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Abstract
The spatial scan statistics based on the Poisson and binomial models are the most 
common methods to detect spatial clusters in disease surveillance. These models 
rely on Monte-Carlo simulation which are time consuming. Moreover, frequently, 
datasets present over-dispersion which cannot be handled by them. Thus, we have 
the following goals. First, we propose irregularly shaped spatial scan for the Bell, 
Poisson, and binomial. The Bell distribution has just one parameter but it is capable 
of handling over-dispersed datasets. Second, we apply these scan statistics to big 
maps. A fast version, without Monte-Carlo simulation, for the proposed Poisson and 
binomial scans is introduced. Intensive simulation studies are carried out to assess 
the quality of the proposals. In addition, we show the time improvement of the fast 
scan versions over their traditional ones. Finally, we end the paper with an applica-
tion on the detection of irregular shape small nodules in a medical image.
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1 Introduction

Are points randomly distributed in space or time? This is a common question in 
almost any field of sciences, for example in astronomy [1, 2], image analysis [3, 
4], data mining [5], criminology [6, 7], ecology [8, 9], geography [10, 11], pat-
tern recognition [12], biology [13], forestry [14, 15], epidemiology [16, 17], etc. 
The answer to this question depends on the position and the number of individu-
als with some characteristics concerning each other. The final goal is to verify 
whether “spatial clustering has happened”.

The spatial scan statistic presented by Kulldorff and Nagarwalla [18], is a tool 
that became popular for the detection and inference of spatial clusters, especially 
in epidemiology. The detection of disease outbreaks at the earliest possible time 
is essential for public health centers to develop appropriate public policies. There-
fore, the spatial scan statistic is one of the most used statistics to help epidemiolo-
gists detect and evaluate spatial clusters in disease surveillance. In summary, this 
method scans a map with circular windows to determine the most likely zone to 
be a spatial cluster. Then, using Monte-Carlo simulation determine the signifi-
cance of this zone.

With the new challenges presented by real data, many extensions over the tradi-
tional circular scan statistic [19] was proposed to accommodate large spatial data 
[4], zero-inflation [20], and over-dispersion and zero-inflation simultaneously [21, 
22]. Another common challenge is the detection of the irregularly-shaped cluster. 
Many works have also been done in this direction [e.g., 23, 24, 25, 26, and others]. 
Assunção et al. [23] detect irregularly shaped clusters using the minimum spanning 
tree (MST) from graph theory. The construction of the MST can drastically reduce 
the number of candidate clusters making the method scalable for larger datasets. 
However, the method presents an overestimation of the cluster size (the so-called 
octopus effect). To control the overestimation effect, Costa et  al. [24] proposed 
three spatial scan statistics to find irregularly shaped clusters. These three proposals 
were constructed upon an early stopping rule, a double connection requirement, and 
maximum linkage criteria. Another solution was proposed by Zhou et al. [25]. Their 
method is detailed in Subsect. 2.3.2. For an up-to-date review of scan statistics, we 
refer to Abolhassani and Prates [27] which includes irregularly shaped scan statistics 
and many other subjects in this area.

To the best of our knowledge, in epidemiology, it is common for researchers to 
scan small maps, with less than 1000 counties. This is done in practice because of 
the large number of candidate circular windows in the scan process and the need 
for Monte-Carlo hypothesis testing that makes its use of big data inappropriate. 
In this paper, we have considered a medical image as the study map. The medical 
image can be considered as a large map. Each pixel of the image can be thought 
of as a county of a map. The darkness of a pixel corresponds to the number of 
cases in that pixel. To detect spatial clusters on a medical image (i.e., a big map), 
we present an irregularly-shaped version of the Poisson, binomial, and Bell scan 
statistics. Moreover, a fast algorithm to handle big data problems is introduced 
for the Poisson and binomial scans.
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We show by extensive simulation that the irregular Bell is a robust scan alterna-
tive to model miss-specification in comparison with the binomial and Poisson mod-
els and that the fast scan alternatives can provide about 50% speedup in the computa-
tional time in comparison with its traditional Monte-Carlo implementation. Despite 
the robustness of the irregular Bell scan, we were unable to provide a fast version of 
its algorithm. When working with event data, Castellares et al. [28] showed that the 
likelihood calculation time can be drastically reduced. However, this is not related to 
the goal of the current study.

