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Abstract: Fluorination is considered as a means of reducing the degradation of Fe/N/C, a highly
active FeNx-doped disorganized carbon catalyst for the oxygen reduction reaction (ORR) in PEM
fuel cells. Our recent experiments have, however, revealed that fluorination poisons the FeNx moiety
of the Fe/N/C catalytic site, considerably reducing the activity of the resulting catalyst to that of
carbon only doped with nitrogen. Using the density functional theory (DFT), we clarify in this work
the mechanisms by which fluorine interacts with the catalyst. We studied 10 possible FeNx site
configurations as well as 2 metal-free sites in the absence or presence of fluorine molecules and atoms.
When the FeNx moiety is located on a single graphene layer accessible on both sides, we found that
fluorine binds strongly to Fe but that two F atoms, one on each side of the FeNx plane, are necessary to
completely inhibit the catalytic activity of the FeNx sites. When considering the more realistic model
of a stack of graphene layers, only one F atom is needed to poison the FeNx moiety on the top layer
since ORR hardly takes place between carbon layers. We also found that metal-free catalytic N-sites
are immune to poisoning by fluorination, in accordance with our experiments. Finally, we explain
how most of the catalytic activity can be recovered by heating to 900 ◦C after fluorination. This
research helps to clarify the role of metallic sites compared to non-metallic ones upon the fluorination
of FeNx-doped disorganized carbon catalysts.

Keywords: oxygen reduction reaction; proton exchange membrane fuel cell; fluorination; density
functional theory; non-noble metal catalyst; N-doped carbon catalyst

1. Introduction

While promising non-noble metal catalysts for the oxygen reduction reaction (ORR)
in proton-exchange membrane (PEM) hydrogen fuel cells have been synthesized over
the years [1–5], their stability in fuel cells remains the main obstacle to their widespread
use [6,7]. One of the most promising non-noble metal catalysts synthesized to date is
FeNx-doped disorganized carbon [8–11]. There are several experimental and theoretical
pieces of evidence that the Fe atom is the site where the ORR takes place [11–19]. It
has been observed that this type of catalyst suffers from a decrease of almost half of its
activity in a few hours of operation in fuel cells, followed by a much slower decrease
thereafter. The current delivered by the fuel cell versus time can be fitted by a double
exponential decay [20]. Few hypotheses have been put forward to explain the first rapid
decay of catalytic activity. These include demetallation of the metal catalytic sites [20–23]
and chemical reactions with H2O2 [24–27]. The slower decay has not attracted as much
interest as the fast one to date. Recent simulation work suggests that planar M3(C6O6)2 [28]
and M3(C6S3O3)2 [29] structures, where M is a transition metal, may also be promising
candidates but these have not yet passed the test of experiment.
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There are indications that the fluorination of materials in acidic media improves their
oxidative stability. Examples of such systems include Nafion ionomer, Pt/C, and platinum
group metal-free catalysts for PEM fuel cells [30–32]. Recently, we also fluorinated a highly
active FeNx-doped carbon catalyst in the hopes that fluorine would increase its stability in
PEM fuel cells [33]. However, even after a short (2 min) exposure to a room-temperature
F2:N2 (1:1; vol.) gas stream, fluorination considerably inhibited the catalyst performance in
H2/O2 PEM fuel cells. Even if these experiments did not yield the expected results, they
enabled several important observations to be made regarding the properties of the catalytic
material under study:

(1) The catalytic activity of the fluorinated Fe/N/C catalyst became similar to that of
Fe-free nitrogen-doped carbon catalysts;

(2) The XPS F1s spectra revealed that most Fe sites were associated with a single F atom
and fewer were associated with two F atoms;

(3) A total of 70% of the initial activity could be recovered after a heat treatment of the
F-poisoned catalyst at 900 ◦C in Ar.

The observations made in the context of these fluorination experiments have in fact
provided a unique opportunity to improve our understanding of the nature of our FeNx-
doped carbon catalysts and of the decay mechanisms of their catalytic activity in PEM
fuel cells. In order to support and deepen the conclusions of our experimental study, in
this paper we report density functional theory (DFT) calculations, based on the current
understanding of the atomic structure of the catalytic sites and processes, and study the
catalytic properties of these sites in the absence/presence of adsorbed fluorine.

