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Abstract
Prions enter the environment from infected hosts, bind to a wide range of soil and soil miner-

als, and remain highly infectious. Environmental sources of prions almost certainly contrib-

ute to the transmission of chronic wasting disease in cervids and scrapie in sheep and

goats. While much is known about the introduction of prions into the environment and their

interaction with soil, relatively little is known about prion degradation and inactivation by nat-

ural environmental processes. In this study, we examined the effect of repeated cycles of

drying and wetting on prion fitness and determined that 10 cycles of repeated drying and

wetting could reduce PrPSc abundance, PMCA amplification efficiency and extend the incu-

bation period of disease. Importantly, prions bound to soil were more susceptible to inactiva-

tion by repeated cycles of drying and wetting compared to unbound prions, a result which

may be due to conformational changes in soil-bound PrPSc or consolidation of the bonding

between PrPSc and soil. This novel finding demonstrates that naturally-occurring environ-

mental process can degrade prions.

Author Summary

Prion diseases such as chronic wasting disease and scrapie are emerging in North America
at an increasing rate. Infectious prions are introduced into the environment from both liv-
ing and dead animals where they can bind to soil. Little information is available on the ef-
fect of prion inactivation under conditions that would be found in the natural
environment. In this study, we exposed both unbound and soil-bound prions to repeated
cycles of drying and wetting to simulate ambient environmental conditions. We found evi-
dence of prion inactivation in both unbound and soil bound prions. The influence of re-
peated cycles of drying and wetting are dependent on the prion strain and soil type used
and, interestingly, prions bound to soil were more susceptible to inactivation. This is the
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first report of natural environmental processes mitigating prion infectivity. This data sug-
gests that the total environmental prion load is a balance between input and
natural clearance.

Introduction
Prion diseases, also known as transmissible spongiform encephalopathies (TSEs), are a
group of fatal neurodegenerative diseases which impact a number of species including cattle
(bovine spongiform encephalopathy, BSE), sheep and goats (scrapie), deer, elk and moose
(chronic wasting disease, CWD), and humans (Creutzfeldt-Jakob disease, CJD, and others)
[1]. The infectious agent of prion diseases, PrPSc, is a misfolded isoform of a non-infectious
cellular prion protein, PrPC. CWD and scrapie prions can remain infectious over long time
periods [2–5] in the environment. The increasing incidence and geographic range of CWD in
cervids and its unknown host range makes this disease of particular concern in North
America.

Prions enter the environment from infected hosts. Prions are shed into the environment via
antler velvet [6], blood, saliva [7], urine [8–10], feces [11, 12], and birthing matter [13]. Prions
also enter the environment through decomposition of infected animal carcasses [5]. Prions can
be present in these excreta during the presymptomatic phase of disease, therefore, infected ani-
mals can shed prions into the environment over wide areas of the host’s home range. The
amount of infectivity that is introduced into the environment is difficult to assess since prion
titer is operationally defined with the route of infection, the age of the animal, the number of
doses, and the PrP genotype of the host all making significant contributions in establishment
of infection [14–17].

After release from an infected host, PrPSc binds to a wide range of soil and soil minerals
[18–20]. Clay and clay soils have higher affinity for prions and adsorb PrPSc at a faster rate com-
pared to sand or sandy soils [18, 19]. Binding of PrPSc to soil in a competitive matrix such as
brain homogenate is slow and reduced compared to non-competitive environments (i.e. puri-
fied PrPSc) [18, 19]. Once bound to soil, prions remain highly infectious although soil-induced
changes in in vitro PrPSc conversion efficiency and infectivity in animals have been measured
[21, 22]. Further work is needed to fully elucidate the effect of PrPSc binding to surfaces on
prion infectivity and transmission.

The contribution of soil bound prions to the natural transmission of prion disease is incom-
pletely understood. Modeling studies conducted in CWD-endemic areas indicate that locations
with a preponderance of organic soils correspond with an increased incidence of CWD [23–25].
Since the soil type that is bound to PrPSc has a relatively small influence on prion infectivity,
other factors may play a role in prion transmission. Prions are primarily retained in surface soils
[26] and the close contact of ruminant animals with soils renders soil-bound prions a likely
source for prion disease transmission through ingestion or inhalation [27–30]. Therefore, PrPSc

binding to soil may increase the bioavailability of prions for transmission. Inactivation of soil-
bound prions will be required to control and prevent the spread of prion diseases in
the environment.

