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Introduction: A number of national/multi-national networks provide annual estimates of influenza vac-
cine effectiveness (VE) based on the test-negative design. Most of these networks use subject self-
reports to define influenza vaccination history. In this study, we used simulations to estimate the degree
to which self-reported vaccination status can bias test-negative VE estimates.
Methods: We simulated a population whose members are at risk for acute respiratory illness (ARI) due to
influenza and for ARI due to other respiratory pathogens. Vaccination was assumed to reduce the risk of
influenza but not of non-influenza ARI. We simulated a range of possible values for VE and for vaccine
coverage. Across simulations, we varied the sensitivity and specificity of self-reported vaccination status
relative to true vaccination. We estimated bias as the percent difference in VE in the presence of misclas-
sification relative to true simulated VE.
Results: Assuming self-report has sensitivity of 95% and specificity of 90%, estimated VE underestimated
true VE by 16% (95% confidence interval, 4–30%). Decreasing specificity of self-reports resulted in greater
bias than decreasing sensitivity of self-reports. Bias also increased as vaccine coverage decreased.
Conclusions: The use of self-reported influenza vaccination history can meaningfully bias influenza VE in
test-negative studies. Researchers using test-negative designs should attempt to supplement or validate
self-reported vaccination history using additional data sources.
� 2018 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Over the past decade or so, the test-negative design has become
the global standard for observational studies of influenza vaccine
effectiveness (VE) [1–3]. As use of the test-negative design has
increased, researchers have paid increasing attention to the
assumptions of this design and the biases that may result from vio-
lating these assumptions [4–8]. Less work has been done to explore
the consequences of information bias on test-negative VE
estimates.

Information bias arises when subjects’ outcomes, exposures, or
covariates are ascertained with error [9]. For test-negative influ-
enza VE studies, outcome misclassification can occur due to the
imperfect sensitivity and specificity of laboratory tests for influen-
za. We have previously explored the effects of outcome misclassi-
fication in this context [10]. Another potential source of
misclassification occurs in the ascertainment of subjects’ vaccina-
tion history. Most major influenza VE study networks define
subjects’ exposure to the current season’s influenza vaccine either
wholly [2,3] or partially [1,11] from subjects’ self-reports. Of con-
cern, self-reported influenza vaccination tends toward false posi-
tives, in which unvaccinated individuals incorrectly report have
received influenza vaccine [12–15]. Notably, the reported speci-
ficity of self-reported vaccination has rarely exceeded 90%, and
with at least one reported value as low as 38%. The present study
uses simulations to explore the effects of exposure misclassifica-
tion on test-negative VE estimates.
2. Methods

We previously developed a simulation model to explore the
effects of misclassification in test-negative studies [10]. In this
model, we simulate a population whose members are at risk for
acute respiratory illness (ARI) due to influenza and for ARI due to
other respiratory pathogens. We assumed that risk of influenza
ARI was independent from risk of non-influenza ARI, and that sub-
jects could be infected with influenza only once but could be have
multiple non-influenza ARI infections. To focus on the effects of
exposure misclassification, we assumed that other sources of bias
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are absent. In particular, we assume no outcome misclassification,
no confounding by age or other factors, and no selection bias by
differential healthcare seeking between vaccinated and unvacci-
nated subjects [7]. Our simulation model involves six parameters
(Table 1):

� VE = influenza vaccine effectiveness against medically attended
influenza

� IPflu = incidence proportion (risk) of medically attended ARI due
to influenza

� IPother = incidence proportion of medically attended ARI due to
non-influenza pathogens

� Sens = sensitivity of self-reported influenza vaccination history
� Spec = specificity of self-reported influenza vaccination history
� Pv = probability of vaccination (i.e. vaccine coverage).

We assumed that IPflu was 5% over the course of the influenza
season and that IPother was 15% (Table 1) [7,10]. We also assumed
the simulated population contained 50,000 individuals, which
results in test-negative study sizes that are consistent with those
in observational VE studies [1–3]. We assumed VE of 50% as a base
case, with VE of 10% in sensitivity analyses to simulate a year in
which the vaccine is antigenically mismatched to the dominant cir-
culating virus type/subtype [16]. We simulated a range of scenar-
ios with different values for the assumed sensitivity (Sens) and
specificity (Spec) of self-reported vaccination history. Based on
prior observational studies, sensitivity of self-reports has ranged
from 0.93 to 0.98 (median, 0.95) relative to documented vaccina-
tion, while specificity has ranged from 0.38 to 0.94 (median,
0.78) [12–15]. We also varied vaccine coverage (Pv) across scenar-
ios, from 10% to 70%.

For each combination of parameters, we ran 100 iterations of the

simulation model. In each simulation we estimated cVE as (1-OR),
where OR is the odds ratio for vaccination in persons with influenza
ARI vs. non-influenza ARI from a test-negative study. We calculated

the mean cVE and 95% confidence limits across the 100 simulation
iterations. We also calculated the mean bias proportion in each sce-

nario as bVE
VE � 1

� �
. For example, cVE of 40% when true VE is 50%

would have a bias proportion of 0.2. Analyses were conducted using
SAS Version 9.4 (SAS Institute, Cary NC) and R Version 3.3.3 (The R
Foundation for Statistical Computing, Vienna, Austria).
3. Results

Under the base case, self-report was assumed to be 95% sensi-
tive and 90% specific, with 40% vaccine coverage, and true VE to
be 50%. In this base case, the mean estimated VE across simulations
was 42% (95% CI, 35–48%). This represents a bias proportion of
�0.16 (95% CI, �0.04 to �0.3) relative to the true simulation VE.
Table 1
Parameters used in the simulation model.