Several theoretical studies have already focused on MNx-doped carbon catalysts, most
often Fe [34–38], Co [35], Mn [35,39], and Ni [35]. Per the indications of several experimental
studies [34,39–41], they conclude that the catalytic site is, specifically, the M atom within a
functional group MNx embedded in a planar carbon layer. It is generally thought that the
ORR catalyzed on these sites follows the four-electron exchange process [42–45]

∗+ O2 + 4
(
H+ + e−)

I
→ ∗O2 + 4

(
H+ + e−) →
II

∗ OOH + 3
(
H+ + e−)

III
→ ∗O + H2O + 2

(
H+ + e−) →

IV
(1)

∗OH + H2O +
(
H+ + e−)

V
→ ∗+ 2H2O

VI

where * denotes the adsorption site and the labels I to VI refer to the six reaction steps.
For several MNx-doped carbon structures, it has been found that, at low enough

potentials, the free energy of each step of the reaction sequence (1) decreases uniformly
from the first to the last step, indicating that the reaction sequence (1) is thermodynamically
viable at these potentials. Other possible pathways, such as those involving spontaneous
O2 dissociation or H2O2 formation, are less likely due to the increase in free energy at
some stage of the process [24]. Several DFT studies have also been carried out for catalysts
without metal [45–51]. These generally consider N-doped carbon structures and assume
that the reaction sequence (1) still takes place at low enough potentials. These catalysts
appear to be thermodynamically viable for some carbon sites near a nitrogen atom. How-
ever, O2 adsorbs weakly or not at all on the catalytic sites (step II in the sequence (1)).
This characteristic likely explains, at least in part, the much lower activity of these sites
compared to the higher activity obtained with metal sites.

In a recent work, we theoretically studied the fluorination of two single-layer porous
FeN4-doped carbon structures, one with pyrrolic nitrogen atoms and the other with pyri-
dinic nitrogen atoms at the FeN4 sites, and we assumed that the catalytic reaction took
place through the sequence (1) [52]. Subsequent work has investigated ORR for various
adsorbates bound to several transition metals on an MN4 site [53,54]. However, actual
catalysts most likely contain many embodiments of MNx moieties as well as M-free N
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atoms in carbon layers, and involve more than one carbon layer. In order to provide a more
complete picture of the fluorination process and of its influence on ORR, we performed
DFT calculations for nine additional atomic structures of FeNx-doped carbon sites with x
between 1 and 4 as well as for two N-doped metal-free carbon structures. We also examined
the possibility of whether the ORR can be catalyzed on an Fe site between two parallel
carbon layers in the presence of a F atom bound on Fe on the opposite side.

It is generally believed that the catalytic sites for the ORR of the FeNx-doped carbon
materials consist of planar FeNx moieties located in a carbon structure which is generally
approximated by a single carbon layer. Figure 1 shows some of the possible embodiments
of such structures. Of course, the set of structures shown in Figure 1 is not exhaustive.
Many variants of each structure are possible, such as, for example, pores in the carbon layer
(as in Figure 1j), the FeNx moiety being near the edge of the carbon layer (as in Figure 1g,i),
and N atoms being randomly distributed in the carbon layer (as in Figure 1e). Also, the N
atoms surrounding the Fe ion may be either of a pyridinic type (Figure 1a–i) or of a pyrrolic
type (Figure 1j). We will consider the 10 structures shown in Figure 1, expecting that they
will be representative of the main effects of fluorination on the properties of the catalysts.
For the purpose of the following discussion, special attention will be paid to the structure
in Figure 1j. For this structure, the F–N bond length is 2.00 Å and the N–Fe–N angles are
197.19◦ and 82.81◦.
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Figure 1. DFT optimized configurations of FeNx-doped carbon catalysts investigated in this work. Panels (a–j) refer to the
10 configurations considered in this work. Color code: grey is carbon, blue is nitrogen, orange is iron.

It can be found in the literature that the free energy at zero potential of the steps of
the reaction sequence (1) for the pristine structures of Figure 1c [55], 1h [56], and 1j [52] is
uniformly descending at each reaction step (see Section 2.1). The structure of Figure 1b has
also been investigated and was found to be not thermodynamically viable [55] (because the
free energy presents a minimum at step V of the reaction sequence (1)—see Section 2.1). The
other sites shown in Figure 1 have, to the best of our knowledge, never been investigated
so far.

Figure 2 shows the two metal-free nitrogen-doped carbon catalytic sites considered
in this work. As reported above, the activity of the fluorinated Fe/N/C catalysts became
similar to that of Fe-free nitrogen-doped carbon catalysts. It is assumed that the reaction
sequence is given by (1) where * now denotes an active carbon site. Other nitrogen-
doped carbon structures have been investigated and shown to be potential catalysts for
ORR [46–49]. The structures shown in Figure 2 were selected for this work because they
turn out to have the lowest formation energies [45] and are, therefore, most likely to
be found in actual catalysts. Only two of these structures are considered in this work
because we show that their catalytic properties are immune to fluorination and this result
is sufficient for our purpose.
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Figure 2. DFT optimized configurations of metal-free catalysts investigated in this work. (a) Armchair
configuration of N-doped carbon and (b) zigzag configuration of N-doped carbon. The meaning of
the numbers on the carbon atoms is discussed in Section 2.3.