Prion degradation under environmentally-relevant conditions is poorly understood. To
date, the majority of studies have investigated degradation and inactivation of prions that are
not bound to soil. Microorganisms and isolated enzymes, sometimes associated with harsh
digestion conditions (high temperature and extreme pH), effectively reduce PrPSc abundance
[31–34]. Exposure of prions to intact lichens at room temperature and neutral pH can reduce
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the abundance of PrPSc [35]. The loss of PrPSc immunoreactivity does not always
correspond with a measurable reduction of prion infectivity [33, 36] therefore, studies
that rely solely on changes in PrPSc abundance must be interpreted with caution. Prionzyme,
a commercially-available enzyme, degraded soil-adsorbed prions under environmentally-
relevant conditions and is the first evidence to suggest that mitigation of soil-bound prions is
possible [37, 38].

Prions retained in surface soils are exposed to ambient environmental processes that have
the potential to inactivate prions. Naturally-occurring cycles of drying and wetting alter soil ag-
gregate stability and can influence interactions between soil particulate organic matter and dis-
solved organic compounds [39–41]. They can also change microbial activity and population
dynamics [39, 40, 42]. Additionally, dehydration can unfold the native protein structure [43].
It is not known if these processes alter the biologic properties of soil-bound prions. To address
this important question, we investigated the effects of repeated cycles of drying and wetting on
the fitness of prions bound to various soil types.

Results

Repeated cycles of drying and wetting reduced the abundance of total
protein in hamster brain homogenate
The abundance of total protein in the brain homogenate (BH) of hamster infected with HY
TME before or after binding to silty clay loam (SCL) was shown in Fig. 1. The amount of total
protein of unadsorbed BH was significantly reduced (p<0.05) by 13% (Fig. 1). After binding to
SCL, the amount of total protein remained unchanged (Fig. 1) suggesting protection of pro-
teins from degradation of repeated drying and wetting by adsorption to soil surface. Repeated
cycles of wetting and drying did not result in changes in pH or conductivity.

Repeated cycles of drying and wetting alter the resistance of HY PrPSc

to digestion with proteinase K
Soil- or soil mineral-adsorbed HY PrPSc (HY) was prepared as described in Table 1 and sub-
jected to 0 (control), 1, and 10 repeated cycles of drying and wetting. Significant differences
(p>0.05) were not observed in normalized PrPSc immunoreactivity between samples after 1
drying and wetting cycle (Dry 1) compared to the negative control (no drying and wetting
treatment, Dry 0) (Fig. 2). PrPSc abundance was significantly decreased (p<0.05) between the
negative control and 10 repeated cycles of drying and wetting of unbound HY, silty clay loam
(SCL)-, bentonite-, and silicon dioxide (SiO2)-adsorbed HY (Fig. 2). The average reductions
are 51%, 53%, 72%, and 73%, respectively (Fig. 2B). The PrPSc abundance of sandy loam soil
(SLS)-adsorbed and sand-adsorbed HY PrPSc were not significantly (p>0.05) changed follow-
ing 10 repeated cycles of drying and wetting (Fig. 2).

Repeated cycles of drying and wetting reduced the PMCA conversion
efficiency of soil bound HY TME
After 1 round of PMCA, PrPSc amplification in all samples subjected to 1 cycle of drying and
wetting was not significantly (p>0.05) different compared to unbound HY (Fig. 3). The ampli-
fication of unbound HY, SCL-, SiO2-, bentonite-, and sand-adsorbed HY subjected to 10
drying/wetting cycles was significantly (p<0.05) reduced by 48%, 95%, 100% (negative value
for bentonite-HY was corrected to 0%), 74%, and 95%, respectively (Fig. 3). However, the
PMCA conversion efficiency of SiO2 HA-adsorbed HY was not changed (p>0.05) after 10
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cycles of drying and wetting (Fig. 3). Sandy loam soil inhibits HY PrPSc PMCA conversion in-
dependent of HY adsorption resulting in low PrPSc abundance (Fig. 3).

