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Abstract

Our goal in this paper is to study and characterize the interdependency structure of the Mex-

ican Stock Exchange (mainly stocks from Bolsa Mexicana de Valores) for the period 2000-

2019 which provide a one shot big-picture panorama. To this end, we estimate correlation/

concentration matrices from different models and then compute centralities and modularity

from network theory.

Introduction

In this paper we investigate the interdependency structure of daily returns in the Mexican

stock exchange market. To this end, we build a database of free and publicly available time

series of main stocks for the period 2000-2019 and conduct our study in stages that are then

put together to give a unified treatment to our main topic of interest here which is the interde-

pendency structure of daily log-returns in the Mexican stock exchange.

In the first stage we focus on the estimation of partial correlations of log returns of daily

prices. The reasons for focusing on partial correlations are the following. Given a collection of

Gaussian series A1, . . ., An, a zero partial correlation between A1 and A2 implies that A1 and A2

are conditionally independent, meaning that A1 and A2 could still be (unconditionally) corre-

lated but only through a third factor adapted to the other series A3, . . ., An. There are of course

different methods of estimating a covariance/correlation/concentration matrix and we have

selected a estimation based on a specific class of Markovian Random Fields (MRF) which in

the statistical literature is well known under the name Gaussian Graphical models (GGm). The

adjective “graphical” emphasizes the fact that attached to the probabilistic model there is a

graph in which edges express conditional dependencies, from which a very convenient visual

representation is obtained. There are three reasons for working with this model. First of all,

the benefit of the already mentioned visual representation provided by the model. The second

is that we have decided to study the period 2000-2019 on a yearly basis. There is a trade-off to

this treatment. On the one hand, short periods of time reduce problems with heavy tails. On

the other, the number of stocks in each year is a significant proportion of the available observa-

tions. Hence, a lasso-regularized estimation is useful in this context which is inbuilt in the esti-

mation of a GGm. Third, we want an estimation that filters out a “noisy” correlation selecting

only clear relationships between two series, again this is provided by the lasso-regularized
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estimation. Loosely speaking, we follow a partial correlations selection approach which con-

ceptually is comparable to a covariance selection approach [1]. Once partial correlations matri-

ces have been estimated we provide a list of stylized facts from them. Then, taking the graphs

constructed from the matrix of partial correlations as its adjacency matrix, we compute eigen-,

between-, and degree- centralities.

In a second stage we compute networks based on matrices of Tail-dependence coefficients

([2]) of every pair of log returns. This coefficient quantifies the relationship of lower tails and

captures dependencies in the events of negative returns.

In the third stage we estimate correlation matrices of time series (estimated through a Mul-

tivariate Dynamic Conditional Correlation GARCH specification). Then, we apply a technique

from network-theory based on those correlation matrices known as the maximization of a

modularity objective function. This procedure will provide a community structure.

As part of our main goal of studying the interdependency structure of the Mexican stock

exchange we contribute to the existing literature on financial networks concerning the follow-

ing aspects. First of all, many papers focus on financial networks constructed from Pearson

correlation matrices but much less papers focus on financial networks constructed from partial

correlations and/or Tail-dependence matrices, as we do here. Moreover, from the few papers

focusing on partial correlation matrices, we are not aware of any of them applying the Gauss-

ian Graphical model we consider in this paper. As a consequence no paper has previously

compared network-structures from the three afore-mentioned different matrices (Pearson

correlation, partial correlations and Tail-dependence) as we do in the present paper. The

premise is that different underlying matrices yield different network-topologies.

Many papers study aggregated financial indices and do not go into the details of analyzing

at the level of stocks in the selected market, hence missing the point of analyzing interdepen-

dency at the level of individual stocks, where the network perspective could represent an

advantage to support financial decisions; see e.g., [3, pp. 8, inmediately before the section “Fac-

tor models”]. For example, we find that the main index in the Mexican stock exchange denoted

IPC (not to be confused with the Index of Consumer Price level.) is “influential” with respect

to degree- and eigen- centrality but the intensity varies with respect to which matrix the net-

work is based on. However, it is not influential with respect to betweenness-centrality. Thus,

the index does not convey all the information in the market; compare e.g., again with

[3, pp. 10, first paragraph].

Few papers focus on the case of Mexico, a representative market in the region which some

studies have found to be a connecting node between Latin American and US markets, hence

playing a key role; see [4]. For example, [5] is an early paper studying stock market integration

between Latin American countries and the US. This includes Mexico, but only as part of the

region with no particular focus.

Materials and methods

Background

The classical Markowitz theory of portfolio selection illustrates the relevance of asset correla-

tion matrices for financial decisions. However, the nontriviality of correlation estimation from

empirical data has been known for a long time, see e.g., [6]. Moreover, in contexts where

sparse correlation (specially for partial correlation) matrices are expected, it is desirable to

have a systematic method to discard “non-clear correlations” and account for a parsimonious

model as motivated by [1]. As we mentioned in the introduction, in this paper we choose to

apply a GGm for a parsimonious estimation of concentration/partial-correlation matrices.
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Estimation of Tail-dependence coefficients are based on the non-parametric estimator in [7].

Pearson-correlation matrices are estimated from a multivariate GARCH model.

Beyond the estimation problem, it is useful to have tools that, starting from matrices, are

able to generate metrics providing snapshots of the market from which quick but trustable

diagnosis are available. Situations in which this is desirable include, from the point of view of

an investor, the decision to rebalance a portfolio, and from the point of view of a regulator,

interventions in the market in order to lessen the contagion of a shock in a specific sector.

We find those tools in the theory of random graphs, specially in the form of metrics (in this

paper, degree-, eigen- and betweenness- centralities) which classify the interconnectedness of

stocks and a global metric (the modularity computed from correlation matrices) to detect com-
munities of stocks.

The approach described integrates into the outline of [8] and is a very active research area;

see e.g., the survey in [9]. However for the Mexican stock exchange there has been little

research in this direction. In the next section we present related literature. Note however that

we do not pretend to provide an exhaustive revision of this active topic which deserves a survey

by its own, but to give a brief panorama of current research in this area.

Stock markets from GGm, random graphs, and network-theory approaches

Gaussian graphical models, Random graphs, and Network theory approaches in a financial

context is an active research area attracting more and more attention with an increasing num-

ber of papers; see e.g., the survey in [9]. The following is a non exhaustive list merely describing

different approaches and applications.

Papers in finance reporting an approach related to a graphical model include [10, 11] and

[12]. However, none of these papers focus on asset prices. Theoretical background on graphi-

cal models can be found in [13, 14] and [15].

Papers studying financial networks based on partial correlations include [4, 16, 17] and [3].

Papers with applications based on a network approach in a financial context include (a) spill-

over effects and shocks contagion, [17–20] and [21] (b) portfolio selection, [22, 23] and [24]

(c) detection of stock prices manipulation [25] and (d) portfolio diversification [26]. Papers

studying financial networks based on the distributions’ tails of prices/log-returns include [22,

27–30] and [31].

Some studies determine power laws for degree connectedness defined by assets correlation

matrices; see [16, 26, 32–34] and [35]. Papers studying community detection in a financial

context include [16, 36–38] and [39]. See [40] for a survey on methods for community

detection.

Minimal Spanning Trees applied to financial market ranking include [4, 35, 41, 42] and

[43]. Random matrix theory for correlation matrices has been presented in [17, 36, 44] and

[45].

Subprime crisis

According to [46] there indeed existed an impact from the 2007-2008 subprime crisis on the

Mexican economy. Mainly due to two shocks, first, a decline in Mexico’s exports and second, a

constrained access to international financial markets, thus evidencing an integration of the

Mexican stock exchange with the US market. A phenomenon documented by some authors;

see e.g., [47–49]. Fig 1 illustrates price levels for the main IPC index in the Mexican stock mar-

ket for the years 2006, 2007 and 2008. It can be argued the presence of a bullish market on

2006 while on the second semester of 2008 the market turned bearish. Not surprising and

reported by some authors [50] and [51]. Later we will go beyond a visual examination and
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confirm by a multivariate GARCH model through a shift from positive to negative intercepts

on log returns of each time series of the period. However, quite interesting, we will show that

the partial-correlations interdependency structure of the Mexican financial market does not

exhibit a drastic change as consequence to that shock, see Fig 3.

Data

We constructed a database of daily closing prices from free and publicly available information

at Yahoo.Finance website which we downloaded through the R package quantmod. The com-

plete list of analyzed stocks can be found in the S1 Table. The frequency of data is daily in a

span of time comprising 01-01-2000 to 31-12-2019. We have considered throughout the paper

time series of log returns: RtðiÞ ¼ log Stþ1ðiÞ
StðiÞ

� �
where St(i) is the price level at time t of stock

labeled i.
Data is organized in windows of one year (from january to december) and we applied a fil-

tering process in two steps. In the first step, for each year, stocks in the market with the most

complete information were selected. The criterion was that only stocks with more than 90% of

all the available dates were selected. Then, in a second step, stock prices not having a minimum

of variance in moving windows spanning 30 dates were discarded. This filtering process

already presents the interesting fact of a positive evolution of the Mexican stock exchange in

Fig 1. IPC index. Time series for the period 2006-2008.

https://doi.org/10.1371/journal.pone.0238731.g001
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the sense of an increase in activity. Indeed, as we go forward through the years, more and

more time series of stock prices satisfy the filtering process, evidencing an evolution in terms

of more activity in the market with more variability of prices and more quotes. Visual evidence

can be found in Fig 3. An important aspect of this work will be to consider how industrial sec-

tors are interconnected. Here we consider a list of sectors obtained from the Bolsa Mexicana

de Valores (BMV) classification. These are listed in Table 1. Fig 2 presents an estimated net-

work in which stocks can be identified in its sector.