2. Results
2.1. Fluorination of the FeNx Sites—Single Carbon Layer

We first performed DFT optimizations of all the non-fluorinated carbon-based catalysts
considered in this work. The resulting structures are shown in Figures 1 and 2. We then
introduced F atoms and F2 molecules at different locations on these atomic structures and
performed new DFT optimizations.

We first considered the adsorption of F2 on the Fe atom of the FeNx sites. We found
that F2 adsorbs on Fe for all the FeNx configurations of Figure 1. When adsorbed on Fe,
the F2 molecule is strongly stretched relative to the free F2 molecule. In the example of
Figure 3a, where we use the basic structure of Figure 1j, the spacing between the two F
atoms of the adsorbed F2 is 2.32 Å while the spacing of the two F atoms in the free F2
molecule is 1.11 Å. In fact, the adsorbed F2 molecule is subject to dissociation because, for
example, the binding energy of the dissociated F2 molecule with one F atom adsorbed on Fe
and the other F atom adsorbed on a near C atom either on the same side (Figure 3b) or on
the opposite side (Figure 3c) of the carbon layer is, respectively, 1.36 eV and 1.40 eV lower.
The fluorinated structure is considerably more stable when two F atoms are adsorbed on
the Fe atom on opposite sides of the carbon layer (Figure 3d) because the energy of the
system is 6.12 eV lower than that of F2 adsorbed on Fe (Figure 1a). The binding energies
of the fluorine adsorbates shown in Figure 3 are given in Table 1. All F–Fe and F–C bond
lengths appearing in Figure 3 are shown in Table A1 of the Appendix A.

In the case where two F atoms are adsorbed on Fe on both sides of the carbon layer
(Figure 3d), the Fe site becomes unavailable to catalyze ORR. Indeed, the binding energy
of the O2 molecule on the Fe atom of the pristine structure of Figure 3 is only −0.71 eV,
meaning that the fluorinated iron sites of Figure 3d,e are very stable and the adsorbed F is
unlikely to be spontaneously replaced by O2. The same conclusion holds for all structures
of Figure 1, except for Figure 1d, for which the binding energy of Fe–O2 is stronger than
that of Fe–F, as shown in Table 2. However, this structure appears to be inactive in the
absence of fluorine, as can be seen in Figure 4d.
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Table 1. Binding energies of the fluorine adsorbates for the structures shown in Figure 3.

Structure Binding Energy (eV)

a −1.76
b −3.12
c −3.16
d −7.88
e −4.56

Table 2. Binding energies in eV for F adsorbed on Fe (Fe–F), for two F adsorbed on Fe on both sides
of the carbon layer (F–Fe–F), and for O2 adsorbed on Fe (Fe–O2) for the structures shown in Figure 1.

Structure Fe–F F–Fe–F Fe–O2

a −4.27 −12.10 −0.84
b −4.00 −11.92 −2.50
c −3.85 −11.88 −2.06
d −3.94 −13.04 −4.60
e −4.05 −12.02 −1.82
f −4.66 −12.96 −3.50
g −5.89 −12.94 −4.55
h −3.18 −11.88 −1.37
i −2.93 −10.40 −1.04
j −4.56 −7.88 −0.71
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For a fluorinated FeNx site located in a single carbon layer, the adsorption of a single
F atom on the Fe site can turn a poor catalyst into an effective one due to the weakening
of the binding energy of the adsorbates of the reaction sequence (1). This can be seen
in Figure 4, which shows the relative free energies (with respect to the initial state) of
each step of the catalytic reaction sequence (1) in the cases where the Fe sites are free of
fluorine (blue segments) and where a F atom is adsorbed on Fe (red segments). One can see
for the structures corresponding to Figure 4a,b,d,f, that the ORR catalytic process, which
seems unlikely without the adsorption of F because of the very low energy level of step
V, ∗OH + H2O +

(
H+ + e−) , becomes thermodynamically viable with the adsorption of

F on Fe. However, the structure corresponding to Figure 4i remains a poor catalyst with
and without the adsorption of F on Fe. On the other hand, the structure corresponding
to Figure 4h, which seems to be a possible good catalyst without fluorine, becomes less
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effective with fluorine because O2 can no longer adsorb on Fe (step II). Table A2 shows the
F–Fe, O–Fe–O, and O–O bond lengths in O2, Fe–O2, and F–Fe–O2. It can be seen that the
F–Fe bond length in F–Fe–O2 is almost the same as in Figure 3e (Table A1). However, the Fe–
O and O–O bond lengths in F–Fe–O2 are slightly smaller than in Fe–O2, indicating that the
Fe–O2 bond is weakened due to the presence of F, in agreement with the discussion above.