Influence of repeated cycles of drying and wetting on proteinase K
resistance and amplification efficiency of DY TME
Samples were prepared as described in Table 1. A significant (p>0.05) difference in PrPSc

immunoreactivity was not observed for unbound DY or SCL-adsorbed DY after 1 drying and
wetting cycle compared to the control (Fig. 4A and 4C). A significant (p<0.05) reduction in
PrPSc abundance of 48% was observed for unbound DY treated with 10 cycles of drying and
wetting while the PrPSc abundance of SCL-bound DY was not significantly (p>0.05)
changed (Fig. 4A and 4C). After 3 rounds of PMCA, DY and SCL-bound DY amplified to
similar (p>0.05) levels after 1 cycle of drying and wetting compared to controls (Fig. 4B and
4D). When exposed to 10 drying/wetting cycles, a significant reduction (p<0.05) in amplifi-
cation was only observed for SCL-bound DY by 68% and not for unbound DY (Fig. 4B
and 4D).

Fig 1. Reduced total protein abundance in HY TME brain homogenate. UV scanned polyacrylamide gel stained with SYPRORuby (A) and quantification
of total proteins (B). Samples were not digested with proteinase K. Star indicates significant difference (p<0.05; n = 3) between treated and
untreated sample.

doi:10.1371/journal.ppat.1004638.g001

Repeated Cycles of Wetting and Drying Reduce Prion Infectivity

PLOS Pathogens | DOI:10.1371/journal.ppat.1004638 February 9, 2015 4 / 18



Influence of repeated cycles of drying and wetting on proteinase K
resistance and amplification efficiency of CWD
SCL-adsorbed CWDwas prepared as described in Table 1. Compared to the untreated samples
(Dry 0), the PrPSc abundance did not significantly (p>0.05) differ between SCL-bound and un-
bound CWDwith up to 10 cycles of drying and wetting (Fig. 5A and 5C). The PMCA conversion
efficiency of unbound CWD after 3 rounds of PMCA was not significantly (p>0.05) different
through 10 repeated cycles of drying and wetting compared to controls (Fig. 5B and 5D). In con-
trast, a significant (p<0.05) reduction of 83% in PMCA conversion efficiency of SCL-bound
CWD after 10 cycles of drying and wetting treatment was observed (Fig. 5B and 5D).

Sorption of HY to soil reduces the number of wet dry cycles that result in
a decrease in PMCA conversion activity
Unbound HY or SCL-adsorbed HY were subjected to 3, 5 or 7 repeated rounds of drying and
wetting. Samples were then subjected to 1 round of PMCA and the abundance of amplified
PrPSc was quantified. Unbound HY had similar (p>0.05) conversion efficiency at 1, 3, 5 and
7 repeated cycles of drying and wetting. However, 10 cycles of repeated drying and wetting re-
sulted in a significant (p<0.05) reduction in HY PrPSc amplification compared to the sample
treated with 1 cycle of drying and wetting (Fig. 6A and 6C). In contrast, after 3 repeated rounds
of drying and wetting of SCL-bound HY amplification was significantly (p<0.05) inhibited
(Fig. 6B and 6D). These results demonstrate that, under the conditions tested, binding to SCL
enhances the reduction in conversion efficiency induced by repeated cycles of drying
and wetting.

PMCA conversion efficiency is decreased by sorption to soil
Unabsorbed and SCL-adsorbed HY was subject to 0 or 10 serial rounds of wetting and drying.
The samples were adjusted to equalize the abundance of PrPSc between the samples. Ten-fold
serial dilutions, ranging from 10-2 to 10-8, of these samples were subject to one round of
PMCA. PMCA reactions seeded with untreated HY-SCL resulted in detectable PrPSc though
the 10-4 dilution, while PMCA reaction seeded with an equal amount of HY-SLC PrPSc that

Table 1. Preparation of soil bound HY TME, DY TMEa, and elk CWDa PrPSc.