Results and discussion

Gaussian graph model

Markovian random fields. In this section we start with the basic definition of a MRF

which is the fundamental probabilistic concept from which a GGm is defined. Let us introduce

a graph G = (V, E) with a set of nodes V = {1, . . ., n} and edges E. Recall that a complete sub-

graph of G is called a clique. We denote by C the class of maximal cliques of the graph G. Let us

start with a given a random vector ~X ¼ ðX1; . . . ;XnÞ with multivariate cumulative distribution

function p. Then, the vector ~X has a Gibbs distribution compatible with the graph G if its distri-

bution has a representation

pðx1; . . . ; xnÞ ¼
1

Z

Y

C2C

cCðxCÞ;

where fccgC2C are suitable functions and xC denotes a vector in which only the indexes of C
appear. Gibbs distributions are characterized through different Markov properties. To this

end, we need a notation. For A� V, A ¼ ðAi1
; . . . ;Aik

Þ, the notation ~XA denotes the vector

ðXi1
; . . . ;Xik

Þ. The following list provides the Markov properties:

1. ~X is a MRF with respect to G if it has the Markov property: For any pair i, j 2 V with i 6¼ j
and non adjacent in the graph G, the random variables Xi and Xj are conditionally indepen-

dent on all the other variables. We denote this conditional independency by:

Xu ? Xv j
~XV=fu;vg:

Table 1. Industrial sectors.

Sector No. Stocks Description

1 Basic consumming 21 Manufacturers and distributors, food and beverage companies

2 Energy 2 Energy producers, equipment, services and distribution

3 Financial services 25 Includes banks, financial and insurance firms

4 Health 4 Care providers, equipment, supplies and pharmaceuticals

5 Industry 36 Include companies providing equipment and services in the productive

chain

6 IPC index 1 Main index in the Mexican stock exchange

7 IT 1 Software and Hardware for information technologies

8 Materials 22 Include companies providing input materials in the productive chain

9 Non basic

consumming

19 Includes retailers, consumer service providers and consumer durables

10 Telecomm 9 Includes wireless providers, internet service providers and satellite

companies

https://doi.org/10.1371/journal.pone.0238731.t001
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2. ~X is locally a MRF with respect to G if: For each v 2 V, the random variable Xv is condition-

ally independent of all other variables which are not neighboors (they are not adjacent). We

denote this by

Xv ?
~XV=neighborhoodðvÞ j

~XneighborhoodðvÞ:

3. ~X is globally a MRF if: For two disjoint subsets A, B� V, the vectors ~XA, ~XB are condition-

ally independent on a separating set S� V. We denote this by:

~XA ?
~XB j

~XS:

We continue with a fundamental equivalence result; see [52, Chapter 7].

Theorem 1 (Hammersley-Clifford). Assume that the cumulative distribution p of ~X is
defined in a finite state space and is positive valued. Then p is a Gibbs distribution if and only ~X
satisfies any of the above listed Markov properties.

Fig 2. A network in which stocks can be identified in their sectors.

https://doi.org/10.1371/journal.pone.0238731.g002
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For a list of Gibbs distributions see [13, Section 3]. In this paper we will work with the fol-

lowing specific Gibbs distribution (hence, specific MRF and specific GGm)

pyðxÞ ¼ exp y � xþ
1

2

Xn

i¼1

Xn

i¼1

Yi;jxixj � AðyÞ

( )

: ð1Þ

where n is the dimension of the random vector ~X , and A(�) is a normalizing constant; see [13,

Example 3.3] for more details. The MRF model in (1) also specifies the GGm we will work

with. Indeed, (1) does not apriori specify any graph, but from the set of parameters Yi;j 2 R
we derive a partial correlation matrix which indeed can be seen as the adjacency matrix of a

weighted graph.

Covariance selection. Let Σ ¼ ðSi;jÞ be the covariance matrix of a random vector~R ¼
ðR1; . . . ;RnÞ with multivariate Gaussian distribution. A zero component Si,j = 0 expresses

marginal independence between Ri and Rj. The inverse matrix J≔ Σ� 1 is the so-called concen-

tration matrix. It has the property that a zero component Ji,j = 0 expresses conditional indepen-

dence; see e.g., [53, Thm. 9.2.1] or for complex distributions [15, Thm 7.1 p. 117].

It is possible from further considerations that many components Ji,j are expected to be zero.

In this case, it is desirable to have a statistical procedure to estimate the distribution taking

into account such information. One such procedure is the so-called covariance selection in

[1]. Grounded on maximum likelihood, it provides a framework to test for zero partial correla-

tions. Recent research on covariance selection focuses on sparse large dimensions in which the

number of variables is large but there are also many variables which are conditionally indepen-

dent; see [54]. Thus, for such structures the concentration matrix is sparse and the lasso (least

absolute shrinkage and selection operator; also lasso or LASSO) method introduced by [55] is

fundamental for statistical estimation and variable selection. Indeed, the Gaussian Graphical

model that we are going to use is nodewise estimated through a lasso procedure. For the lasso

implementation we use the R package mgm that builds on the package glmnet. The estima-

tions of this last package are based on the algorithm of [56]. Then, the collection of nodewise

regressions are combined through an AND rule to give a unique estimation of a multivariate

vector. This approach is naturally based on the asymptotic consistency results due to [54]. In

particular, the estimation yields a concentration matrix J. Systematic presentations for graphi-

cal models can be found in [13, 14] and [15].

The GGm. Now we explain the specification of the GGm we are going to estimate. Let S

be the covariance matrix of the log returns time series R(1), . . ., R(n). Denote by J the concen-

tration matrix, J ≔ S−1. The components of the matrix J are given in terms of the coefficients

Θi,j in Eq (1). Denote by ρi,j the partial correlation of R(i) and R(j). Consider the linear regres-

sions defining partial correlations:

RðiÞ � mðiÞ ¼
X

j6¼i

bi;jðRðjÞ � mjÞ þ �ðiÞ ð2Þ

where μi is the unconditional mean of R(i) and �(i) is a residual. Then

bij ¼
ri;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varð�ðiÞÞvarð�ðjÞÞ

p : ð3Þ
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It is also true that

ri;j ¼
� Ji;j
ffiffiffiffiffiffiffi
JiiJjj

p :

The adjacency matrix P = (Pi,j) is defined by

Pi;i ¼ 0 and Pi;j ¼ ri;j: ð4Þ

Remark 1 Let us emphasize now that the estimation of the GGm (1) will ultimately result in
the matrix P and this matrix is our main input for the network based on the GGm.

Results from GGm estimation: Stylized facts. In this section we report the results of esti-

mating a GGm for each year in the period 2000-2019 using (1). From this estimation exercise,

we get a partial correlation matrix P for each year in the period 2000-2019, hence twenty

matrices in total. A graphical representation of partial correlations is displayed in the panel of

Fig 3. In Table 2 we display partial correlations in absolute value above the threshold 0.3.

Partial correlations in absolute value in the interval (0.2, 0.3] are displayed in Table 3.

Fig 3. Graphs associated with partial correlation matrices, by year, in the period 2000-2019. For a given edge the

green color (respectively red color) represents a positive (respectively negative) relationship. Edge’s width represents

the strength of correlation. Vertexes are grouped according to industrial sector.

https://doi.org/10.1371/journal.pone.0238731.g003
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In Tables 4 and 5 we provide information concerning most persistent links in the observed

period.

