations of PAHs in grilled meat samples and bioaccessible
fractions were determined using an external calibration curve of PAH standards.
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2.8. Method Validation

The HPLC/UV-FLD method for quantification of PAHs was validated with respect
to parameters including linearity, limit of quantification (LOQ), limit of detection (LOD)
and recovery, as previously described by Lee et al. [2]. The linearity was determined
by regression analysis, where calibration curves for individual PAHs were constructed
by plotting average peak area against the concentration, and a regression equation was
generated. Meanwhile, LOD and LOQ were defined as the lowest concentration of the
sample determined by the analytical method to obtain the signal-to-noise ratios of 3:1 and
10:1, respectively. Eight replicates of PAH standard mixtures were injected into the HPLC
system to determine the LOD and LOQ. To evaluate the accuracy and efficiency of the
extraction method, a recovery test was carried out. The experiment was performed in
seven replicates by spiking 40 ng of PAHs mixed standards in each grilled sample (5 g).
The spiked samples were stirred for one hour at room temperature before extraction, and
the un-spiked ones were used as a control. Recoveries were calculated from the differences
of concentrations between the spiked and un-spiked samples in the amount of PAHs.
According to European Union criteria for food contaminant control, a recovery range of
50–170% is considered acceptable [22].

2.9. Determination of Fat Content in Grilled Meat Samples

All the meat samples were analyzed for fat content using Soxhlet method (AOAC
Method 960.39; [23]), with some modifications. Briefly, 2 g of the meat sample were added
to an extraction thimble, then dried in an oven at 125 ◦C for about 80 min. A pre-dried
boiling flask was weighed, and the fat content of the samples was extracted using petroleum
ether. After 6 h of extraction, the fat content was calculated using the following equation:

% Fat (dry weight basis) =
g o f f at extracted
g o f dried sample

× 100% (2)

2.10. Dietary Intake of PAHs through Grilled Beef and Chicken Consumption

Based on the bioaccessibility of PAHs from this study, dietary intake (DI) of PAHs
through grilled beef and chicken consumption was calculated using the following equation:

DI =
C × M × IR

BW
(3)

where C is the average concentration of total PAHs in µg/kg, M is food consumption rate,
IR is the bioaccessibility of PAHs determined in this study and BW is the average body
weight of the general population [24].

2.11. Statistical Analysis

Data were expressed as mean ± SD for seven replicates. One-way analysis of variances
(ANOVA) with Tukey’s post hoc test was performed to determine the significant differences
in bioaccessibility of PAHs at different GIT segments, as well as among the grilled meat
samples with different degrees of doneness and fat contents, at a confidence level of 95%.
Pearson correlation was used to analyze the relationship between bioaccessibility of PAHs
and degrees of doneness and fat content of grilled meat samples. Statistical analysis was
performed using MS Excel (version 2013, Microsoft, Redmond, WA, USA) and Minitab
(Version 16, Minitab Inc, State College, PA, USA) software.

3. Results and Discussion
3.1. Evaluation of Analysis Procedure Performance

Optimization of HPLC procedures for determining the 15 analyzed PAHs was done
using an HPLC system equipped with UV and FL detectors. Emission and excitation
wavelengths were selected based on previous studies [25,26] to obtain high sensitivity
for the detection of the analyzed compounds. Identification of the PAHs in grilled meat
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samples was done based on the comparison of their retention times with those of PAH
standards. Figure 1 shows the chromatogram of the 15 PAHs’ standards, which were
detected at four excitation and emission wavelengths of fluorescence detector. As observed
on the chromatograms, the elution order of the PAHs was in the order of increasing
molecular weight. Compounds with the same molecular weight were also separated
well. Furthermore, no interfering peak appeared in the areas of concern, and therefore the
chromatogram was acceptable for the quantification of the analyzed PAHs.

Analytical performance of the developed HPLC/UV-FLD method was assessed
through the estimation of LOD, LOQ, linearity and recovery. The results of LOD, LOQ
and linearity were displayed in Table 2. The LODs and LOQs for the 15 analyzed PAHs
ranged from 0.025–5 ng/g and 0.075–15 ng/g, respectively. This suggests that the de-
veloped method offered high sensitivity for the detection of the PAH compounds in the
samples [23]. The LOD and LOQ, reported by Purcaro et al. [27] for the method analysing
BaP, BaA, BbF and Ch, were ≤0.3 and ≤0.9 µg/kg, respectively. On the other hand, the
regression coefficient of the standard curves between the peak area and concentrations of
15 PAHs ranged from 0.970 to 0.987, showing acceptable linearity of the standard curves.