From this, we conclude that carbon-based catalysts with sufficient separation between
carbon layers (which is equivalent to considering the catalytic sites located on a single
carbon layer) could theoretically benefit from partial fluorination by the weakening of the
adsorbate free energy. This effect leads to a more favorable free energy distribution for
most of the fluorinated ORR active sites as compared to that of the sites without any F–Fe
bond. The conclusion that ORR is generally promoted when an adsorbate is bound to
the metal atom on the opposite side of the carbon plane was also obtained via the DFT
calculations reported in [53,54].

2.2. Fluorination of the FeNx Sites—Double Carbon Layer

The useful FeNx active sites (those able to produce ORR) are actually thought to be
mostly embedded at the surface of continuous graphene layer stacks or located between
two discontinuous graphene layers of micro- or mesopores [20]. Therefore, the question
naturally arises as to whether the ORR can take place between the first two carbon layers
when a F atom is adsorbed on Fe on the more accessible free side of the FeNx site. To
answer this question, we considered a model using two carbon layers: on the top, a carbon
layer containing the FeNx moiety and, under this first layer, another one composed of
a single graphene layer parallel to the first one and located at 3.6 Å from the first layer.
We selected this interplanar distance, which is a little larger than that of d = 3.35 Å in
graphite, because carbon is disorganized after the pyrolysis stage. As a matter of fact, a
fairly broad distribution of d-spacings (between 3.5 and 4.1 Å) was measured for furnace
turbostratic carbon black grades, regardless of their particle size and structure. The average
TEM measured d-spacings range between 3.83 and 3.92 Å and are significantly larger
than the X-ray measured d-spacings ranging from 3.52 to 3.56 Å [57]. Thus, we used the
intermediate value of 3.6 Å.

The first step in ORR is the adsorption of O2 on Fe. Then, according to the reaction
sequence (1), each adsorbate combines with an H+ ion and an electron. Therefore, O2 and
H+ have to migrate between the carbon layers to reach the Fe atom of the FeNx site. This
migration is certainly easier for porous carbon structures such as the one of Figure 1j or
when the Fe atom is close to the edge of the carbon layer, as in Figure 1g,i. Figure 5 shows
the basic structure of Figure 3e to which a parallel graphene plane was added under the
graphene plane containing the F–FeNx site. One notes that there is apparently enough
room between the two carbon layers to accommodate an oxygen atom or molecule because
the spacing between the carbon layers of our amorphous carbon catalyst is assumed here
to be 3.6 Å, while the theoretical radii of Fe, C, and O are 1.56 Å, 0.67 Å, and 0.48 Å [58],
respectively, so that the sum of the radius of Fe, the diameter of O2, and the radius of C is
3.19 Å, which is smaller than the assumed spacing between the carbon layers.

Molecules 2021, 26, x FOR PEER REVIEW 7 of 15 
 

 

 
Figure 5. The first catalytic reaction steps between two carbon layers with a F atom adsorbed on Fe 
on the free side for the basic structure of Figure 1j. (a) Adsorption of O2 on Fe; (b) result of the 
spontaneous dissociation of OOH into O on Fe and OH on the opposite carbon layer; and (c) for-
mation of OH adsorbed on Fe between the two layers. Color code: grey is carbon, blue is nitrogen, 
orange is iron, green is fluorine, and red is oxygen. 

The free energy diagram of the catalytic reaction is shown in Figure 6. O2 can adsorb 
on the Fe atom between the planes (Figure 5a and step II in Figure 6) but it needs around 
1 eV to get there. This is a consequence of the stress induced on the surrounding structure 
by the insertion of the O2 molecule. Our transition state calculation indicates that the acti-
vation energy is around 1.5 eV between the state of O2 in the pore and its adsorbed state 
on the Fe atom. However, from the latter adsorbed state (step II in Figure 6), a continu-
ously decreasing free energy sequence can be found, but with modifications with respect 
to the sequence (1). When adding H +  to the adsorbed O2, OOH spontaneously dis-
sociates into an O adsorbed on Fe and an OH which adsorbs on a carbon atom of the 
opposite layer (Figure 5b and step III in Figure 6). The reactions up to step III in Figure 6 
are as follows: Fe + G + O + 4 H +I     →   (Fe–O ) + G + 4 H +   →       II   (Fe–O) + (G–OH) + 3 H +   III  (2)