Soil/ soil mineral Incubation time
(h)

Soil conc. (mg soil/ml
solution)

% BHb

(v/v)
Prion to soil ratio (µl
BHb: mg soil)

Soil resuspension conc.
(mg/µl)

PMCA seedd

(mg—µl)

Rinda silty clay loam
(SCL)

24 5 5 10 0.1 0.1–1

Bentonite clay 24 5 5 10 0.1 0.1–1

SiO2 powder 24 50 2.5 0.5 0.5 2–4

SiO2-HA
c 168 5 5 10 0.1 1e

Dickinson sandy
loam (SLS)

168 15 5 3.3 0.3 3e

Fine white sand 168 50 5 1 1 10e

a SCL bound DY TME and elk CWD PrPSc were prepared with the same soil to brain ratio and in the same condition as SCL bound HY TME. HY TME

was also used for animal bioassay
b BH, 10% brain homogenate.
c SiO2-HA, SiO2-humic acid.
d The amount of samples used for PMCA was expressed as weight of soil—equivalent volume of soil solution.
e Due to the performance challenge, PMCA substrate was added to the soil pellets of weight as indicated in the table.

doi:10.1371/journal.ppat.1004638.t001
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was treated with 10 serial rounds of wetting and drying resulted in detectable PrPSc though the
10-2 dilution (Fig. 7). These results indicate that 10 serial rounds of wetting and drying reduce
the specific activity of SCL absorbed HY PrPSc by two logs.

Repeated cycles of drying and wetting extend the incubation period of
prion infection
Selected drying and wetting treated samples and untreated controls were intracerebrally inocu-
lated into Syrian hamsters. Incubation periods for hamsters inoculated with HY, SCL-, SiO2-,
and SLS-bound HY subjected to 0, 1, or 10 drying/wetting cycles are summarized in Table 2
and the survival results are presented in Fig. 8. Consistent with PK-resistance and PMCA re-
sults (Fig. 2 and 3), the incubation period of hamsters inoculated with SCL-HY subjected to 1
cycle of drying and wetting did not significantly (p>0.05) differ compared to hamsters inocu-
lated with untreated SCL-HY (Fig. 8 and Table 2). The incubation period of HY- and SCL-HY-
inoculated hamsters subjected to 10 cycles of drying/wetting was significantly (p<0.05) extend-
ed 13 days compared to that of hamsters inoculated with the untreated control (Fig. 8 and

Fig 2. Repeated cycles of drying and wetting alter the resistance of HY PrPSc to digestion with proteinase K.Western blot (A) and quantification (B) of
PK digested HY PrPSc alone or adsorbed to soil before (Dry 0) and after 1 (Dry 1) and 10 (Dry 10) serial rounds of drying and wetting. Migration of 29 and 21
kDa molecular weight marker is indicated on the right of theWestern blot. Star indicates significant difference (p<0.05; n = 3) between treated and
untreated sample.

doi:10.1371/journal.ppat.1004638.g002
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Table 2). This extension of the incubation period is consistent with a 2 log reduction in prion
titer [21]. The incubation period of hamsters inoculated with SLS-HY and SiO2-HY treated
with 10 cycles did not significantly (p>0.05) differ compared to hamsters inoculated with un-
treated control (Fig. 8 and Table 2).

Discussion
Prions have been detected in the environment [2–5, 44, 45] and they can survive for years in
soils [2–5]. Prion shedding and persistence in the environment is well documented, however,
little is known about environmental degradation of prions. In this study we investigated if
prion infectivity is mitigated by natural environmental conditions. Under natural conditions of
repeated wetting and drying we found evidence of PrPSc degradation, decreased PrPSc conver-
sion activity, and an increase in prion incubation period suggesting reduced prion infectivity.
This effect was dependent on the soil type that was bound to PrPSc and the source of prions,
underscoring the complexity of the interaction of prions with soil.