Table 2. Linear equations, coefficients of regression, limit of detection (LOD) and quantification
(LOQ) obtained for quantification of PAHs.

Standards Concentration
Range (ng/g)

Linear
Equation

Regression
Coefficient (R2)

LOD
(ng/g)

LOQ
(ng/g)

Naphthalene 0.1–100 y = 6.4792x + 4.7790 0.981405 1.5 4.5
Acenaphthene 0.1–100 y = 1.7493x − 3.4145 0.987578 0.6 1.8

Fluorene 0.1–100 y = 1.8027x − 2.8453 0.987042 0.7 2.1
Phenanthrene 0.1–100 y = 8.882x − 6.6481 0.965233 5 15

Anthracene 0.1–100 y = 6.2336x − 2.5416 0.984748 0.7 2.1
Fluoranthene 0.1–100 y = 5.3291x − 2.1768 0.981000 0.8 2.4

Pyrene 0.1–100 y = 7.4040x − 3.8008 0.979026 0.6 1.8
Benzo(a)anthracene 0.1–100 y = 1.4339x − 3.8190 0.977714 0.2 0.6

Chrysene 0.1–100 y = 4.6118x − 1.4542 0.970663 1 3
Benzo(b)fluoranthene 0.1–100 y = 1.4982x − 1.6602 0.987029 0.8 2.4
Benzo(k)fluoranthene 0.1–100 y = 6.2506 x − 2.1473 0.983345 0.025 0.075

Benzo(a)pyrene 0.1–100 y = 4.2828x − 7.3741 0.986418 0.5 1.5
Dibenzo(ah)anthracene 0.1–100 y = 4.4584x − 6.9380 0.986124 0.04 0.12

Benzo(ghi)perylene 0.1–100 y = 1.4985x − 1.2393 0.977307 0.03 0.09
Indeno(1,2,3-cd)

pyrene 0.1–100 y = 2.0460x − 1.3854 0.983383 3 9
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The recoveries of the PAHs spiked in the grilled meat samples are shown in Table 3.
The results revealed a wide range of PAH recoveries in the grilled meat samples, with
13.68–132.64% and 48.79–98.85% for grilled beef and chicken samples, respectively. As
compared to grilled beef, grilled chicken samples show a relatively lower recovery of
PAHs. This may be due to differences in the type of meat and hence the chemical compo-
sitions, which eventually affect the efficiency of PAH extraction. In addition, the present
findings vary from previous reports analyzing the same PAHs in thermally prepared
meats [26,28,29]. This may be attributed to the different sample matrix as well as the
different PAH extraction and purification procedures [16]. In addition, the complex food
matrices, complex nature of the marinades used and also absence of a large amount of other
materials apart from PAHs may also disrupt the analytical determination and may decrease
the extraction efficiency of PAHs [30]. According to the European Union’s criteria for food
contaminant control (SANCO document No. 12571/2013) [22], which is usually referred to
for pesticide residue and other food contaminants, a range of 70–120% should be achieved
recovery of analytes. Therefore, for subsequent analysis, only the PAHs with recovery in
the range of 70–120% were considered to ensure reliable PAH quantification in the present
study, including acenaphthene, phenanthrene, anthracene, pyrene, benzo(k)fluoranthene,
benzo(a)pyrene and indeno(1,2,3-cd)pyrene.

Table 3. Recoveries of PAHs spiked in grilled beef and chicken meat samples.