The rest of this paper is as follows: Sect. 2 provides a broad review of the scan 
statistics, including in Sect.  2.4 the recent Bell scan statistic that has only one 
parameter and is suitable for over-dispersed data. An algorithm to detect irregularly-
shaped clusters for the Bell distribution with traditional and fast algorithms for bino-
mial and Poisson distributions is presented in Sect. 3. Section 4 presents an intensive 
simulation study. An application for real data is done in Sect.  5. Finally, we con-
clude in Sect. 6.

2  A Review on Scan Statistic

2.1  Circular Scan Statistic

Kulldorff [19] proposed a Likelihood Ratio Test (LRT) to detect spatial clusters. To 
do so, consider an inhomogeneous Poisson point process over k regions or locations 
in a study area. Let Xi be the number of cases in region i with corresponding at-risk 
population ni under unit-specific relative risk �i such that Xi ∼ Poisson(ni�i) . Fur-
thermore, let Z be a subset of indices 1, 2, .… , k , describing a given zone, which 
represents a candidate cluster. Define Z as a collection of all candidate clusters. 
Kulldorff [19] formulated a scan statistic that compares the total number of case-
counts in zone Z, XZ =

∑
i∈Z Xi , against the total number of case-counts in Z̄ (i.e. 

the zone defined by the areas of the map not in Z), XZ̄ =
∑

i∈Z̄ Xi , controlled by the 
corresponding population counts, that are, nZ =

∑
i∈Z ni and nZ̄ =

∑
i∈Z̄ ni within and 

without zone Z, respectively. Let n = nZ + nZ̄ and X = XZ + XZ̄ , and assume that 
�i = �Z for every region i ∈ Z and that 𝜁i = 𝜁Z̄ for every region i ∈ Z̄ . The hypothesis 
of interest is given by

where H0 implies that there is a constant risk, while H1 implies that there is at least 
one cluster defined by a zone Z ∈ Z such that 𝜁Z > 𝜁Z̄ . Thus, for every candidate 
cluster Z, the likelihood function L(Z) = L(Z, 𝜁Z , 𝜁Z̄) is given by

Additionally, to present how to find the most likely cluster (MLC), Kulldorff [19] 
developed a LRT defined by:

(1)H0 ∶ ∀Z ∈ Z, 𝜁Z = 𝜁Z̄ = 𝜁0, vs H1 ∶ ∃Z ∈ Z such that 𝜁Z > 𝜁Z̄ ,

L(Z) =
∏

i∈Z

e−ni 𝜁Z (ni 𝜁Z)
xi

(xi)!

∏

j∉Z

e−nj 𝜁Z̄ (nj 𝜁Z̄)
xj

(xj)!
.
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with �(Z) = 1 , if 𝜁Z < 𝜁Z̄ that allows to decide whether or not the MLC is statis-
tically significant, meaning whether the area(s) included in the most likely cluster 
really incorporate(s) an abnormally high number of cases.

The clustering method introduced by Kulldorff [19] is called scan statistic and 
has some limitations. First, it cannot detect non-circular clusters. Second, the dis-
tribution of the test statistic � is unknown. To solve the first limitation, Kulldorff 
et al. [29] proposed an elliptic spatial scan statistic, but this method does not detect 
irregularly shaped clusters well. To find irregularly-shaped clusters, the Minimum 
Spanning Tree (MST) was first introduced [23] and later the Adaptive MST (AMST) 
method [25]. They not only enabled researchers to find irregularly shaped clusters 
but also decreased the scanning time of the map in two ways: (1) by decreasing the 
cardinality of the candidate class, and (2) by applying Linear Time Subset Scan 
(LTSS) property [30]. More details about these methods are discussed in Sect. 2.3.