Reduced PrPSc abundance after repeated cycles of drying and wetting
Repeated cycles of drying and wetting degraded not only PrPSc but also other proteins in the
brain homogenate whereas binding to soil prior to repeated cycles of wetting and drying elimi-
nated this effect. (Fig. 1). While the exact mechanism of prion protein degradation due to re-
peated cycles of drying and wetting are not known, several possibilities exist. We hypothesize

Fig 3. Repeated cycles of drying and wetting reduced the PMCA conversion efficiency of soil bound HY TME.Western blot (A) and quantification (B)
of PMCA amplification (1 round) of HY PrPSc alone or adsorbed to soil before (Dry 0) and after 1 (Dry 1) and 10 (Dry 10) serial rounds of drying and wetting.
Migration of 29 and 21 kDa molecular weight marker is indicated on the right of theWestern blot. Star indicates significant difference (p<0.05; n = 3) between
treated and untreated sample.

doi:10.1371/journal.ppat.1004638.g003
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that exposure to repeated cycles of drying and wetting results in protein conformational
changes that render PrPSc more susceptible to degradation. Loss of water and changes in ion
concentrations and pH in solution may occur during dehydration which can affect the second-
ary structure of proteins [43, 46–48], however, changes in ionic strength or pH were not ob-
served between cycles in this study. Although poorly understood, changes in soil properties
such as surface charge or cation exchange capacity occur after repeated drying and wetting cy-
cles [49, 50] that can result in desorption and/or reorganization of adsorbed compounds
including proteins.

Alternatively, consolidation of the bonding between soil and the adsorbed PrPSc after drying
may make PrPSc desorption more difficult resulting in reduced PrPSc detection and prion infec-
tivity. The implication of this possibility is that PrPSc desorption is required for prion

Fig 4. Influence of repeated cycles of drying and wetting on proteinase K resistance and amplification efficiency of DY TME.Western blot (A and B)
and quantification (C and D) of PK digested and PMCA amplification (3 rounds) of DY PrPSc alone or adsorbed to SCL before (Dry 0) and after 1 (Dry 1) and
10 (Dry 10) serial rounds of drying and wetting. Negative PMCA samples were diluted from corresponding PMCA seeding with a dilution factor of 80.
Migration of 29 and 19 kDa molecular weight marker is indicated on the right of theWestern blot. Star indicates significant difference (p<0.05; n = 3) between
treated and untreated sample.

doi:10.1371/journal.ppat.1004638.g004
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conversion and western blot detection. This explanation is consistent with previous findings
that PrPSc attached to stainless steel surfaces (dried onto surface or as incubation solution) be-
comes more resistant to decontamination when exposed to extended drying compared with no
drying or wet storage condition [51, 52]. We speculate more compact stacking of PrPSc aggre-
gates on the surface may occur during drying as water molecules evaporate, minimizing PrPSc

exposure to the surroundings.

Repeated drying and wetting renders soil-bound prion less infectious
The reduced PMCA conversion coefficient in combination with the extended incubation peri-
od in hamster bioassay compared to untreated prions (Fig. 3 and 8, Table 2) are consistent
with a 2 log reduction in prion infectivity of soil-bound prions [21] after 10 cycles of drying/
wetting. While both PMCA and bioassay data are in agreement with a 2 log reduction in titer

Fig 5. Influence of repeated cycles of drying and wetting on proteinase K resistance and amplification efficiency of elk CWD.Western blot (A and B)
and quantification (C and D) of PK digested and PMCA amplification (3 rounds) of elk CWD PrPSc alone or adsorbed to SCL before (Dry 0) and after 1 (Dry 1)
and 10 (Dry 10) serial rounds of drying and wetting. Migration of 29 and 21 kDa molecular weight marker is indicated on the right of the Western blot. Star
indicates significant difference (p<0.05; n = 3) between treated and untreated sample.

doi:10.1371/journal.ppat.1004638.g005
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following 10 cycles of drying/wetting, since titer was not directly calculated, this value should
be interpreted with caution. It is unknown if additional cycles of wetting will further reduce in-
fectivity or if complete prion inactivation is possible. The observed reduction in infectivity is
not entirely due to loss of PrPSc. When standardized for the amount of starting PrPSc, the
PMCA conversion coefficient of HY bound to SCL that has not been treated to repeated cycles
of wetting and drying is two orders of magnitude greater compared to HY-SCL that has been
repeatedly wetted and dried for 10 cycles (Fig. 6). Since the reduction in the specific activity of
PrPSc is enhanced when HY is bound to SCL, we hypothesize at the PrPSc-SCL interface, the
wetting and drying process is altering a property of PrPSc that renders it less infectious.