We obtain the following stylized facts:

• First of all we see in Fig 3 a stable continuous evolution of partial-correlations interdepen-

dency structure. At this stage of initial visual inspection, if an impact of global crisis episodes

Table 2. Links in the rank (0.3, 1] for the period 2000-2009.

tick1 tick2 weight year tick1 tick2 weight year

ELEKTRA ICA 0.98 2000 ICHB SIMECB 0.44 2012

FEMSAUBD MXX 0.4 2000 AMXA MXX 0.83 2013

AZTECACPO SORIANAB 0.31 2001 FEMSAUBD MXX 0.42 2013

AMXA MXX 0.37 2002 GMEXICOB MXX 0.48 2013

AZTECACPO MXX 0.38 2002 ICHB SIMECB 0.34 2013

CEMEXCPO MXX 0.38 2002 MXX WALMEX 0.31 2013

FEMSAUBD MXX 0.45 2002 CEMEXCPO MXX 0.33 2014

MXX SORIANAB 0.32 2002 FEMSAUBD MXX 0.56 2014

AMXA MXX 0.59 2003 ASURB GAPB 0.36 2015

AZTECACPO MXX 0.31 2003 CEMEXCPO MXX 0.36 2015

CEMEXCPO MXX 0.36 2003 FEMSAUBD MXX 0.42 2015

FEMSAUBD MXX 0.35 2003 GFNORTEO MXX 0.37 2015

MXX WALMEX 0.73 2003 GMEXICOB MXX 0.33 2015

AMXA MXX 0.72 2004 ICHB SIMECB 0.36 2015

CEMEXCPO MXX 0.49 2004 CEMEXCPO MXX 0.45 2016

MXX WALMEX 0.43 2004 FEMSAUBD MXX 0.59 2016

CEMEXCPO MXX 0.44 2005 GFNORTEO MXX 0.34 2016

MXX WALMEX 0.4 2005 MXX WALMEX 0.35 2016

CEMEXCPO MXX 0.49 2006 ASURB GAPB 0.33 2017

FEMSAUBD MXX 0.41 2006 CEMEXCPO MXX 0.75 2017

GMEXICOB MXX 0.34 2006 FEMSAUBD MXX 0.42 2017

MXX WALMEX 0.77 2006 GEOB HOMEX 0.36 2017

CEMEXCPO MXX 0.5 2007 GFNORTEO MXX 0.47 2017

GAPB OMAB 0.35 2007 GMEXICOB MXX 0.3 2017

GMEXICOB MXX 0.31 2007 ICHB SIMECB 0.37 2017

MXX WALMEX 0.56 2007 ASURB GAPB 0.32 2018

GAPB OMAB 0.31 2008 CEMEXCPO MXX 0.74 2018

ICHB SIMECB 0.41 2008 FEMSAUBD MXX 0.87 2018

MXX WALMEX 0.37 2008 GFNORTEO MXX 0.65 2018

CEMEXCPO MXX 0.37 2009 GIGANTE LIVEPOL1 0.32 2018

GAPB OMAB 0.34 2009 MXX WALMEX 0.41 2018

ICHB SIMECB 0.34 2009 ASURB GAPB 0.31 2019

MXX WALMEX 0.35 2009 CEMEXCPO MXX 0.39 2019

CEMEXCPO MXX 0.35 2010 FEMSAUBD GFNORTEO -0.36 2019

ICHB SIMECB 0.34 2010 FEMSAUBD MXX 0.89 2019

MXX WALMEX 0.36 2010 GAPB OMAB 0.33 2019

FEMSAUBD MXX 0.35 2011 GFNORTEO MXX 0.81 2019

MXX WALMEX 0.33 2011 GMEXICOB MXX 0.55 2019

HOMEX URBI 0.32 2012 MXX WALMEX 0.56 2019

https://doi.org/10.1371/journal.pone.0238731.t002
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Table 3. Links in the rank (0.2, 0.3] for the period 2000-2009.

tick1 tick2 weight year tick1 tick2 weight year

CEMEXCPO MXX 0.27 2000 ASURB GAPB 0.24 2010

GFINBURO MXX 0.21 2000 AXTELCPO GFAMSAA 0.21 2010

GFNORTEO MXX 0.23 2000 GCARSOA1 GFINBURO 0.26 2010

MXX SORIANAB 0.26 2000 GFNORTEO MXX 0.21 2010

ARA GFNORTEO 0.26 2001 GMEXICOB MXX 0.29 2010

AZTECACPO ELEKTRA 0.2 2001 KUOA LIVEPOL1 0.22 2010

CEMEXCPO FEMSAUBD 0.3 2001 ALFAA MXX 0.22 2011

ALFAA MXX 0.2 2002 CEMEXCPO ICA 0.28 2011

AZTECACPO ELEKTRA 0.22 2002 CEMEXCPO MXX 0.21 2011

GFINBURO MXX 0.29 2002 ELEKTRA MXX 0.22 2011

GFNORTEO MXX 0.26 2002 GFNORTEO MXX 0.3 2011

ARA MXX 0.22 2003 GMEXICOB MXX 0.29 2011

GFINBURO MXX 0.21 2003 HOMEX URBI 0.28 2011

MXX SORIANAB 0.26 2003 CEMEXCPO MXX 0.27 2012

ALFAA MXX 0.29 2004 FEMSAUBD MXX 0.28 2012

AMXA CEMEXCPO -0.23 2004 GMEXICOB MXX 0.26 2012

AZTECACPO MXX 0.2 2004 MXX WALMEX 0.22 2012

BIMBOA MXX 0.2 2004 ALFAA MXX 0.29 2013

GFINBURO MXX 0.23 2004 AMXA FEMSAUBD -0.22 2013

GMEXICOB MXX 0.26 2004 CEMEXCPO MXX 0.22 2013

MXX SORIANAB 0.24 2004 GFNORTEO MXX 0.26 2013

ALFAA MXX 0.23 2005 GMEXICOB PE&OLES 0.22 2013

AMXA MXX 0.23 2005 HOMEX SAREB 0.22 2013

ARA URBI 0.21 2005 ALFAA MXX 0.24 2014

FEMSAUBD MXX 0.22 2005 ALSEA CULTIBAB 0.24 2014

GMEXICOB MXX 0.25 2005 ASURB GAPB 0.2 2014

KIMBERA MXX 0.21 2005 GFNORTEO MXX 0.26 2014

ALFAA MXX 0.22 2006 GMEXICOB MXX 0.29 2014

AMXA MXX 0.25 2006 MFRISCOA-1 PE&OLES 0.27 2014

GFINBURO MXX 0.28 2006 ALFAA MXX 0.22 2015

GFNORTEO MXX 0.2 2006 GFINBURO MXX 0.22 2015

MXX PINFRA 0.21 2006 AC BIMBOA 0.2 2016

BIMBOA MXX 0.23 2007 ALFAA AZTECACPO 0.27 2016

GFNORTEO MXX 0.23 2007 ALFAA GFINBURO 0.22 2016

HOMEX MXX 0.2 2007 ASURB GAPB 0.21 2016

ICA MXX 0.24 2007 GENTERA PINFRA 0.23 2016

MXX URBI 0.25 2007 GMEXICOB MXX 0.21 2016

ALFAA ARA 0.3 2008 MFRISCOA-1 PE&OLES 0.27 2016

ALFAA AXTELCPO 0.26 2008 MXX ORBIA 0.2 2016

AMXA MXX 0.23 2008 ALFAA ALPEKA 0.24 2017

CEMEXCPO MXX 0.26 2008 CEMEXCPO GFNORTEO -0.24 2017

FEMSAUBD MXX 0.26 2008 GAPB OMAB 0.2 2017

GCARSOA1 MXX 0.21 2008 GFNORTEO GMEXICOB -0.22 2017

GMEXICOB MXX 0.28 2008 HOMEX URBI 0.28 2017

HOMEX MXX 0.2 2008 MXX WALMEX 0.23 2017

MXX PE&OLES 0.25 2008 CEMEXCPO FEMSAUBD -0.27 2018

AMXA MXX 0.21 2009 FEMSAUBD GFNORTEO -0.26 2018

(Continued)
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indeed existed (e.g., dot.com bubble, the subprime crisis and the European soveregin debt

crisis) it doesn’t seem to produce large variations in network interdependency structures.

• There are several edges with a weight (partial-correlation) above the threshold 0.2 which fre-

quently include the main index from the Mexican stock Exchange BMV denominated IPC

(quoted as MXX in Yahoo.Finance); see the Tables 2 and 3.

• As we move forward in time, the market grows (with more nodes of stocks consistently

quoted by year). However, it does not seem to be evidence that interconnectedness in the

market changes drastically from one year to the next, even for the subprime crisis period.

• Connections must be due to exogenous factors to the market, but inherent to each stock,

since the graph is based on partial correlations. However, for edges that include the IPC

node, the other node may be a stock used in the construction of the index.

• A large number of links between stocks in different sectors wich is an empirical fact reported

for other markets; see e.g., [16], and to our best knowledge, not previously documented for

the Mexican stock market. Nonetheless, intrasectorial partial-correlations are also present.

• There are persistent links between pairs of stocks that appear frequently, but not systemati-

cally, over the twenty year period; see Tables 4 and 5.

• Negative partial-correlations appear only seldomly.

• For the year 2000 we see a partial correlation of 0.98 between ICA and ELEKTRA which

appears to be an odd finding, but it is actually supported by data; see Fig 4.

Table 3. (Continued)

tick1 tick2 weight year tick1 tick2 weight year

AMXA RCENTROA 0.21 2009 GAPB OMAB 0.22 2018

BIMBOA MXX 0.22 2009 GMEXICOB MXX 0.26 2018

FEMSAUBD MXX 0.21 2009 ICHB SIMECB 0.22 2018

GCARSOA1 MXX 0.22 2009 GFNORTEO GMEXICOB -0.26 2019

GMEXICOB MXX 0.26 2009 HCITY UNIFINA 0.2 2019

HOMEX MXX 0.25 2009

https://doi.org/10.1371/journal.pone.0238731.t003

Table 4. Persistent links in the rank (0.1, 1] for the period 2000-2009 (1/2).