The second limitation of the scan statistic was solved by Soltani and Aboukham-
seen [31, 32]. They found the exact distribution for � (Sect. 2.2) which allowed us 
to modify the Poisson and binomial scan introduced by Zhou et al. [25] to a faster 
alternative. Hence, these modified versions are more adequate to big maps.

2.2  Spatial Clustering Without Monte‑Carlo

The advantage of Soltani and Aboukhamseen [32] and Aboukhamseen et  al. [31] 
methods were the elimination of Monte-Carlo in the scan statistic procedure. Con-
sider the hypothesis testing (1), and suppose that G = Z1

⋃
Z2

⋃
⋯

⋃
Zk is the stud-

ying region, also X+,Z and n+(G) are the number of points (cases) in Z and G, respec-
tively. Let AZ be the event that an individual is in a zone Z and B+ stands for the 
event that an individual in G is a case that has characteristic + (for example an 
infected person). Consider P+|Z = P(B+|AZ) and let � be a counting measure on 
(G,F) such that �(Z) is the number of people in Z and F  is a sigma-field on G con-
taining Z1,… , Zk . Both �(Zi), i = 1,… , k and �(G) are known. The probability of 
AZ is defined as �(Z) = �(Z)

�(G)
 . According to the above notations, Soltani and Abouk-

hamseen [32] proved that (1) is equivalent to

In addition, they found the exact and asymptotic distribution of points in zone Z 
under null hypothesis H0 , as follows:

(2)𝜆(Z) =
sup𝜁Z>𝜁Z̄ L(Z, 𝜁Z , 𝜁Z̄)

sup𝜁Z=𝜁Z̄=𝜁0 L(Z, 𝜁0)
I(𝜁Z > 𝜁Z̄)

(3)H0 ∶ PZ|+ = 𝜈(Z) vs H1 ∶ PZ|+ > 𝜈(Z).

X+,Z ∼ Bin(n+(G), �(Z)),

X+,Z ⟹ N(n+(G)�(Z), n+(G)�(Z)[1 − �(Z)]),
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where ( ⟹ ) denotes convergence in distribution.
According to the above facts, zone Z is a cluster in level � if

In this method of cluster detection, one does not need Monte-Carlo hypothesis test-
ing, hence it is quicker than the method of Kulldorff and Nagarwalla [18].

Aboukhamseen et  al. [31] developed a spatial scan statistic for a situation in 
which n+(G) is a random variable from a Poisson distribution with unknown param-
eter �(G) . Also they consider X+,Z|n+(G) ∼ Bin(n+(G), �(Z)) . Since n+(G) has Pois-
son distribution with parameter �(G) and using the marginal distribution of X+,Z , 
they gave a confidence interval for �(Z) . Based on the value of �(Z) , one can decide 
that if the null hypothesis in (3) will be rejected or not. The large discrepancy 
between the lower limit of the confidence interval and computed statistic �(Z) means 
smaller p-value and hence greater significance of z.

Aboukhamseen et al. [31] proposed

as a confidence interval for �(G) . However, we notice that this formula is not correct 
and suggest the use of

to find correct confidence interval for �(G) . In this work we use the latter confidence 
interval.

2.3  Irregular‑Shape Clusters

2.3.1  Minimum Spanning Tree

As mentioned before, in the scan statistic method [18], the class of candidates (i.e., 
circular zones) is too big and it is necessary to compute the likelihood ratio too 
many times. Further, the scan statistic is capable of detecting only circular clusters. 
Hence, Assunção et al. [23] solved these two undesired problems by using an MST. 
In their work, they proposed the MST technique to detect irregularly-shaped clus-
ters. The method is as follows:

Consider a map and mark the center of each county by its centroid. Connect any 
two counties if they are neighbors. Construct an in-directed graph corresponding to 
the map. Give a weight W(i,  j) to each the edge ( vi, vj ), where W(i,  j) is computed 
by the Kullback–Liebler (KL) divergence. Weights reflect dissimilarity of density 

(4)z =

X+,Z

n+(G)
− 𝜈(Z)

√
𝜈(Z)[1−𝜈(Z)]

n+(G)

> z𝛼 .