 

Where G is the bottom graphene plane. Then three distinct paths are possible, depending 
on how the successive H +  are added to the adsorbates. These paths are illustrated 
in Figure 6 by black, blue, and red segments, respectively. The last step (VI) is Fe + G + 2H2O, i.e., the formation of two water molecules after the exchange of four elec-
trons. The steps IV and V for the three paths are, respectively,   Path 1: (Fe–O) + G + H2O + 2 H +   →       IV   (Fe–OH) + G + H2O + H +V  (3) 

Path 2: (Fe–OH) + (G–OH) + 2 H +  →        IV Fe + (G–OH) + H2O + H +   V  (4) 

Path 3: (Fe–OH) + (G–OH) + 2 H + →       IV  (Fe–OH) + G + H2O + H +   V  (5) 

The most complex intermediate state, where one OH is adsorbed on Fe and the other OH 
is adsorbed on the opposite graphene layer G, is shown in Figure 5c and corresponds to 
step IV of paths 2 and 3. 

Figure 5. The first catalytic reaction steps between two carbon layers with a F atom adsorbed on
Fe on the free side for the basic structure of Figure 1j. (a) Adsorption of O2 on Fe; (b) result of
the spontaneous dissociation of OOH into O on Fe and OH on the opposite carbon layer; and
(c) formation of OH adsorbed on Fe between the two layers. Color code: grey is carbon, blue is
nitrogen, orange is iron, green is fluorine, and red is oxygen.
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The free energy diagram of the catalytic reaction is shown in Figure 6. O2 can adsorb
on the Fe atom between the planes (Figure 5a and step II in Figure 6) but it needs around
1 eV to get there. This is a consequence of the stress induced on the surrounding structure
by the insertion of the O2 molecule. Our transition state calculation indicates that the
activation energy is around 1.5 eV between the state of O2 in the pore and its adsorbed state
on the Fe atom. However, from the latter adsorbed state (step II in Figure 6), a continuously
decreasing free energy sequence can be found, but with modifications with respect to the
sequence (1). When adding H+ + e− to the adsorbed O2, OOH spontaneously dissociates
into an O adsorbed on Fe and an OH which adsorbs on a carbon atom of the opposite layer
(Figure 5b and step III in Figure 6). The reactions up to step III in Figure 6 are as follows:

Fe + G + O2 + 4
(
H+ + e−)

I
→ (Fe−O 2) + G+ 4

(
H+ + e−) →

II
(Fe−O) + (G−OH)+ 3

(
H+ + e−)

III
(2)

where G is the bottom graphene plane. Then three distinct paths are possible, de-
pending on how the successive H+ + e− are added to the adsorbates. These paths are
illustrated in Figure 6 by black, blue, and red segments, respectively. The last step (VI)
is Fe + G + 2H2O, i.e., the formation of two water molecules after the exchange of four
electrons. The steps IV and V for the three paths are, respectively,

Path 1 : (Fe−O) + G + H 2O + 2
(
H+ + e−) →

IV
(Fe−OH) + G+ H2O+

(
H+ + e−)

V
(3)

Path 2 : (Fe−OH) + (G−OH) + 2
(
H+ + e−) →

IV
Fe + (G−OH)+ H2O+

(
H+ + e−)

V
(4)

Path 3 : (Fe−OH) + (G−OH) + 2
(
H+ + e−) →

IV
(Fe−OH) + G+ H2O+

(
H+ + e−)

V
(5)

The most complex intermediate state, where one OH is adsorbed on Fe and the other
OH is adsorbed on the opposite graphene layer G, is shown in Figure 5c and corresponds
to step IV of paths 2 and 3.
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Figure 6. Relative free energy at zero potential for the six steps of the ORR sequences between two
carbon layers for the structure of Figure 3e to which a parallel graphene plane was added under the
graphene plane containing the F–FeNx site. The three possible paths are explained in the text. The
energy levels have been shifted slightly to facilitate path identification.