Effect of repeated drying and wetting on the properties of soil-bound
prions is soil type and strain dependent
Changes in PrPSc abundance and PMCA conversion efficiency after repeated cycles of drying
and wetting are observed for a subset of unbound and soil-bound PrPSc. HY and DY PrPSc are
more susceptible to PK digestion following repeated cycles of drying and wetting compared to
CWD (Figs. 2, 3, 4, and 5). Binding of DY PrPSc to SCL protects DY PrPSc by enhancing PK re-
sistance but results in a reduction in DY and CWD PrPSc conversion activity (Figs. 4 and 5).
Adsorption of the same PrPSc to different soils resulted in a greater or lesser effect of repeated

Fig 6. Sorption of HY to soil reduces the number of wet dry cycles that result in a decrease in PMCA conversion activity.Western blot (A and B) and
quantification (C and D) of PMCA amplification (1 round) of HY PrPSc alone or adsorbed to SCL after 1, 3, 5, 7, and 10 serial rounds of drying and wetting.
Migration of 29 and 21 kDa molecular weight marker is indicated on the right of theWestern blot. Star indicates significant difference (p<0.05; n = 3) between
multiple drying/wetting treated and single drying/wetting treated sample.

doi:10.1371/journal.ppat.1004638.g006
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drying/wetting on PrPSc properties (Figs. 2 and 3). Factors that may contribute to the variation
include soil surface properties and soil-prion bonding. Since the percentage of sand and clay in
a soil resulted in different soil stability changes in response to drying/wetting cycles we hypoth-
esize that clay-clay and clay-sand interactions can indirectly affect the soil-prion interface [41].
Overall, this dynamic can affect which prion strains persist and the relative titer in any given
environment. Since the relative ratios of prion strains can affect strain emergence, the

Fig 7. Reduced PMCA conversion coefficient of SCL-HY after repeated cycles of drying and wetting.
Western blot of PMCA amplification of 10-fold serial dilutions of standardized SCL-HY PrPSc before (Dry 0) or
after 10 (Dry 10) rounds of drying and wetting. Samples in replicates (n = 3) were tested. Migration of 29 and
21 kDa molecular weight marker is indicated on the right of theWestern blot.

doi:10.1371/journal.ppat.1004638.g007

Table 2. Incubation periods of hamsters intracerebrally inoculated with unbound and soil-bound PrPSc.

Inoculum No. of drying/wetting cycles Incubation period (days±SEM) No. of hamsters affected/total number inoculated P value

HY TME 0 58±3 5/5 n.a

HY TME 10 70±4 5/5 <0.05

SCL-HY TME 0 74±4 5/5 n.a.

SCL-HY TME 1 73±6 5/5 >0.05

SCL-HY TME 10 86±9 5/5 <0.05

SiO2-HY TME 0 67±3 5/5 n.a.

SiO2-HY TME 10 69±3 5/5 >0.05

SLS-HY TME 0 86±4 5/5 n.a.

SLS-HY TME 10 89±3 5/5 >0.05

doi:10.1371/journal.ppat.1004638.t002
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environment would be expected to have a strong influence on the overall dynamics of trans-
mission and strain emergence.

Environmental factors affecting the efficiency of repeated drying and
wetting
Since prions are likely to be immobile in surface soils [26], soil-bound prions are readily acces-
sible to ambient weather conditions which can include changes in surface soil moisture. In
some CWD-endemic areas such as Phantom Valley (Latitude: 40.4°N; Longitude: 105.9°W)
close to Rocky Mountain National Park, the number of moisture change in surface soil (soil
depth is 0.5 m) can be up to 28 per month [53]. Based on our findings, drying/wetting cycles
which repeatedly change soil moisture may be a natural degradation pathway for soil-bound
prions. Additionally, wetting and drying can change microbial activity in soils [39, 40] which
may affect prion-soil interactions. Ambient temperature likely does not contribute to natural
prion degradation since most heat induced decontamination (incomplete inactivation) occurs
at temperatures well over 100°C [54–57]. Enzymes secreted from soil microorganisms, such as
serine proteases, may be auxiliary for soil-bound prion degradation and inactivation, however,
they were only found to be effective at high temperature, high pH or both [58, 59]. Overall, this
study provides the first evidence that natural processes can reduce prion infectivity. Since the
total environmental prion load is a balance between addition of prions to the environment and
clearance of prions from the environment, efforts to limit prion input into the environment
may positively affect this balance and have meaningful results in reducing environmental