±0.25z�∕2 +
√

z2
�∕2

+ 4n+(G)

n+(G) +
1

2
z2
�∕2

(
1 ±

√
1 +

4n+(G)

z2
�∕2

)
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corresponding to counts of cases between two counties. High W(i, j) means high dis-
similarity between the density of county i and j.

A spanning tree � of a graph G is a sub-graph of G which is a tree and contains all 
nodes of G (Fig. 1 left). The MST is a spanning tree which has the minimum weight. 
Figure 1 right, shows the representation of an MST. Prim [33] proposed one of the 
simplest algorithms to build an MST and this method was used by Assunção et al. 
[23].

After building the MST, Assunção et al. [23] reduced the class of the candidates 
from many circular zones to n candidates (n is the number of nodes) by removing 
one edge at a time from the original MST. In other words, by removing one edge 
from the MST, two sub-graphs appear. Assunção et al. [23] considered the small-
est one as a candidate. Then they return the eliminated edge to its place and remove 
another edge. Again the smallest sub-graph is considered as the second candidate. 
This procedure continues until getting the n-th candidate. After obtaining the class 
of all candidates (with the cardinality of n), they compute � for each element of this 
class to determine the MLC. In the next step, Monte-Carlo hypothesis testing is used 
to decide whether the MLC is significant as a cluster or not.

Although the MST method improved the scan statistic in two aspects (i.e., allows 
flexible shape for the candidate cluster and reduces the class of candidates from a 
large number of circles to n candidates), it has some deficiencies. First, it just detects 
one cluster on the map. Second, it tends to detect clusters that are bigger than their 
actual size. Third, it still requires Monte-Carlo hypothesis testing. To solve the first 
problem, Zhou et al. [25] introduce the AMST method that is discussed in the fol-
lowing subsection.

2.3.2  Adaptive Minimum Spanning Tree

As mentioned, the MST method detected only one cluster on the map. Although 
researchers can remove some heavy edges to find two or more clusters, determining 

Fig. 1  Left: A Graph and its spanning trees. Right: A graph with weights on edges is in gray color. Black 
lines show MST
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the number of elimination is not trivial and is a drawback. To overcome this prob-
lem, Zhou et al. [25] proposed the AMST method. In this method, one does not need 
to have prior knowledge about parameters such as the number of clusters and the 
initial cluster center.

For the AMST method, the concept of validity index is important and it is defined 
as:

such that Intradist measures compactness of sub-partitions of a graph while Interdist 
measures isolation of them, i.e., separation between the sub-partitions.

The Intra cluster distance and Inter cluster distance are defined as follows:

This is the average of the sum square of the difference of all the incidence rates 
within a sub-partition, from the rate of that sub-partition. In addition,

This is the maximum diversification of the point rates of any two sub-partitions with 
rates �Ci and �Cj . Note that �Ci is the expected point rate of sub-partition Ci and �Cij 
is the point rate of county j in candidate sub-partition Ci . We call |�Ci − �Cj | as the 
distance between sub-partitions i and j. K is the total number of sub-partitions after 
removing some edges in the minimum spanning tree. One can estimate �Cij and �Ci 
by using a maximum likelihood approach. By minimizing valindex , the best partition 
of the MST can be obtained. Then Zhou et al. [25] applied linear time subset scan 
property (LTSS) [30], on the best partition of the MST to find clusters.

The steps of the algorithm based on the AMST can be found in Zhou et al. [25]. 
Other proposals for validity indexes are presented in the Supplementary Material 
Section SM-1 and results were found to be similar to the former one.