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

ALFAA-MXX 0.17 0.20 0.29 0.23 0.22

AMXA-MXX 0.16 0.37 0.59 0.72 0.23 0.25 0.23 0.21

CEMEXCPO-MXX 0.27 0.14 0.38 0.36 0.49 0.44 0.49 0.50 0.26 0.37

FEMSAUBD-MXX 0.40 0.18 0.45 0.35 0.19 0.22 0.41 0.19 0.26 0.21

GFINBURO-MXX 0.21 0.16 0.29 0.21 0.23 0.28 0.17

GFNORTEO-MXX 0.23 0.26 0.20 0.23 0.20

BIMBOA-MXX 0.11 0.17 0.20 0.17 0.23 0.14 0.22

MXX-WALMEX 0.73 0.43 0.40 0.77 0.56 0.37 0.35

GMEXICOB-MXX 0.26 0.25 0.34 0.31 0.28 0.26

ASURB-GAPB 0.17 0.13

ICHB-SIMECB 0.41 0.34

https://doi.org/10.1371/journal.pone.0238731.t004
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• The strongest links above 0.3 are those typically having as one of its nodes the IPC. Also for

the rank [0.2, 0.3] links with IPC as a node dominate but with a small decline in frequency in

contrast with the interval (0.3, 1].

• FEMSA indeed has a persistent relationship with the IPC index with partial correlations

above 0.3; see Tables 4 and 5. In this same tables we do not see an important stock such

as AMX. This is an interesting confirmation of the strength of the GGm, since it captures

real facts (see for example news stories from the mexican magazines expansion and el

economista).

In Fig 5 we see a panel of barplots for degree-centralities separated into different ranges for

all stocks in their respective period. Links with negative values are few in quantity and magni-

tude as more precisely illustrated in Fig 5(a). In Fig 5(b) we see a quite homogenous distribu-

tion in the range [0.01, 0.1]. An analogous situation is appreciated in Fig 5(c) in the interval

Table 5. Persistent links in the rank (0.1, 1] for the period 2010-2019 (2/2).

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

ALFAA-MXX 0.22 0.20 0.29 0.24 0.22

AMXA-MXX 0.12 0.83

CEMEXCPO-MXX 0.35 0.21 0.27 0.22 0.33 0.36 0.45 0.75 0.74 0.39

FEMSAUBD-MXX 0.35 0.28 0.42 0.56 0.42 0.59 0.42 0.87 0.89

GFINBURO-MXX 0.14 0.22 0.13

GFNORTEO-MXX 0.21 0.30 0.19 0.26 0.26 0.37 0.34 0.47 0.65 0.81

BIMBOA-MXX 0.18 0.16 0.18 0.15 0.13 0.18

MXX-WALMEX 0.36 0.33 0.22 0.31 0.20 0.19 0.35 0.23 0.41 0.56

GMEXICOB-MXX 0.29 0.29 0.26 0.48 0.29 0.33 0.21 0.30 0.26 0.55

ASURB-GAPB 0.24 0.17 0.16 0.16 0.20 0.36 0.21 0.33 0.32 0.31

ICHB-SIMECB 0.34 0.44 0.34 0.11 0.36 0.37 0.22

https://doi.org/10.1371/journal.pone.0238731.t005

Fig 4. In purple the time series for ELEKTRA and in blue the time series for ICA. Prices in logarithmic scale for the

year 2000. Source: Yahoo.Finance.

https://doi.org/10.1371/journal.pone.0238731.g004
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[0.1, 0.5]. Only in the range [0.5, 1] we see in Fig 5(d) a more heterogenous situation with

some dominating stocks.

Before we continue with a discussion of results in this section, we estimate metrics (centrali-

ties) from network theory to see a possible effect of global financial crisis.

Centralities from partial correlations

Centrality is a metric designed in such a way that a vertex with high centrality can be consid-

ered highly influential. The first concept of centrality we use is the degree-centrality which for a

vertex in a weighted network is the sum of weights of the connecting edges. For our graphs of

partial correlations, the degree centrality gives information on the pattern of a shock’s trans-

mission. The idea is that if an influential (i.e., with high centrality) stock in the financial net-

work is having a bad day, it will be accompanied by many other stocks in similar situations.

Note that there is no causality claimed here. The second measure of centrality that we estimate

is the eigen-centrality. This is a global measure in that scores for each node are assigned via a

Fig 5. A comparison of degree centralities by year at different ranges.

https://doi.org/10.1371/journal.pone.0238731.g005
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comparison of the quality of its links. For example a node with just one link to another influen-

tial node could have a highest eigen-centrality than a node with two or more links. The com-

putation of eigencentralities transfers to a spectral analysis of the adjacency matrix and in

crucial steps is substantiated by Perron-Frobenius theory (see e.g., [57, Chapter 17]). The third

concept that we estimate is betweenness-centrality for the absolute values of weights. For each

vertex, it gives the proportion of shortest paths passing through it.

Shock transmissions. Let us explain in more detail eigencentrality and at the same time

also clarify shock transmissions. Let V = {1, . . ., n} index our set of stocks and recall the matrix

P defined in (4). The eigencentrality is a function f : V ! R satisfying

f ðvÞ ¼ r
X

w2NðvÞ

Pv;wf ðwÞ; v 2 V; ð5Þ

where r is a non negative constant and N(v) denotes the neighbors of v. Note that

f ðvÞ ¼ r
X

w2V

Pv;wf ðwÞ;

since by definition w 2 N(v) if and only if Pv,w 6¼ 0. Now this can be written in matricial nota-

tion as

f ðVÞ ¼ rPf ðVÞT;

where f(V) = (f(1), . . ., f(n)). Hence, f(V) is an eigenvector of P attached to r as its eigenvalue.

To continue we follow the discussion in [17], returning to the coefficients βi,j in Eq (3). The

matrix of coefficients B = (βi,j) with βii = 0 is then connected to the adjacency matrix as

B ¼ diagðJÞ�
1
2PdiagðJÞ

1
2. We can write the linear regression in a compact matricial notation as

~R � m ¼ Bð~R � mÞ þ � ¼ diagðJÞ�
1
2PdiagðJÞ

1
2ð~R � mÞ þ �: ð6Þ

Let ~RðiÞ≔ RðiÞ � mðiÞ and ~R ¼ ðRð1Þ � mð1Þ; . . . ;RðnÞ � mðnÞÞ. Then,

diagðJÞ
1
2 ~R ¼ PdiagðJÞ

1
2ð~R � mÞ þ diagðJÞ

1
2�:

Hence the vector ~X ≔ diagðJÞ
1
2 ~R satisfies

~X ¼ P~X þ Z

where Z≔ diagðJÞ
1
2�.

Now assume that between times t0 and t1 there is a shock Δ = (0, . . ., 0, δ, 0, . . ., 0) affecting

X(i). Then, ~X at time t1 is given by Pð~X þ DÞ þ Z and the change is then PΔ. Note that PΔ
does not need to be a scalar of Δ, meaning that the shock originally affecting X(i) has also an

impact on other components, indicating that the shock propagates.

The spectral decomposition of P helps in assessing the scale of propagation and rationalizes

the definition of eigencentrality. Let W1, . . ., Wn be the set of eigenvectors of P and Λ = {λ1,

. . ., λn} the corresponding set of eigenvalues, which we assume is decreasingly ordered with

respect to its modulus. Here is a common assumption: there is a unique eigenvalue attaining

the spectral radius. This means |λ1|>|λ2|�|λ2|. . .� |λn|. If the matrix P has only non-negative

components, then the Perron-Frobenious theory guarantees we are in this situation and other
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properties besides; see e.g., [57, Chapter 17]. Represent Δ by Δ = ∑i αi Wi. Then, for k 2 N

PkD ¼ l
k
1
a1W1 þ

Xn

i¼2

li

l1

� �k

Wi

( )

:

Hence

lim
k!1

1

l
k
1

PkD ¼ a1W1:

Then, as time passes the leading term indicating the effect of the initial shock Δ takes the

form l
k
1
a1W1.

Results of estimation. In Fig 6 we see estimated centralities for our networks. The blue

line is the largest modulus per year of eigenvalues. The green line represents the maximum

degree-centrality for each year and unsurprising this maximum is always attained by the IPC

index. The red (respectively red and dashed) line represents the average of each node’s degree-

centrality (respectively the average of each node’s absolute value degree-centrality). The gray

Fig 6. Network centralities from partial correlations. The blue line is the largest eigenvalue. The green line is the

maximum degree-centrality by year, always attained by the IPC index. The red line is the average of degree-centralities,

respectively the red dashed line is the average of absolute value of degree-centralities. The gray line represents the

maximum betweenness-centrality of absolute values. In the upper panel, time series are shown in their original scale,

while in the lower panel time series have been rescaled by its maximum.

https://doi.org/10.1371/journal.pone.0238731.g006
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line represents the maximum of betweenness-centrality which has been computed for absolute

values of weights with the R package igraph.