Fig 8. Repeated cycles of drying and wetting extend the incubation period of prion infection. Survival
curve of hamsters inoculated with untreated (0) or drying/wetting treated (1 or 10) HY (A), SCL-HY (B),
SiO2-HY (C), and SLS-HY (D). 5 hamsters (n = 5) were used for each sample. P0/1 or P0/10 designated p
value derived from the comparison of incubation periods of hamsters inoculated with untreated (0) and 1 or
10 cycle(s) of drying and wetting treated samples.

doi:10.1371/journal.ppat.1004638.g008
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transmission of prion diseases. Additionally, the soil composition and hydrology of an area
may shape the overall transmission dynamics and alter strain prevalence of prions.

Materials and Methods

Prion sources and tissue preparation
Prion-infected brain tissues were collected from hamsters infected with either the hyper (HY)
or drowsy (DY) strain of transmissible mink encephalopathy (TME) or from a naturally in-
fected elk with CWD agent as described previously [20]. Infected brains were homogenized to
10% (w/v) in Dulbecco’s phosphate-buffered saline (DPBS) without Ca2+ or Mg2+ (Mediatech,
Herndon, VA) using strain-dedicated Tenbroeck tissue grinders (Kontes, Vineland, NJ). Unin-
fected Syrian hamster and uninfected Tg(CerPrP)1536 mouse brain was homogenized to 10%
(w/v) in ice-cold PMCA conversion buffer (DPBS [pH 7.5] containing 5 mM EDTA, 1% (v/v)
Triton X-100, and a complete protease inhibitor tablet [Roche Diagnostics, Mannheim, Ger-
many]). The homogenate was centrifuged at 460×g for 30 seconds and the supernatant was col-
lected and stored at -80°C.

Prion adsorption to soils and soil minerals
Soils and soil minerals used in this study included sterile Rindasilty clay loam (SCL) soil (a Ver-
ticEpiaqualf); sterile Dickinson sandy loam soil (SLS, a TypicHapludoll); sodium bentonite clay
(CETCO, Arlington Heights, IL); silicon dioxide powder (Sigma Aldrich, St. Louis, MO);
humic acid (HA)-coated silica gel particles (SiO2 HA); and gamma-irradiated fine white sand
(Fisher Scientific, Pittsburgh, PA). Physicochemical properties of these soils and soil minerals
have been described previously [19, 38]. To obtain soil bound prions, 10% brain homogenate
(BH) was added to soil and for each soil or soil mineral, the incubation time and prion to soil
ratios, were selected based on previous studies [19, 20] (Table 1). Each BH-soil combination
was prepared in triplicate. The BH-soil mixture was rotated at 24 rpm (Mini Labroller, Edison,
NJ) at room temperature. Samples were removed after incubation and centrifuged at 100× g
for 5min. The supernatant was removed and the pellets were washed a minimum of three
times with 1× DPBS. The soil pellets were resuspended in 1× DPBS at concentrations described
in Table 1 and were stored at -80°C until use. HY TME, DY TME, and elk CWD BH were used
as unbound controls.

Drying and wetting treatment
Each sample was placed in an uncapped 200 µL PCR tube (Thermo Scientific) and incubated at
40°C. Samples were dried and weighed periodically until there was less than a 0.5% change in
weight resulting in a minimum of 7 hr drying time. To perform consistently, around 12 hours’
drying is selected for one cycle. Dried samples were rehydrated with 10 µl of ultrafiltered deion-
ized water and mixed thoroughly. The drying followed by rewetting constituted one drying/
wetting cycle. Conductivity and pH were measured with an Oakton 700 bench top meter using
a 3-point calibration curve. After the desired number of treatment cycles, samples were stored
at -80°C until use.

Animal bioassay
Intracerebral (i.c.) inoculations of Syrian hamsters (Harlan Sprague-Dawley, Indianapolis, IN)
were conducted as described previously [30, 60]. Silty clay loam soil HY TME (untreated, and
1- and 10-drying/wetting-cycle treated) and silicon dioxide powder adsorbed HY TME (un-
treated, and 10-drying/wetting-cycle treated) were selected as inocula. The incubation period
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was determined as the length of time in days between inoculation and the onset of clinical
signs of HY TME.