Standards Replication Spiked
Concentration (ng/g)

Recovery of PAHs (%)

Grilled Beef Grilled Chicken

Naphthalene 7 8 94.82 ± 6.37 60.85 ± 0.11
Acenaphthene 7 8 94.83 ± 1.46 94.83 ± 6.24

Fluorene 7 8 13.68 ± 0.16 98.85 ± 1.79
Phenanthrene 7 8 89.54 ± 8.65 80.69 ± 5.56

Anthracene 7 8 97.98 ± 4.10 74.98 ± 0.39
Fluoranthene 7 8 57.88 ± 3.13 81.1 ± 3.13

Pyrene 7 8 80.35 ± 9.56 85.21 ± 1.47
Benzo(a)anthracene 7 8 74.96 ± 2.67 48.79 ± 1.80

Chrysene 7 8 43.37 ± 0.93 64.13 ± 1.20
Benzo(b)fluoranthene 7 8 68.47 ± 2.81 56.89 ± 0.35
Benzo(k)fluoranthene 7 8 94.61 ± 2.87 75.07 ± 3.53

Benzo(a)pyrene 7 8 91.31 ± 8.15 91.31 ± 8.15
Dibenzo(ah)anthracene 7 8 132.64 ± 3.14 64.34 ± 2.90

Benzo(ghi)perylene 7 8 87.84 ± 1.69 68.88 ± 9.79
Indeno(1,2,3-cd) pyrene 7 8 79.42 ± 1.39 81.35 ± 1.27

3.2. Bioaccessibility of PAHs in Grilled Meat in Different Parts of Digestive System

The bioaccessibility of PAHs in grilled meats was assessed at the different segments
of the GIT, namely mouth, stomach and small intestine for the salivary, gastric and in-
testinal digestion, respectively. The bioaccessibility results for grilled beef are presented
in Figure 2, while Figure 3 displays the results for grilled chicken samples. The bioacces-
sibility of indeno(1,2,3-cd)pyrene was not able to be determined, as its concentration in
the bioaccessible fractions of all studied samples was below the limit of detection. This
could be attributed to its low polarity that hindered its effective extraction by common
solid phase extraction materials [31]. Besides, as reported by Yu et al. [17], the high-
molecular weight (HMW) of PAHs such as indeno(1,2,3-cd)pyrene, dibenzo(ah)anthracene
and benzo(ghi)perylene is usually undetected or below the limits of detection, particularly
in livestock and poultry samples.
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parts of digestive system. Different letter indicates significant difference in PAH’s bioavailability
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A wide range of PAHs’ bioaccessibility was detected in the mouth, stomach and small
intestine. The bioaccessibility of the analyzed PAHs in grilled beef ranged from 3.18 to
60.44%, 3.40 to 96.71% and 2.38 to 81.02% in the salivary, gastric and intestinal conditions,
respectively. Meanwhile, those in grilled chicken ranged from 0.67 to 51.13%, 7.36 to 87.77%
and 1.26 to 63.55%, respectively. Overall, the results showed that there was variation
between the PAH’s bioaccessibility in grilled beef and chicken, with those in grilled beef
exhibiting greater bioaccessibility. This could be attributed to the variation in PAH’s levels
in grilled beef and grilled chicken, in agreement with the previous study [32], in which the
concentration of PAHs was higher in charcoal grilled beef as compared to charcoal grilled
chicken. The different concentration of PAHs in grilled beef and grilled chicken could be
contributed to by the difference in fat content, myoglobin content and marbling between
the beef and chicken meat muscles [33].

Regardless of the meat type and cooking doneness, the PAHs in grilled beef and
chicken showed the highest level of bioaccessibility in the stomach, followed by the small
intestine. These PAHs were only slightly bioaccessible in the mouth. The low bioaccessi-
bility in the mouth was due to the short residence time that the PAHs spent in the mouth
(5 min), thus, salivary digestion may not contribute significantly to PAH’s release from
the grilled meat. Meanwhile, the high bioaccessibility of PAHs in the stomach was due
to the low pH (1.3) of gastric juice, which helped to digest the grilled meat and, hence,
release more PAHs. However, the subsequent neutralizing effect by bile salts in the small
intestine resulted in decreased bioaccessibility of PAHs in the intestinal digestion step.
These results are contrary to the previous findings [15,18], wherein the bioaccessibility
of PAHs in the intestinal condition was significantly higher than the gastric condition.
The difference in the findings could be attributed to the different incubation time during
the in vitro digestion of the food. The incubation time during the gastric and intestinal
digestion used in the current study was respectively higher and lower as compared to
the previous studies [15,18]. Besides, factors such as enzyme concentration, pH, type of
enzymes used, volume of digestive juices, amount and water content of samples in the
digestive model can also contribute to the variation in results [20].