These are the findings we observe from Fig 6:

• The spectral radius is approximately bounded by two, which coincides with the range docu-

mented for other markets; see e.g., [16].

• The red line and the red dashed lined are almost indistinguishable. This happens as a conse-

quence of the fact that almost all partial-correlations are non-negative. We also observe the

stability on the metric represented by this line.

• The patterns of the green and blue lines are similar. As we mentioned, the green line is

attained by the IPC index, so it could be expected that the blue line is also related to this

index. Although we do not investigate this claim, assuming it is correct, in order to capture

effects beyond the IPC index it might be necessary in this case to complement with the sec-

ond eigenvalue together with its eigenvector for centrality and the analysis for a shock conta-

gion. Indeed, Fig 7 shows that in many cases the dominant eigenvalue has a multiplicity of

two or more, and in other cases that the second eigenvalue turns out to be close to the first.

Fig 7. Eigenvalue modulus per year.

https://doi.org/10.1371/journal.pone.0238731.g007
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Certainly, the idea of considering beyond the dominant eigenvector for eigencentrality is not

new; see [58]. Analysis for the Mexican case will be addressed elsewhere.

• There is indeed variability for centralities, but changes from one year to the next are indeed

relatively small. Thus, changes are subtle. For example, for the subprime crisis period, we see

a small upwards jump from 2005 to 2006 of around 0.4 and then from 2007 to 2008 a down-

wards jump of around 0.25. Small jumps are also observed for max degree-centrality on the

green line.

• Continuing with the previous point, we see an abrupt upwards movement of the green line

which we assume is associated with the dot.com bubble’s crisis: From the year 2001 to 2002.

Discussion. The financial networks of partial correlations illustrated in Fig 3 present low

degree centrality and are sparse. Below we construct financial networks based on Pearson cor-

relation matrices and we will also compute their centralities; see Fig 12. A comparison of Figs 6

and 12 yield evidence that partial-correlations generate sparser networks, understood by the

fact that comparing year by year, centralities for partial correlations are significantly lower

than for Pearson correlations. This was expected and agrees with the findings in [16] and [17]

which also compare networks based on Pearson and partial-correlations. Interestingly, estima-

tions of matrices are done by different methods and different data, thus, providing evidence

that sparsity of partial-correlation based networks are robust with respect to statistical proce-

dures and data. Another paper that also compares networks based on Pearson and partial cor-

relations is [4]. The authors conclude that networks based on Pearson correlations show

different structures than partial correlation matrices, and in particular a different clustering

structure. However, they construct Minimum Spanning Trees and the comparison of sparsity

is unclear. They also compute betweenness-centrality. Although they report differences, these

are not as marked as the ones presented here. We will elaborate on betweenness-centrality fur-

ther after we also analyze Tail-dependence networks.

The IPC index has been found to be a vertex where edges consistently present their highest

weight (partial-correlation). Indeed, the maximum of degree- and eigen- centralities are always

attained at this vertex. If the analysis of the mean variance portfolio of [23] holds true also for

partial correlations, then this would mean that in such a portfolio, the IPC seen as an asset on

its own would receive a lower weight. Thus, any Exchange-Traded Fund (ETF) tracking the

IPC index does not diversify investments from the point of view of the classical Markowitz

portfolio theory and achieve a lower proportion of portfolio value. Whether the negative rela-

tionship found in [23] also holds true for partial correlations can be the subject of future

research, however we find that the IPC index also has high degree- and eigen- centralities for

networks based on Tail-dependence and Pearson correlation matrices.

In the period 2000-2019 there are three important financial episodes: The dot.com bubble,

the subprime crisis and the European sovereign debt crisis. The time series of centralities in

Fig 6 exhibit several local maximum which may connect with those episodes. Now here is a

trade-off. Partial correlations and the lasso estimation of the GGm indeed result in a stringent

sieve in which only the most significant and “clear” relationships pass through and as a conse-

quence the centrality time series are quite stable. However, the aforementioned financial epi-

sodes are captured by centralities of partial-correlations and show moderate increases. We will

see that Tail-dependence networks exhibit a more sensible topology for those market condi-

tions. This is reasonable due to the symmetric nature of distributions in GGm while on Tail-

dependence networks the emphasis is on lower tails.
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Tail-dependence networks

For two random variables X and Y the Tail-dependence coefficient ([2]) is the limit

lL ¼ lim
q!0
PðX � F� 1

X ðqÞ j Y � F� 1

Y ðqÞÞ

where FX represents the cumulative distribution of X, and similarly for FY. It is clear that λL

quantifies the relationship of lower tails between X and Y. In this section we focus on net-

works based on matrices whose components are the coefficients λL for pairs of stock time

series. We estimate the Tail-dependence coefficient through the non-parametric estimator in

[7] which is implemented in the R package FRAPO (Financial Risk Modelling and Portfolio

Optimisation).

In Figs 8 and 9 the Tail-dependence networks for years during the period 2006-2009 are

illustrated. In Fig 8 vertex size is a function of betweenness-centrality while on Fig 9 it is a

function of eigen-centrality. The illustrated structure repeats for the years over the period

2000-2019. The time series of centralities are illustrated in Fig 10. This is a list of stylized facts:

Fig 8. Tail-dependence networks for the years 2006-2009. Vertex size as a function of betweenness-centrality. The

pink shaded area shows the highest 95% quantile. The colors of the edges are blue for weights in absolute value in the

interval [0.2, 0.3], and red in the interval (.3, 1]. Otherwise they are gray.

https://doi.org/10.1371/journal.pone.0238731.g008
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1. The IPC index is also important with respect to eigen-centrality, just as it was for partial-

correlation networks.

2. For betweenness-centrality the 95% quantile is quite dynamic concentrated in a few stocks

and consistently does not include the IPC index.

3. The 95% quantile is more distributed for eigen-centrality than for betweenness-centrality.

4. Fig 10 clearly shows that time series of centralities experience an increase in activity associ-

ated with the subprime and the European sovereign debt crisis.

Discussion. In Fig 10 we see an illustration of financial network’s interdependency-evolu-

tion for the Mexican stock exchange. The first fact to note are the peaks in the years 2008 and

2011. It is reasonable to associate such increments in interconnectedness (as measured by

degree- and eigen-centrality) to the subprime financial crisis and the European sovereign debt

crisis. This is coherent with findings in the literature. It is worth emphasizing that in this litera-

ture, other data have been analyzed with different methods. For comparison, let us recall a few

Fig 9. Tail-dependence networks for the years 2006-2009. Vertex size as a function of eigen-centrality. The colors of

the edges are blue for weights in absolute value in the interval [0.2, 0.3], and red in the interval (.3, 1]. Otherwise they

are gray.

https://doi.org/10.1371/journal.pone.0238731.g009
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papers in this regard. A financial network from 100 selected stocks of financial institutions in

the US is studied in [29]. Emphasis is on tail events from the point of view of systemic risk.

They find that the banking sector is at the core of systemic risk between 2008 and 2010. In con-

trast, the insurance companies are less relevant for systemic risk. Their empirical results

exhibit growing interconnectedness during the period of a financial crisis. A financial network

based on Tail-distributions is studied by [30]. Data comes from a selection of 51 time series of

large European banks and 17 sovereigns bonds during the period from 2006 through 2013.

Their empirical results show that network densities increase from the intensity of the (sub-

prime) financial crisis. More precisely, network densities increases from 2006 up to its (local)

maximum around the peak of the global financial crisis and then decreases. A different

approach based on entropy is studied by [28]. The empirical result reports that “node strengths

peak in times of crisis”.

Hence, there exists an empirical fact manifest along a variety of methods applied to different

data: estimated network-interconnectedness increases at some point in the development of a

crisis, it might indeed affect one sector more than other, yet it is going to be globally observ-

able. We evidence this empirical fact for the Mexican stock exchange in Fig 10. This is already

interesting, and going deeper into the details, we mention two subtleties about timing and the

different centralities. We have observed in partial-correlation networks that degree- and

Fig 10. Network centralities from Tail-dependence networks. The blue line is the largest eigenvalue. The green line

is the maximum degree-centrality by year. The red line is an average of degree-centrality. The gray line represents the

maximum betweenness-centrality of absolute value weights. In the upper panel, time series are shown in their original

scales, while in the lower panel time series have been rescaled by their maximums.

https://doi.org/10.1371/journal.pone.0238731.g010
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eigen-centrality show the same pattern. This similarity in patterns happens also for the Tail-

dependence networks analyzed in this section; compare Figs 6 and 10. It will be observed

again for networks based on (filtered) Pearson correlations; see Fig 12 below. However,

betweenness-centrality exhibits a different pattern, more so for Tail-dependence networks; see

[59] for a similar finding with different data and statistical estimation. A relevant difference

worth emphasizing concerns the timing of local extrema. Whether this difference is indeed

robust with respect to data and statistical procedures certainly is an interesting question for

future research.