2.4  The Bell Scan Statistic

Two common classical models to detect spatial clusters are the Poisson and binomial 
models. Although the Poisson distribution has just one parameter, it has a restriction 
of having the variance equal to the mean. Hence, this model is not suitable for over-
dispersed data sets. In the case of the binomial model, it has two parameters and the 
index of dispersion (the ratio of variance to the expected value) is less than 1. Con-
sidering these facts, the Poisson and binomial distributions may not be appropriate 
to handle over-dispersed data.

The Bell distribution was introduced by Bell [34, 35], which has just one param-
eter and it can be applied to count data with over-dispersion. Random variable V has 
Bell distribution with parameter � if its probability mass function (p.m.f.) follows:

(5)valindex = Intradist∕Interdist,

Intradist =

K∑

i=1

∑

j∈C

|�Cij − �Ci |2∕K.

Interdist = max
i,j

|�Ci − �Cj |2.
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such that Bv ’s are Bell numbers, which equals to the v-th moment of Poisson distri-
bution with rate 1.

In the Supplementary Material Section SM-2, we mention some useful properties 
which are important in simulation of data from Bell distribution.

Abolhassani et al. [21] presented the circular Bell and the zero-inflated circular 
Bell scan statistics. To construct the Bell scan statistic, they supposed that each cell 
i in a map, has an observed count of cases vi , such that it is a realization of the Bell 
distribution with parameter �i = W0(Ei�i) , i.e., Vi ∼ Bell(�i) with the expected count 
Ei�i , where Ei is a known value that one would like to control for (offset) and �i is 
the relative risk. As before, any connected sub-region can be considered as spatial 
cluster candidate, and Z is the class of all candidates. They are interested to perform 
test (1).

The likelihood function under H1 is written as follows:

and the likelihood under H0 as:

The derivative of the Lambert function is given by W �
0
(x) =

W0(x)

x(1 +W0(x))
 . Thus, to 

find the MLE of �0 under H0 , the lnL(Z, �0) is calculated by:

Hence

which can be solved numerically. Similarly for H1 , the parameters �Z and 𝜁Z̄ can 
be obtained. Likewise Kulldorff [19], to find a spatial cluster, they calculated (2). 
Let � = maxZ �(Z) be the Bell spatial scan statistic. Since the denominator is not 
dependent on Z, it is sufficient to maximize the numerator of �(Z) . Any Z which 
maximizes �(Z) is the MLC. After determining the MLC, Monte-Carlo simulation 
can be employed to check its significance. Clearly, as in the Poisson and binomial 
scan statistics, the Bell distribution is able to control for any important factor such 
as, population size when Ei = ni and perform the analysis over the relative risk �i.

(6)P(V = v) =
𝜃ve−e

𝜃+1Bv

v!
, 𝜃 > 0, v = 0, 1, 2,… ,

L1(Z, 𝜁i, 𝜁Z̄) =
∏

i∈Z

(W0(Ei𝜁Z))
vie−e

W0 (Ei𝜁Z )+1Bvi

vi!
×
∏

i∈Z̄

(W0(Ei𝜁Z̄))
vie−e

W0 (Ei𝜁Z̄
)+1Bvi

vi!
,

L(Z, �0) =

k∏

i=1

(
Bvi

vi!
(W0(Ei�0))

vie(1−e
W0 (Ei�0))

)
.

L0 = lnL(Z, �0) =

k∑

i=1

ln

(
Bvi

vi!

)
+

k∑

i=1

vi ln(W0(Ei�0)) + k −

k∑

i=1

eW0(Ei�0)

dL0

d�0
=

k∑

i=1

vi

�0(1 +W0(Ei�0))
−

k∑

i=1

Ei

(1 +W0(Ei�0))
= 0,
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However, in real life, we can find maps for which the population size of cells is 
the same. For example, consider a medical image. Each pixel can be considered as a 
cell with the same population at risk. The darkness of each pixel corresponds to the 
number of cases in that pixel.