3.3. Bioaccessibility of PAHs in Grilled Meat at Different Degree of Doneness

Degree of doneness is one of the main issues for PAH’s formation in cooked meat. In
order to explain the effect of degree of doneness on the bioaccessibility of PAHs, the chicken
and beef samples were grilled using charcoal at three levels of doneness, namely rare,
medium and well-done. The degree of doneness was based on the browning of the sample
meats’ surfaces and total cooking time [19]. The bioaccessibility of PAHs in grilled beef
and chicken at varying degrees of doneness is presented in Figures 4 and 5, respectively.

The bioaccessibility of the analyzed PAHs in rare, medium and well-done grilled beef
was in the range of 2.38–43.75%, 5.27–63.55% and 6.51–84.83%, respectively. Meanwhile,
the ranges for rare, medium and well-done grilled chicken were 0.67–17.33%, 1.30–32.50%
and 2.95–87.77%, respectively. Overall, the results demonstrated that increasing the degree
of meat doneness increased the average bioaccessibility of PAHs from the meat matrix.
Bioaccessibility of PAHs was higher in well-done grilled meat as compared to rare and
medium grilled samples. These results can be explained by the fact that well-done meats
were exposed to heat longer than rare and medium cooked samples, resulting in a charred
surface with a high PAH level and hence high bioaccessibility, in line with previous
studies reporting an increase in carcinogenic PAHs with increasing duration of cooking, or
“doneness”, of the meat [19,33].
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pyrene; B(k)F, benzo(k)fluoranthene; B(a)P, benzo(a)pyrene.
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3.4. Effect of Fat Content on the Bioaccessibility of PAHs in Grilled Beef and Chicken

The fat content of the meat grilled to different levels of doneness was assessed and
a linear regression analysis was performed to evaluate the relationship between the fat
content and the bioaccessibility of PAHs in grilled meat. The percentage (%) of fat in
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the grilled beef and chicken at different degrees of doneness is presented in Figure 6.
The results show that the fat contents of the meat samples increased with the degree of
doneness. This could be explained by the concentrating effect of fat as moisture is lost with
the increasing level of doneness.
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Furthermore, the correlation between the fat contents and bioaccessibility of PAHs in
grilled beef and chicken is shown in Figure 7, and the results revealed positive correlations
among these two parameters. These results are in accordance with findings, reported by Yu
et al. [17], in which positive linear relationships between the bioaccessibility of PAHs and
the lipid contents in animal-based foods were observed. Since PAHs are highly lipophilic
molecules, they were expected to accumulate in the fat contained in food material. During
digestion, fat containing PAHs will be emulsified by bile and brought into the liquid phase,
becoming accessible for uptake. Therefore, it can be suggested that the constituents of
foods, particularly the fat content, exhibit a great influence on the bioaccessibility of PAHs.
The bioaccessibility of PAHs can hence be estimated via the calculation of the fat contents
in food.

3.5. Estimation of Daily Dietary Intake (DI) of PAHs via Consumption of Grilled Beef and Chicken

Other than occupational exposure, diet makes a significant contribution (>70% in non-
smokers) to PAH intake [14]. Intake via grilled, barbecued and smoked meat contributes a
substantial proportion of total dietary intake of PAHs, since these foods are gaining popu-
larity nowadays, both in restaurants and at home [6]. In this present study, daily dietary
intake (DI) of PAHs via consumption of grilled beef and chicken was estimated through a
formula adopted from Nasher et al. [20]. The daily DI of PAHs via consumption of grilled
beef and chicken is presented in Tables 4 and 5, respectively. For grilled beef, the PAH
with the highest daily DI was benzo(k)fluoranthene (1.31 µg/day), via the consumption of
medium-grilled meat and intestinal digestion. For grilled chicken, benzo(k)fluoranthene
also exhibited the highest daily DI (23.22 µg/day), however, unlike grilled beef, it was
through the consumption of well-done grilled chicken and gastric digestion. In contrast to
the report of dos Santos Fogaça et al. [16], wherein the cooking process did not influence
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the PAH’s DI, the results of the current study revealed that the DI of the PAHs increased
with the increase in cooking time (degree of meat doneness). Variation in the results
could be attributed to the different food matrices which contributed to the different PAHs’
bioaccessibility, since bioaccessibility was integrated into the DI estimation. Overall, the
results in the present study revealed consumption of medium grilled beef and well-done
grilled chicken played a very important role in PAH ingestion, especially the intake of
benzo(k)fluoranthene.