Parameter Value in base
case

Range in sensitivity
analyses

Vaccine effectiveness (VE) 50% 10–50%
Incidence proportion of influenza ARI

(IPflu)
5% N/A

Incidence proportion of non-influenza
ARI (IPother)

15% N/A

Sensitivity of self-reported
vaccination history (Sens)

0.95 0.4–1.0 (in 0.01
increments)

Specificity of self-reported
vaccination history (Spec)

0.90 0.4–1.0 (in 0.01
increments)

Probability of vaccination (Pv) 40% 10–70% (in 1%
increments)
With true VE set to 10%, the relative bias in the base case was sim-
ilar, with estimated VE of 8.3% (95% CI, �1.1–17%), a bias propor-
tion of �0.17.

Imperfect sensitivity of self-report had a modest impact of esti-
mated VE (Fig. 1A). When holding specificity constant at 1.0 and
varying specificity from 0.4 to 1.0, the lowest estimated VE was
41% (95% CI, 30–50%), a bias proportion of �0.18 (Fig. 1). In con-
trast, imperfect specificity had a much larger impact on estimated
VE (Fig. 1B). With sensitivity of 1.0, specificity of 0.4 resulted in
estimated VE of 26% (95% CI, 17–34%), a bias proportion of �0.48.

Across simulations, bias in estimated VE also depended on vac-
cine coverage (Fig. 2). In the base case, estimated VE was 45% (95%
CI, 38–51%) when vaccine coverage was 70%. If vaccine coverage
was as low as 10%, estimated VE was 26% (95% CI, 15–35%), a bias
proportion of �0.48.
4. Discussion

Misclassifying subjects’ exposure status will bias the results
from any epidemiologic study, but the magnitude of bias will
depend on the frequency of the exposure and the degree of misclas-
sification. Self-reported influenza vaccination, relative to vaccina-
tion records from electronic health records or registries, has
typically shown high sensitivity across various populations [12–
15]. Specificity of self-reports has been lower and more variable,
particularly in some sub-populations such as older adults. Observa-
tional studies of influenza VE have generally been conducted among
populationswith vaccine coverage ranging from15–40% [17–20]. At
this level of coverage, our simulations suggest that the use of self-
reported vaccination history can meaningfully bias influenza VE
estimates in test-negative studies. In our base case scenario, which
may be a ‘‘best case” scenario in practice, use of self-reported vacci-
nation history could lead to underestimating VE by 16%.

This finding contrasts with our prior work on information bias,
which suggested that misclassification of outcomes was unlikely to
Fig. 1. Estimated vaccine effectiveness (VE) from test-negative studies with
imperfect self-reported vaccination, when (A) specificity of self-report is fixed at
1.0 and sensitivity varies, and (B) sensitivity is fixed at 1.0 and specificity varies.



Fig. 2. Estimated vaccine effectiveness (VE) from test-negative studies with varying levels of vaccine coverage in the source population, assuming self-reported vaccination
status has sensitivity of 0.95 and specificity of 0.9.
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cause significant bias in test-negative influenza VE estimates [10].
This is due to the high sensitivity and specificity of polymerase
chain reaction tests for influenza, which are the de facto standard
for test-negative studies. In the case of exposure misclassification,
low specificity of self-reports increases the likely information bias.
Self-reported vaccination may lack specificity for several reasons,
such as the fact that it is easier to recall the occurrence of an event
(i.e. receiving a vaccine) than non-occurrence, and the potential for
false positive reports from subjects who may wish to appear com-
pliant with vaccine recommendations [15]. Although extremely
low values for specificity of self-reported vaccination(<40%) may
be unlikely in most situations, even specificities in the upper
reported range can cause bias. A recent simulation study by De
Smedt and colleagues reached a similar conclusion, as they found
that exposure misclassification was likely to result in greater bias
than outcome misclassification in test-negative studies [21].

This study had several limitations that should be considered.
First, we assumed that misclassification of self-reported vaccina-
tion did not differ based on disease status (i.e. whether ARI was
due to influenza or a non-influenza pathogen). This assumption
seems likely to hold in test-negative studies where vaccination is
assessed prior to influenza testing. However, if test-negative stud-
ies are conducted among patients after influenza test results are
made available, subjects’ knowledge of test results may bias expo-
sure reporting. Second, we did not consider other sources of bias,
including confounding, selection bias, or misclassification of dis-
ease status, which may complicate the effects of exposure misclas-
sification on VE estimates.

Test-negative VE studies have occasionally relied solely on self-
reported influenza vaccination history to define subjects’ vaccine
exposure. The present study suggests that this could lead to mean-
ingful bias in estimated VE. Researchers should endeavor to vali-
date self-reported using sources such as vaccination history
through registries, electronic health records, and detailed ques-
tions to improve recall.
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