Differences in patterns, discernible in the time series, is also visible in the networks in Figs

8 and 9. In the former, in which node size is a function of betweenness-centrality, the most

influential nodes are linked exclusively through gray edges. These nodes have a lot of links

although all of them have small weights. On the latter graph, where node size is a function of

eigen-centrality, the most influential nodes are connected together by red links. This indicates

weights in the interval (.3, 1].

Network theory: Community detection

DCC multivariate Garch model. Let y ≔ fytg
N
t¼1

denote a one dimensional time series

with N observations. A GARCH specification for its volatility usually starts with a flux of infor-

mation determined by a filtration fF tg
N
t¼1

in which F t is a σ-algebra representing information

at time t and y follows the dynamic

yt ¼ E½yt j F t� 1� þ �tðyÞ:

Here θ is a parameter vector whose definition specifies the model, while μ(θ) is the condi-

tional mean of the time series at time t, usually modeled through an ARMA time series. For

example an ARMA(1,1) (as we will consider here) is specified by

mt ¼ mþ εt þ �mt� 1 þ cεt� 1; ð7Þ

where ϕ, ψ are parameters to be estimated and ε is white noise, i.e. an uncorrelated centered

time series. The residual �(θ) captures the conditional volatility of y:

varðyt j F tÞ ¼ E½ðyt � mtðyÞÞ
2
j F t� ¼ E½ð�tðyÞÞ

2
j F t� ¼ varð�tðyÞÞ:

Its specification is the essence of a GARCH model. We will consider the standard GARCH

(1,1) model:

�t ¼ stzt ð8Þ

s2
t ¼ a0 þ a1�

2
t� 1
þ b1s

2
t� 1
; ð9Þ

where fztg
N
t¼1

is white noise.

Now consider a set of univariate time series y(1),. . .,y(n). A class of models in the multivari-
ate GARCH literature known as Dynamic Conditional Correlation (DCC) was introduced by

[60] and [61]. The DCC class builds upon univariate GARCH models and then specifies the

dynamic of time varying conditional covariance matrix of the time series y(1),. . .,y(n). It has

the general dynamics

Ht ¼ DtRtDt:

Here Dt is a diagonal matrix of time varying standard deviations from univariate

GARCH models and Rt is a time varying correlation matrix. For estimation, the matrix Rt is
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decomposed as

Rt ¼ ðQ
�

t Þ
� 1QtðQ

�

t Þ
� 1

where Q is specified in [62, Equation (2)].

Means for the years 2006 and 2008. In Table 6 we report the coefficient μ in the specifica-

tion (7) for each stock in the year 2006, and analogously for the Table 7 in the year 2008. The

Table 6. The coefficient μ for the year 2006.

Stock mu value Stock mu value

1 ALFAA 0.0006 GISSAA 0.0011

2 ALSEA 0.0026 GMD 0.0036

3 AMXA 0.0017 GMEXICOB 0.0021

4 ARA 0.0027 HERDEZ 0.0016

5 AXTELCPO 0.0013 HOMEX 0.0027

6 AZTECACPO 0.0006 ICA 0.0026

7 BACHOCOB 0.0012 ICHB 0.0036

8 BIMBOA 0.0018 KIMBERA 0.0011

9 CEMEXCPO 0.0013 MXX 0.0021

10 CMOCTEZ 0.0016 PAPPEL 0.0018

11 CMRB 0.0013 PASAB -0.0015

12 CYDSASAA 0.0016 PE&OLES 0.0027

13 ELEKTRA 0.0017 PINFRA 0.0065

14 FEMSAUBD 0.0024 RCENTROA 0.0039

15 GCC 0.0022 SORIANAB 0.0021

16 GFINBURO 0.0007 URBI 0.0018

17 GFNORTEO 0.0033 WALMEX 0.0023

https://doi.org/10.1371/journal.pone.0238731.t006

Table 7. The coefficient μ for 2008 year.

Stock mu value Stock mu value Stock mu value

1 AC -0.0013 ELEKTRA 0.0006 IDEALB-1 -0.0008

2 ALFAA -0.0019 FEMSAUBD 0.0019 KIMBERA 0.0002

3 ALSEA -0.0013 FINDEP -0.0036 LAMOSA -0.0016

4 AMXA -0.0023 FRAGUAB 0.0004 MAXCOMA -0.0028

5 ARA -0.0018 GAPB -0.0017 MEDICAB -0.0001

6 ASURB -0.0014 GCARSOA1 -0.0003 MEGACPO -0.0028

7 AUTLANB 0.0037 GCC -0.0032 MXX -0.0010

8 AXTELCPO -0.0053 GFAMSAA -0.0023 OMAB -0.0024

9 AZTECACPO 0.0000 GFINBURO 0.0008 PAPPEL -0.0047

10 BACHOCOB -0.0020 GFNORTEO -0.0003 PASAB -0.0030

11 BIMBOA 0.0002 GIGANTE -0.0026 PE&OLES -0.0010

12 CABLECPO 0.0000 GISSAA -0.0009 PINFRA -0.0016

13 CEMEXCPO -0.0030 GMD -0.0053 POCHTECB -0.0048

14 CIEB -0.0023 GMEXICOB -0.0032 SAREB -0.0033

15 CMOCTEZ -0.0005 GRUMAB -0.0001 SIMECB 0.0007

16 CMRB -0.0005 HOMEX 0.0007 SORIANAB 0.0010

17 CULTIBAB -0.0001 ICA -0.0006 TMMA -0.0040

18 CYDSASAA -0.0029 ICHB 0.0010 URBI -0.0018

https://doi.org/10.1371/journal.pone.0238731.t007
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estimation of these coefficients provides further support to the claim made after the visual evi-

dence of Fig 1.

Modularity. Assume we are given an undirected and unweighted graph G with vertexes

V = {1, . . ., n} and edges E. Community structure in the graph means that there exists a parti-

tion of V in groups of vertices in such a way that within groups vertices are highly connected

and more edges exist among them, while at the same time, edges between groups are less

observed; see [40] for a survey of methods in community detection. The aforementioned

description presents a general idea and to make it operative, it is necessary to use a more quan-

titative formulation. A popular approach is through the famous concept of modularity as

introduced by [63] and further developed in [64]. Following the notation of [64] we introduce

the following objects. Let A = (Ai,j) be the adjacency matrix of G and let m ¼ 1

2

P
iki, where ki

denotes the degree of vertex i, so ki = ∑j Ai,j. Further denote by s 2 {1, . . ., n}n a vector having

the same dimension as A, and representing an allocation of vertexes to communities. Thus, si

represents the community assigned to vertex i. Now the idea is to compare the graph G with a

graph G0 having no community structure. A group Vk = {i 2 V j si = k} possesses an accumu-

lated weight of
P

i;j2Vk
Ai;j. Now for G0, assuming it is a random instance of an Erdős-Rényi

graph, the set Vk should have an accumulated weight of
P

i;j2Vk

kikj
2m . Hence, the difference

P
i;j2Vk

Ai;j �
kikj
2m quantifies how distant is the immersion of community Vk in the graph G from

G0. The modularity function is defined as the sum of these differences over all communities:

QðsÞ≔
X

k

X

i;j2Vk

Ai;j �
kikj

2m

� �

¼
X

i;j2V

Ai;j �
kikj

2m

� �

dðsi; sjÞ;

where δ(si, sj) = 0 unless si = sj in which case δ(si, sj) = 1.

As such, the modularity function Q(�) is defined for unweighted, undirected graphs. In par-

ticular, for graphs obtained from a correlation matrix, which indeed is weighted, the modular-

ity function Q(�) needs to be adjusted. Moreover, the null model (the graph G0) is critical for

the well-functioning of modularity; see the discussion in [40]. Hence, to deal with this prob-

lem, we choose to work with the formulation of [36] where the correlation matrix is filtered

and modularity is adjusted for the right “null model” G0. The analysis is again based on a

spectral analysis as we now explain. Let C be a correlation matrix and consider the set of

eigenvalues λ1, . . ., λn which we assume are displayed in increasing order. Let v1, . . ., vn be the

corresponding eigenvectors. Moreover, let T be the number of observations and λ−, λ+ be the

critical values

l� ≔ 1 �

ffiffiffiffi
n
T

r� �2

; lþ ≔ 1þ

ffiffiffiffi
n
T

r� �2

:

The values λ−, λ+ are parameters for Marcenko-Pastur distribution in random matrix the-

ory which is given by rðlÞ ¼ T
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðlþ� lÞðl� lþÞ
p

2pl
. Let us introduce the matrices

Cr ≔
X

li�lþ

liv
tr
i � vi ð10Þ

Cg ≔
X

lþ<li<ln

liv
tr
i � vi ð11Þ
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Cm ≔ lnvtr
n � vn: ð12Þ

We have a decomposition of the correlation matrix C given by

C ¼ Cm þ Cg þ Cr: ð13Þ

From the ordering of the eigenvalues, the matrix Cr represents random noise, Cm a global

signal which in our financial context is attached to the market as a whole and Cg represents

information in a mesoscopic scale between Cr and Cm. Next, we explain how the modularity

function Q(�) is adjusted. Accordingly, focusing on the matrix Cg, and taking into account the

decomposition (13), the null model is Cr + Cm and the modularity function takes the form