Since the theoretical radius of F (0.42 Å) is smaller than that of O (0.48 Å) [58], F and
F2 can also be accommodated between the two layers. We also performed DFT calculations
for that case. The results are illustrated in Figure 7. The binding energies of F2 and F in
the cases of Figure 7a,b are −1.84 and −4.48 eV, respectively. Here the reference structure
is composed of the two planes with the external adsorbed F atom on Fe. Thus, as in the
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monolayer case of Figure 3, the dissociation of F2 is favored between the two layers of
carbon. In addition, contrary to O2, the adsorption of F2 (or its dissociated form) between
the plane is exothermic. For the sake of comparison with the single plane case of Figure 3d,
the binding energy of the two F on both sides of the plane is −6.24 eV (Figure 7c) vs.
−7.88 eV in the case of Figure 3d. Again, the difference in binding energy is due to the
stress induced on the surrounding structure by the insertion of the F atom. The existence
of F–Fe–F bonds in the catalyst could correspond to the specific peak at ~685.4 eV assigned
to the adsorption of two F atoms on Fe in the F1s XPS spectrum of the catalyst [33].
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Figure 7. Adsorption of F2 and F on the Fe site between two carbon layers for the basic structure of Figure 1j. (a) Adsorption
F2 on Fe; (b) adsorption of F on Fe and F on a nearby carbon site (dissociated form of F2); and (c) adsorption of F on Fe
between two carbon layers.

From this study of the fluorinated bilayer configuration, it appears that ORR catalysis
between two carbon layers is inefficient, primarily because O2 requires about 1 eV to
occupy the catalytic site, although the subsequent reaction steps are thermodynamically
viable. Furthermore, upon fluorination of the catalyst, F2 and F can occupy the catalytic
site at a lower energy cost, thereby poisoning the FeNx sites.

2.3. Fluorination of Metal-Free Sites

We now turn to the metal-free catalysts shown in Figure 2, which are also known to
contribute to the ORR, but to a much lesser extent than the FeNx metal sites free of fluo-
rine [59]. It has been demonstrated that these catalysts can produce uniformly descending
free energy steps for the reaction sequence (1), as for some of the FeNx sites (see Figure 4).
However, O2 hardly adsorbs on these structures [45–49]. Our DFT calculations are in good
agreement with those previous works, as shown by the blue segments in Figure 8a,b, which
were obtained by considering the ORR active sites 5 and 1 in Figure 2a,b, respectively.
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Figure 8. Relative free energy at zero potential for the six steps (I–VI) of the ORR sequence (1) for the
sites shown in Figure 2 with (red segments) and without (blue segments) a F atom adsorbed on a
carbon atom. (a) Armchair configuration of N-doped carbon; (b) zigzag configuration of N-doped
carbon. The blue segments in (a) were obtained by considering the ORR activity of site 5 in Figure 2a.
The blue segments in (b) were obtained by considering the ORR activity of site 1 in Figure 2b. The red
segments in (a) were obtained by considering a F atom adsorbed on site 1 in Figure 2a, while keeping
site 5 as ORR active. The red segments in (b) were obtained by considering a F atom adsorbed on site
1 in Figure 2b, while considering the ORR activity of site 6.

We then verified whether the carbon catalytic sites can be poisoned by F or F2. For the
armchair configuration of Figure 2a, adsorption of F on the sites numbered from 1 to 5 were
tested. Table 3 shows that F can adsorb on the five sites with different binding energies.
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Site 1 has the strongest binding energy of −2.57 eV. When a F atom is adsorbed on site 1,
Figure 8a (red segments) shows that the catalytic site 5 remains active.

Table 3. Binding energies in eV for a F atom adsorbed on the 5 carbon sites of Figure 2a (armchair)
and Figure 2b (zigzag).

Structure Site 1 Site 2 Site 3 Site 4 Site 5

Armchair −2.57 −2.12 −2.33 −1.69 −2.18
Zigzag −3.78 −3.52 −2.80 −2.36 −2.97

For the zigzag structure we found that the catalytic site 1 in Figure 2b has the strongest
binding energy of −3.78 eV for F. In this case, we carried out a calculation of the catalytic
sequence on site 6 in Figure 2b. Even if the active site 1 is occupied by a fluorine atom,
the ORR can take place on site 6, as can be seen in Figure 8b (red segments). Additional
F–C bond length data for the five sites are given in Table A3. We note the anti-correlation
between F–C bond length and binding energy as well as the smaller values compared to
the F–Fe bond lengths given in Table A1.

We were unable to find a site where F2 could be adsorbed on both the armchair and
zigzag structures, so that dissociation of F2 is unlikely on these structures. Therefore, F2
has to be dissociated elsewhere, such as on the Fe sites, for instance, or at any oxygenated
functionality like COH, COOH, or C–O–C, known (by XPS) to be present at the surface
of our (and many other) non-PGM catalysts [33]. These calculations tend to confirm that
fluorination does not affect much the catalytic activity of the metal-free catalysts considered
here, thus providing an explanation for the residual ORR catalytic activity found after
fluorination up to a value of F/C = 0.27 (measured by NMR) of the fluorinated Fe/N/C
catalyst observed in the experiments reported in [33].