PMCA
Protein misfolding cyclic amplification (PMCA) was performed as described previously [61].
Sonication was performed with a Misonix (Farmingdale, NY) 4000 sonicator with amplitude
set to level 75, generating an average output of 160 W during sonication treatment. Samples
were diluted with 10% (w/v) uninfected hamster or elk brain homogenate at 1:100 for HY
TME and CWD, and 1:20 for DY TME for the first round. After one round, homogenate from
round 1 was diluted at 1:20 for HY TME, 1:10 for elk CWD, and 1:1 for DY TME for the subse-
quent rounds. Each round was performed at 37°C for either 24 hr for HY TME and DY TME
consisted of 144 cycles of 5 s sonication followed by 9min 55s of incubation or 48 hr for elk
CWD consisted of 288 cycles with the same sonication/incubation time as HY TME and DY
TME. Before each PMCA round, an aliquot was placed at -80°C as an unsonicated control.
Samples containing only 10% (w/v) uninfected brain homogenate were included with each
PMCA round as negative controls.

Western blot analysis
Western blot analysis was performed as described previously [62]. Briefly, samples were incu-
bated and digested with 22.5 µg/ml (HY TME/DY TME) or 45 µg/ml (elk CWD) proteinase
K (PK) (Roche Diagnostics Corporation, Indianapolis, IN) at 37°C for 30 min (HY TME/DY
TME) or 1 hr (CWD) with constant agitation. The PK digestion was terminated by boiling in
1x SDS-PAGE sample buffer (final concentration). The samples were size fractionated with
12.5% SDS-PAGE and transferred to a polyvinylidenedifluoride membrane (NuPage; Invitro-
gen, Carlsbad, CA). The membrane was blocked with 5% w/v nonfat dry milk in 1× TTBS
(Bio-Rad Laboratories, Hercules, CA) for 30 min. Hamster samples were immunoblotted with
MAb 3F4 (Chemicon, Temecula, CA; 1:10,000). Elk/Tg(CerPrP)1536 samples were immuno-
blotted with 8H4 (1:10,000). The blots were developed with Supersignal West Femto maximum
sensitivity substrate, according to the manufacturer’s instructions (Pierce, Rockford, IL), im-
aged on a 4000R imaging station (Kodak, Rochester, NY), and analyzed using Kodak (New
Haven, CT) molecular imaging software, V.5.0.1.27. Densities of sample replicate (n�3) inten-
sities were standardized to brain homogenate controls on the same gel to control for inter-gel
variance. PMCA amplification is determined as the absolute difference of intensity density be-
tween unamplified and sonicator-amplified samples. For each type of soil, unbound prions and
untreated samples (Dry 0) were used as controls to determine the effect of drying/wetting (Dry
1 and Dry 10) on PrPSc seeding efficiency. Intensities of the same control were averaged out
through the entire study. Statistical analysis (Student’s t test with Welch’s correction, two-tailed
P value) was performed using Prism 6.0 (GraphPad Software, Inc., San Diego, CA) by separate-
ly comparing samples with each treatment to the untreated control or samples with the
least treatment.

SYPRO Ruby gel staining
Separated proteins in the polyacrylamide gel were stained with SUPRO Ruby following the
protocol provided by the manufacturer. Briefly, the gel was placed in a clean plastic dish and
incubated in a fixative solution containing 10% methanol and 7% acetic acid at room tempera-
ture with gentle agitation for two 15 minutes. Then the gel was incubated in undiluted SYPRO
Ruby staining solution overnight without being exposed to light. Stained gel was then trans-
ferred to a clean plastic dish and washed with 10% methanol and 7% acetic solution for two
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times followed by one time rinse with MQ H2O. The gel was imaged in an electrophoresis gel
imaging imager cabinet (Bio-rad Universal Hood ii) using UV epi-illumination and analyzed
by a 1-D analysis software Quantity One version 4.6.7. The lightness density of samples of in-
terest were compared and significance was analyzed with build-in t test (two-tailed p value
with unequal variance) in Microsoft Excel 2013.
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