Q3ðsÞ ≔
1

Cnorm

X

i;j

½Ci;j � Cr
i;j � Cm

i;j�dðsi; sjÞ

¼
1

Cnorm

X

i;j

Cg
i;jdðsi; sjÞ

ð14Þ

for Cnorm = ∑i,j Ci,j a normalizing constant. However, the set of eigenvalues λi satisfying λ+ < λi

< λn could be empty (as we will find for some years in our sample). In this case the matrix Cg

will be undefined and it makes no sense to consider it. For those cases we will consider a

decomposition C = Cs + Cr with Cs ≔
P

lþ<li
livtr

i � vi and then the modularity is defined by

Q2ðsÞ ≔
1

Cnorm

X

i;j

½Ci;j � Cr
i;j�dðsi; sjÞ

¼
1

Cnorm

X

i;j

Cs
i;jdðsi; sjÞ:

ð15Þ

Hence, in this section we maximize the modularity functions Q2 and Q3 in order to define

communities and report on them. It is known that the maximization of modularity functions

is a NP-hard problem; see [65]. Consequently, the optimization is approached through several

heuristic algorithms. We implement the popular Louvian algorithm, adjusted as described by

[36] according to the modularity functions Q2 and Q3.

Modularity function Q2. In Fig 11 we see the resulting communities obtained with the

Louvian algorithm applied to the modularity function Q2 defined in (15). During all the years

of the period there are two communities. The first community is a “giant component” and the

other community consists of a small number of isolated vertices. Hence, at this scale our proce-

dure does not detect a complex community structure. This is unsurprising, since Q2 is based

on the matrix Cs which includes the “market mode”. Note however the stylized fact:

• The turmoil at the subprime financial crisis and the European sovereign debt crisis periods

are captured by a visually evident increase in interconnectedness. This can also be observed

from the time series of centralities in Fig 12.

Modularity function Q3. For the definition of the modularity function Q3 the matrix Cg is

necessary and should not be a null matrix. For our data, this is the case for only a few years:

2000, 2010, 2016, 2018 and 2019. For them, a representation of communities can be seen from

Fig 13. This is what we observe:
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• First of all, in each year, there are only two communities as can be seen from the color of the

vertexes, or equivalently from their shape. Interestingly, there is no clear larger community.

• Second, for our data the industrial sector is non determinant for the community assignment.

More clearly, each industrial sector has vertexes in each community. This fact should be

compared with the finding based on partial correlations where there also existed intersector-

ial links.

• This is our explanation for the years in which there existed a non-trivial matrix Cg. First of

all recall that this matrix represents structure between the scales of individual stocks and the

market as a whole, while in crisis periods this last structure is what prevails since stocks tend

to be highly correlated at those times. In the year 2000 the peak of the dot.com bubble is

located and for the years 2001 and 2002 bearish markets prevailed. What we see from Fig 11

for the network constructed from the matrices Cs, is an increase in interconnectedness,

while in Fig 13, we see that in the period 2000:2002, there existed a mesoscopic structure for

the year 2000, in which there is a “local minimum” for graph interconnectedness. The same

Fig 11. Communities obtained from modularity function Q2. The color of the nodes represent community, which is

equivalently represented by the vertex’ shape. For clarity, only edges with weights in absolute value in the interval [.3,

1) are shown. Only weights above 0.5 in absolute value are distinguished in the edge’s width.

https://doi.org/10.1371/journal.pone.0238731.g011
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occurs, analogously for the year 2010 in Fig 13, which coincides with a local minimum in Fig

11 for the “extended” subprime crisis period 2007-2010.

• Now we compare the years 2016, 2018 and 2019 in Figs 11 and 13. Those are years in which

various global events occurred, some of them: The Brexit (starting from its referendum in

june 2016), the US elections for the period 2017-2020, the China-US trade conflict starting

from july 2018. However, none of these seems to be comparable to the magnitudes of the

dot.com bubble and the subprime crisis. In particular for the Mexican stock market they

didn’t have a sufficient impact to hide the effects of a mesoscopic structure, inducing all

stocks to move as a result of a common factor.

Discussion. In this section we apply the methodology presented by [36]. The authors of

that paper obtain the result that for stocks in the S&P500 index, the maximization of modular-

ity without any sort of adjustment results in a unique community. This is uninteresting and

also happens in our case with data from the Mexican stock exchange under the modularity

function Q2. It is based on the Pearson correlation matrix after noise has been filtered out

according to Random Matrix Theory. This is the matrix Cs which includes, as we mentioned

before, the “market mode” from which the result of a unique community is unsurprising. In

Fig 12. Network centralities from filtered Pearson networks based on the matrix Cs. The blue line is the largest

eigenvalue. The green line is the maximum degree-centrality by year. The red line is an average of degree-centrality.

The gray line represents the maximum betweenness-centrality. In the upper panel, time series are shown in their

original scale, while in the lower panel time series have been rescaled by its maximum.

https://doi.org/10.1371/journal.pone.0238731.g012
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the paper [36] communities under Q3 are also determined. They obtain five communities for

stocks in the S&P500 index. In our case there are only two communities, but it is also true that

year by year we are considering on average less than one-fifth of the number of stocks in the

S&P500 index. In this sense, magnitude in the number of communities seems to be coherent.

The configuration of community-structure on both cases shares two properties: (a) communi-

ties are multisectorial and (b) negative links joining nodes belonging to different communities

are mostly negative. This is already interesting for the objective of understanding the interde-

pendency structure in a single trustable snapshot. It also provides information for applications.

For example, the fact that inter-communities links are negative is a useful taxonomy for the

tasks of portfolio-allocation and hedging.

Conclusion

In global crisis periods, price levels of stocks in the Mexican stock exchange indeed present

obvious changes which are visually evident and confirmed by econometric models. We have

shown this fact here and it is also documented by other authors. However, the interdepen-

dency structure is a more complex phenomenon and much less studied. Our findings show

that as long as partial-correlations are concerned, the interdependency structure is quite stable

Fig 13. Communities from the modularity function Q3. The color of nodes identifies membership to the same

community and equivalently for the vertex’ shape. For clarity, only the edges with weights in absolute value in the

intervals [.05,1) are shown. Only weights above 0.5 in absolute value are distinguished via the edge’s width.

https://doi.org/10.1371/journal.pone.0238731.g013
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and centrality metrics from network theory have the sensibility to quantify small variations.

Degree- and eigen-centralities indeed present variations, an upwards jump at the peak of the

crisis and then a downwards jump when the shock of the crisis has been absorbed in the mar-

ket. Another interesting finding from studying interdependency structure from partial-corre-

lations is that only a small number of negative partial correlations which are also in magnitude

small are present. We argue this is an indicator of a positive synergy of an integrated market.

Reinforcing this claim, we find that industrial sectors are strongly interconnected even at the

level of partial correlations. This is a less studied property, in general and in particular for the

Mexican case.

Estimation of networks based on different matrices successfully captures different aspects

of interdependency. Tail-dependence networks and their centralities maxima have been

shown to give the most concise timing for the crisis’s heights (for the subprime and European

debt crises).

Interdependency from the point of view of (“full”) correlations confirms findings from

partial correlations. It also provides evidence of an integrated market for the Mexican case.

Indeed, this is what we learned from the estimation of modularities which determined com-

munity structure without separating industrial sectors. From filtered matrices with noise fil-

tered out (the matrices Cs), a single giant component emerged. Moreover, here the effect of

global episodes for interdependency structure was clear even by simple visual inspection. This

is what we learned in Fig 11 and is perfect as evidence for the modeling strength. Indeed, cor-

relations are more sensitive to trading activity than partial-correlations and capture relation-

ships among stocks due to such activity which is even more pronounced at crisis periods. We

also studied community structure from the matrices Cg, which are the correlation matrices

after noise and the global market mode have been filtered out. At this scale it happens that

only a few observed years present a mesoscopic structure. For the years 2000 and 2010 in

which mesoscopic structure is present, we observe a “local minimum” for interconnectedness

in Fig 11. For the years 2016, 2018 and 2019 we also note a turmoil of stress periods (e.g., the

Brexit,the US-China trade conflict, etc.) which nevertheless are not to be compared in severity

with the episodes of the dot.com bubble and the subprime crisis. Hence they are not able to

blur the presence of structure at the mesoscopic level.
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29. Härdle WK, Wang W, Yu L. TENET: Tail-Event driven NETwork risk. Journal of Econometrics. 2016;

192(2):499–513. https://doi.org/10.1016/j.jeconom.2016.02.013

30. Betz F, Hautsch N, Peltonen TA, Schienle M. Systemic risk spillovers in the European banking and sov-

ereign network. Journal of Financial Stability. 2016; 25:206–224. https://doi.org/10.1016/j.jfs.2015.10.