2.4. Defluorination of the FeNx Sites

Here we consider a question that has puzzled us for some time: the possibility to
thermally de-fluorinate at 900 ◦C previously fluorinated FeNx catalytic sites such as the
ones illustrated, for instance, in Figure 3d,e. Let us label these configurations F–FeN4–F
and F–FeN4, respectively. From Table 1, the binding energies of the fluorine adsorbates
on the Fe atom are −4.56 eV for F–FeN4 and −7.88 eV for F–FeN4–F. Despite the high
binding energies of these bonds, it was experimentally found that the latter are broken
after a 30 min heat treatment at 900 ◦C in Ar of the fluorinated catalysts (no F1s XPS signal
anymore, as seen in Figure 6A of [33]). How is this possible when the thermal energy at
900 ◦C is only around 0.1 eV?

It is certainly not because of the special nature of the catalytic sites such as those
illustrated in Figure 3e,d, as Table 2 confirms that the FeNx sites illustrated in Figure 1 are
all characterized by Fe–F and F–Fe–F binding energies of several eV. De-fluorination is only
possible if the fluorinated FeNx sites are involved in reactions also involving either radicals
or small molecules released from the catalyst surface under heat treatment. Reactions (6–9)
below are examples of possible de-fluorination reactions. Our thermodynamic calculations
show that all these reactions are characterized by a negative free energy change ∆G at
900 ◦C, meaning that they are spontaneous at that temperature.

(F− FeN 4–F)solid + (CH•) gas ↔ (F− FeN 4)solid + Csolid (graphene) + (HF) gas (6)

(F− FeN 4)solid + (CH•) gas ↔ (FeN 4)solid + Csolid (graphene) + (HF) gas (7)

(F− FeN 4–F)solid + (CF•) gas ↔ (F− FeN 4)solid + (CF 2•)gas (8)

2(F− FeN 4–F)solid + (C 2F6 )gas ↔ 2(F− FeN 4)solid + 2(CF4 ) gas (9)

In these examples, (CH•) gas, (CF•) gas, and (C 2F6 )gas are decomposition prod-
ucts [60] generated at 900 ◦C from the carbonaceous or from the fluorinated carbonaceous
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supports of the catalysts. The evidence for the release of such gases is documented by the
TGA curves already reported in several figures of [33] for these fluorinated catalysts.

3. Computational Methods

All DFT calculations reported here were done using the Vienna ab initio software
package (VASP) [61–64]. The calculations were performed using the generalized gradient
approximation (GGA) with the Perdew–Burke–Ernzerhof (PBE) functional [65]. The con-
vergence criterion on the relative energy was set to 10−5 and the plane wave energy cut-off
was set to 500 eV for all calculations. The Brillouin zone was sampled on regular 4 × 4 × 4
gamma grids. A graphene sheet with cell dimensions of a = 20.22 Å and b = 14.88 Å was
used as a model for the carbon support. A void of 15 Å was included in the normal
direction to avoid interactions between the periodic FeNx-doped carbon layers. The doped
carbon structures were created by substituting carbon atoms of the graphene sheet by FeNx
groups or by N atoms in the case of metal-free catalysts. The positions of all atoms were
fully relaxed, except in the case of the two carbon layers, where the positions of the carbon
atoms were fixed to prevent the planes from moving relative to each other. However, for
the calculation of the activation energy of O2 transiting between the two planes, in relation
to Figure 5a, we used constraints where the edges of the planes were fixed along the x-axis
while keeping the edges along the y-axis fixed, and vice versa. The activation energy was
almost the same (1.5 eV) in both cases. The binding energy of an adsorbate on a given site
was calculated using

Ecatalyst+adsorbate −
(

Ecatalyst + Eadsorbate) (10)

where Ecatalyst+adsorbate is the energy of the carbon-doped catalyst with the adsorbate,
Ecatalyst is the energy of the catalyst alone, and Eadsorbate is the energy of the adsorbate far
from the catalyst. The energy of H+ + e− is taken as half the energy of the H2 molecule,
since H2 is at an equilibrium with its dissociated form 2

(
H+ + e−) at the anode [43]. The

molecules of the gas phases considered in this work, namely O2, H2, and F2, are assumed
to be non-interacting with each other, which implies that only single molecules have been
considered. Each step of the catalytic sequence (1) corresponds to a free energy given by

G = G0 + ZPE + TdS + Gsol (11)

where G0 is the energy of the structure per cell, ZPE is the zero point energy, TdS is the
entropy term, and Gsol is the solvation energy arising by the aqueous medium. As was
done in some of our previous works [52,54], for simplicity we assumed that the sum of the
last three contributions nearly cancels, in agreement with [43,66]. However, corrections
were brought to the intermediate state ∗O + H2O + 2

(
H+ + e−) and ∗ + 2H2O of the

reaction sequence (1), which were inferred to be +0.4 and −0.6 eV, respectively [43].