Int. J. Environ. Res. Public Health 2021, 18, x FOR PEER REVIEW 17 of 20 
 

 

 

 
Figure 7. Relationship between the bioaccessibility of PAHs and the fat content in (a) grilled beef and (b) grilled chicken 
samples. 

3.5. Estimation of Daily Dietary Intake (DI) of PAHs via Consumption of Grilled Beef and Chicken 
Other than occupational exposure, diet makes a significant contribution (>70% in 

nonsmokers) to PAH intake [14]. Intake via grilled, barbecued and smoked meat 
contributes a substantial proportion of total dietary intake of PAHs, since these foods are 
gaining popularity nowadays, both in restaurants and at home [6]. In this present study, 
daily dietary intake (DI) of PAHs via consumption of grilled beef and chicken was 

Figure 7. Relationship between the bioaccessibility of PAHs and the fat content in (a) grilled beef and
(b) grilled chicken samples.



Int. J. Environ. Res. Public Health 2022, 19, 736 17 of 19

Table 4. Daily dietary intake (DI) of PAHs via consumption of grilled beef.

PAH

Dietary Daily Intake (DI, µg/day)

Mouth Stomach Small Intestine

Rare Medium Well-Done Rare Medium Well-Done Rare Medium Well-Done

Acenaphthene 0.04 0.27 0.19 0.19 0.34 0.22 0.52 0.62 0.57
Phenanthrene 0.28 0.39 0.31 0.40 0.47 0.44 0.42 0.62 0.52

Anthracene 0.04 0.04 0.03 0.07 0.10 0.09 0.08 0.13 0.11
Pyrene 0.13 0.16 0.35 0.45 0.64 0.38 0.59 0.81 0.67

Benzo(k)fluoranthene 0.05 0.18 0.06 0.46 1.13 0.82 0.82 1.31 1.09
Benzo(a)pyrene 0.11 0.41 0.59 0.69 1.07 0.86 0.75 1.10 0.9

Table 5. Daily dietary intake of PAHs via consumption of grilled chicken.

PAH

Dietary Daily Intake (DI, µg/day)

Mouth Stomach Small intestine

Rare Medium Well-Done Rare Medium Well-Done Rare Medium Well-Done

Acenaphthene 0.17 0.34 0.78 4.56 6.18 9,13 3.83 4.30 6.90
Phenanthrene 1.25 0.30 4.38 1.96 3.63 8.81 1.97 2.21 6.73

Anthracene 0.21 1.02 2.21 0.50 1.94 3.97 0.33 1.67 2.79
Pyrene 0.87 2.26 3.49 4.36 5.24 7.24 3.23 4.73 5.75

Benzo(k)fluoranthene 2.36 5.62 5.78 3.14 8.59 23.22 2.96 7.41 9.42
Benzo(a)pyrene 1.85 2.24 2.85 2.64 3.76 11.48 2.46 3.27 5.95

4. Conclusions

In this study, the bioaccessibility of PAHs in grilled beef and chicken with different
degrees of doneness in the different segments of the GIT was investigated. The relationship
between the fat contents of grilled meats and the bioaccessibility of PAHs was also studied.
For the PAHs detected, the results showed variation between the PAH’s bioaccessibility in
grilled beef and chicken, with those in grilled beef exhibiting relatively higher bioaccessi-
bility. The highest bioaccessibility of PAHs resulted from gastric digestion, followed by
intestinal and salivary digestions. In relation to the degree of doneness, the bioaccessibility
of PAHs increased with the increase in meat doneness, and they were positively correlated
to the fat contents of the grilled meats. The estimated daily intake of PAHs was also found
to be affected by the degree of meat doneness, which could pose cancer risk via long
term ingestion of grilled meats. Overall, the findings of this study reveal the influence of
meat doneness (cooking time) on the bioaccessibility and bioaccumulation of PAHs. These
findings can be employed in health risk assessment of human exposure to PAHs due to
consumption of grilled meat at different degrees of doneness.
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