006

31. Wang GJ, Xie C. Tail dependence structure of the foreign exchange market: A network view. Expert

Systems with Applications. 2016; 46:164–179. https://doi.org/10.1016/j.eswa.2015.10.037

32. Tse CK, Liu J, Lau FCM. A network perspective of the stock market. Journal of Empirical Finance.

2010; 17(4):659–667. https://doi.org/10.1016/j.jempfin.2010.04.008

33. Jiang ZQ, Zhou WX. Complex stock trading network among investors. Physica A: Statistical Mechanics

and its Applications. 2010; 389(21):4929–4941. https://doi.org/10.1016/j.physa.2010.07.024

34. Onnela JP, Chakraborti A, Kaski K, Kertész J, Kanto AJ. Dynamics of market correlations: taxonomy

and portfolio analysis. Physical review E, Statistical, nonlinear, and soft matter physics. 2003; 68 5 Pt

2:056110. https://doi.org/10.1103/PhysRevE.68.056110 PMID: 14682849

35. Bonanno G, Lillo F, Mantegna RN. High-frequency cross-correlation in a set of stocks. Quantitative

Finance. 2001; 1(1):96–104. https://doi.org/10.1080/713665554

36. MacMahon M, Garlaschelli D. Community Detection for Correlation Matrices. Phys Rev X. 2015; 5.

https://doi.org/10.1103/PhysRevX.5.021006

37. Almog A, Besamusca F, MacMahon M, Garlaschelli D. Mesoscopic Community Structure of Financial

Markets Revealed by Price and Sign Fluctuations. PloS One. 2015; 10(7). https://doi.org/10.1371/

journal.pone.0133679 PMID: 26226226

38. Isogai T. Clustering of Japanese stock returns by recursive modularity optimization for efficient portfolio

diversification*. Journal of Complex Networks. 2014; 2(4):557–584. https://doi.org/10.1093/comnet/

cnu023

39. Piccardi C, Calatroni L, Bertoni F. Clustering financial time series by network community analysis. Inter-

national Journal of Modern Physics C. 2011; 22(01):35–50. https://doi.org/10.1142/

S012918311101604X

40. Fortunato S, Hric D. Community detection in networks: A user guide. Physics Reports. 2016; 659:1–44.

https://doi.org/10.1016/j.physrep.2016.09.002

41. Guo X, Zhang H, Tian T. Development of stock correlation networks using mutual information and finan-

cial big data. PLOS ONE. 2018; 13(4):1–16. https://doi.org/10.1371/journal.pone.0195941 PMID:

29668715

42. Li B, Pi D. Analysis of global stock index data during crisis period via complex network approach. PLOS

ONE. 2018; 13(7):1–16. https://doi.org/10.1371/journal.pone.0200600 PMID: 30020981

43. Mantegna RN. Hierarchical structure in financial markets. The European Physical Journal B—Con-

densed Matter and Complex Systems. 1999; 11:193–197. https://doi.org/10.1007/s100510050929

44. Sandoval L, Franca IDP. Correlation of financial markets in times of crisis. Physica A: Statistical

Mechanics and its Applications. 2012; 391(1):187–208. https://doi.org/10.1016/j.physa.2011.07.023

45. Plerou V, Gopikrishnan P, Rosenow B, Amaral LAN, Guhr T, Stanley HE. Random matrix approach to

cross correlations in financial data. Physical review E, Statistical, nonlinear, and soft matter physics.

2002; 65 6 Pt 2:066126. https://doi.org/10.1103/PhysRevE.65.066126 PMID: 12188802

46. Sidaoui J, Ramos-Francia M, Cuadra G. The Global Financial Crisis and Policy Response in Mexico,

Mexico City: Bank of Mexico. Basilea, Bank for International Settlement. BIS papers no 54. 2010;.

PLOS ONE The interdependency structure in the Mexican stock exchange

PLOS ONE | https://doi.org/10.1371/journal.pone.0238731 October 29, 2020 30 / 31

https://doi.org/10.1016/j.jempfin.2016.06.003
https://doi.org/10.1038/srep01665
http://www.ncbi.nlm.nih.gov/pubmed/23588852
https://doi.org/10.1016/j.physa.2018.09.011
https://doi.org/10.1016/j.physa.2018.09.011
https://doi.org/10.1016/j.csda.2004.02.004
https://doi.org/10.1002/ijfe.1679
https://doi.org/10.1016/j.jeconom.2016.02.013
https://doi.org/10.1016/j.jfs.2015.10.006
https://doi.org/10.1016/j.jfs.2015.10.006
https://doi.org/10.1016/j.eswa.2015.10.037
https://doi.org/10.1016/j.jempfin.2010.04.008
https://doi.org/10.1016/j.physa.2010.07.024
https://doi.org/10.1103/PhysRevE.68.056110
http://www.ncbi.nlm.nih.gov/pubmed/14682849
https://doi.org/10.1080/713665554
https://doi.org/10.1103/PhysRevX.5.021006
https://doi.org/10.1371/journal.pone.0133679
https://doi.org/10.1371/journal.pone.0133679
http://www.ncbi.nlm.nih.gov/pubmed/26226226
https://doi.org/10.1093/comnet/cnu023
https://doi.org/10.1093/comnet/cnu023
https://doi.org/10.1142/S012918311101604X
https://doi.org/10.1142/S012918311101604X
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1371/journal.pone.0195941
http://www.ncbi.nlm.nih.gov/pubmed/29668715
https://doi.org/10.1371/journal.pone.0200600
http://www.ncbi.nlm.nih.gov/pubmed/30020981
https://doi.org/10.1007/s100510050929
https://doi.org/10.1016/j.physa.2011.07.023
https://doi.org/10.1103/PhysRevE.65.066126
http://www.ncbi.nlm.nih.gov/pubmed/12188802
https://doi.org/10.1371/journal.pone.0238731


47. Roman de la Sancha LI, Hernandez Alvarez F, Rodriguez Garcia G. Co-movimientos entre los Índices
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Finanzas Nueva Época REMEF. 2017; 6(1).

49. Vodenska I, Aoyama H, Fujiwara Y, Iyetomi H, Arai Y. Interdependencies and Causalities in Coupled

Financial Networks. PLOS ONE. 2016; 11(3):1–32. https://doi.org/10.1371/journal.pone.0150994

PMID: 26977806

50. Perales GB. Central Bank Exchange Rate Interventions and Market Expectations: The Case of México
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54. Meinshausen N, Bühlmann P. High-dimensional graphs and variable selection with the Lasso. Ann Stat-

ist. 2006; 34(3):1436–1462. https://doi.org/10.1214/009053606000000281

55. Tibshirani R. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society

Series B (Methodological). 1996; 58(1):267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x

56. Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso.

Biostatistics. 2007; 9(3):432–441. https://doi.org/10.1093/biostatistics/kxm045 PMID: 18079126

57. Shapiro H. Linear Algebra and Matrices. AMS; 2015.

58. Newman MEJ. Networks: An introduction. Oxford University Press; 2010.

59. Cerqueti R, Clemente GP, Grassi R. Influence measures in subnetworks using vertex centrality. Soft

Computing. 2020; 24:8569–8582. https://doi.org/10.1007/s00500-019-04428-y

60. Engle R. Dynamic Conditional Correlation. Journal of Business & Economic Statistics. 2002; 20

(3):339–350. https://doi.org/10.1198/073500102288618487

61. Tse YK, Tsui AKC. A Multivariate Generalized Autoregressive Conditional Heteroscedasticity Model

With Time-Varying Correlations. Journal of Business & Economic Statistics. 2002; 20(3):351–362.

https://doi.org/10.1198/073500102288618496

62. Engle R, Sheppard K. Theoretical and empirical properties of Dynamic Conditional Correlation Multivar-

iate GARCH. NBER Working Paper 8554. 2001; https://doi.org/10.1198/073500102288618487

63. Newman MEJ, Girvan M. Finding and evaluating community structure in networks. Phys Rev E. 2004;

69:026113. PMID: 14995526

64. Newman MEJ. Modularity and community structure in networks. Proceedings of the National Academy

of Sciences. 2006; 103(23):8577–8582. https://doi.org/10.1073/pnas.0601602103

65. Brandes U, Delling D, Gaertler M, Görke R, Hoefer M, Nikoloski Z, et al. Maximizing Modularity is hard;

2006.

PLOS ONE The interdependency structure in the Mexican stock exchange

PLOS ONE | https://doi.org/10.1371/journal.pone.0238731 October 29, 2020 31 / 31

https://doi.org/10.21919/remef.v14i4.352
https://doi.org/10.1371/journal.pone.0150994
http://www.ncbi.nlm.nih.gov/pubmed/26977806
https://doi.org/10.1214/009053606000000281
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1093/biostatistics/kxm045
http://www.ncbi.nlm.nih.gov/pubmed/18079126
https://doi.org/10.1007/s00500-019-04428-y
https://doi.org/10.1198/073500102288618487
https://doi.org/10.1198/073500102288618496
https://doi.org/10.1198/073500102288618487
http://www.ncbi.nlm.nih.gov/pubmed/14995526
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1371/journal.pone.0238731