4. Conclusions

We used DFT to examine the consequences of fluorination of the FeNx-doped and
N-doped carbon catalysts used for ORR at the cathode of H2/O2 fuel cells. The main
objectives of these calculations were to rationalize some of the experimental observations
and to verify our conceptual representation of the catalytic sites and processes. We have
considered several moieties of catalytic sites of FeNx-doped carbon with x ranging from
1 to 4. Most of them seem to be suitable catalysts for ORR because the free energy of the
supposed catalytic sequence decreases regularly at zero potential. When the FeNx sites
are located on a single graphene layer, it turns out that F2 binds to Fe at FeNx sites, with a
binding energy of approximately −2 eV, but is subject to dissociation, leaving a single F
on Fe with a binding energy of approximately −4 eV, which is stronger than the typical
binding energy of O2 on Fe. In these conditions, ORR cannot happen on the F-poisoned
FeNx side, but is still possible on the other side of the F–FeNx site, even transforming
some otherwise poor un-poisoned FeNx catalytic configurations into better F–FeNx active
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ones. In addition, two F atoms can also bind to Fe on both sides of the carbon layer with
almost twice the binding energy of a single F. When this happens, the Fe site is completely
poisoned on both sides and is no longer able to catalyze ORR.

The occurrence of single graphene layers in actual catalysts is probably quite excep-
tional. Those are certainly better represented by several stacks of disorganized graphene
layers forming a network of connected micropores and mesopores. Therefore, we have
also examined the double graphene layer case where there is a second parallel carbon layer
at a distance of 3.6 Å from the upper carbon layer carrying the FeNx sites. We found that
O2 adsorption on Fe between the two carbon layers is stable and that OOH dissociates
spontaneously into O adsorbed on Fe and OH adsorbed on the opposite carbon layer.
Because O2 adsorption increases the free energy by about 1 eV (and needs an activation
energy of around 1.5 eV) relative to free O2, the catalytic process is unlikely in this case,
even though the free energy of subsequent steps decreases monotonically. On the other
hand, we found that F2 can adsorb on Fe between the two carbon layers without energy
expenditure, making this process more likely than for O2. These results suggest complete
poisoning of the FeNx sites through extensive fluorination of the catalyst, in agreement
with the experimental observations.

We then focused on the residual catalytic activity after fluorination by considering Fe-
free N-doped carbon armchair and zigzag structures for which previous DFT calculations
suggested a viable catalytic process although O2 hardly adsorbs on these structures. For
both structures, the active catalytic site is a carbon atom near a N atom. We found that these
catalytic structures are not poisoned by F or F2, thus justifying a residual ORR catalytic
activity similar to that of the Fe-free catalysts observed for fluorinated Fe/N/C catalysts.

Finally, we provided an explanation for the recovery of ORR upon heating to 900 ◦C
after fluorination. This explanation is based on the presence of radicals or small molecules
released from the catalyst surface upon heat treatment. Most of the calculations presented
in this work are based on free energy levels that only indicate whether a catalytic process is
thermodynamically viable or not. A more thorough study would include the determination
of activation energies. These calculations are very computationally demanding and will be
the subject of future work.
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Appendix A

Table A1. Lengths in Å of the bonds involving the F atoms in Figure 3a–e.

Structure/Bond F–Fe F–C F–Fe–F

a – – 1.74, 1.98
b 1.77 1.66 –
c 1.76 1.64 –
d – – 1.78, 2.05
e 1.79 – –
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Table A2. Bond lengths in Å for free O2 and for adsorbates on the structure of Figure 1j.

Structure/Bond F–Fe O–Fe–O OBO

O2 – – 1.23
Fe–O2 – 1.88, 1.88 1.35

F–Fe–O2 1.80 1.92, 1.92 1.32

Table A3. F–C bond lengths in Å for sites 1 to 5 shown in the structures of Figure 2.

Structure/Position Site 1 Site 2 Site 3 Site 4 Site 5

Armchair 1.51 1.56 1.52 1.69 1.53
Zigzag 1.44 1.49 1.53 1.67 1.50
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