Thus, when Ei = E, ∀i , the hypothesis testing in (1) is equivalent to the hypoth-
esis testing presented in (7):

The likelihood under H1 can be simplified as follows:

where I(⋅) is the indicator function and k is the number of areas (cells) on the map. 
The MLEs for the parameters under H1 can be obtained by:

Therefore, �̂�Z̄ = W0(v̄Z̄) , where v̄Z̄ =
∑

i∈Z̄
vi∕

∑k

i=1
Ii(Z̄) . The likelihood under H0 is 

given by:

and the MLE for �0 is of the form �̂�0 = W0(v̄) . Therefore, under this restriction, the 
Bell scan statistic has close form and can be directly obtained by � in (2).

In this paper, we extend the circular Bell scan statistic proposed by Abolhas-
sani et al. [21] to the irregular Bell scan. The algorithm of this scan is presented in 
Subsect. 3.2.

3  Fast Irregular Shape Cluster

In this section, we present three algorithms to find irregularly shaped spatial clus-
ters. Two of them (i.e., Poisson and binomial) do not need Monte-Carlo simulation. 
The third algorithm (i.e., Bell) is a robust scan method, it is suitable for over-dis-
persed data sets but requires Monte-Carlo simulation. All of these algorithms are 
suitable for big maps.

(7)H0 ∶ 𝜃Z = 𝜃Z̄ = 𝜃0, ∀Z ∈ Z vs H1 ∶ ∃Z ∈ Z such that 𝜃Z > 𝜃Z̄ .

L1(Z, 𝜃Z , 𝜃Z̄) =
�

i∈Z

𝜃Z
vie−e

𝜃Z+1Bvi

vi!
×
�

i∈Z̄

𝜃
vi

Z̄
e−e

𝜃
Z̄+1Bvi

vi!

=

� k�

i=1

Bvi

vi!

�
𝜃Z

∑
i∈Z

vi e(−e
𝜃Z+1)

∑k

i=1
Ii(Z)𝜃Z̄

∑
i∈Z̄

vi e(−e
𝜃
Z̄+1)

∑k

i=1
Ii(Z̄),

𝜕 ln L1

𝜕𝜃Z̄
= 0 ⟹

∑
i∈Z̄

vi

𝜃Z̄
− e𝜃Z̄

k�

i=1

Ii(Z̄) = 0.

L(Z, �0) =

k�

i=1

Bvi

vi!
�0

∑k

i=1
vie(1−e

�0 )k,
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3.1  Fast Algorithm for Binomial and Poisson Models

As mentioned, Zhou et al. [25] proposed the AMST method for detecting irregular 
shape clusters fast. However, this method needs a large number of simulated data 
sets (for example 20, 000) to obtain the high percentiles of the test statistic. In this 
section, we propose an algorithm that increases the speed of the method of Zhou 
et al. [25] eliminating the need of Monte-Carlo simulation [31, 32]. The new algo-
rithm for Poisson model (Algorithm 1) is as follows:

Algorithm 1 Fast Poisson scan statistics algorithm.
1: Find a MST based on the KL divergence [23].
2: Find the best partition of the MST based on a valindex.
3: Find the candidate class, Z, by the LTSS property [30].
4: For a Z ∈ Z, obtain ν(Z) and its confidence interval ( Section 2.2).
5: Based step 4, decide if the null hypothesis is rejected or not.
6: Repeat steps 4 and 5 for all Z,s in the candidate class one by one.
7: Show the significant clusters on the map

In the case of the binomial model we propose Algorithm 2:

Algorithm 2 Fast binomial scan statistics algorithm.
Steps 1-2 are the same as in the previous algorithm.

3: Count the individuals and cases in G, i.e. µ(G) and n+(G).
4: Obtain µ(Z) and X+,Z where Z is in the candidate class.
5: Compute z in (4).
6: The null hypothesis is rejected if z > zα where zα is obtained by the normal table.
7: Repeat steps 5 to 7 for all Z,s in the candidate class one by one.
8: Show the significant clusters on the map.

3.2  Bell Model

To find irregular spatial clusters based on the Bell model, we need to calculate the 
KL divergence for this distribution. Let under H1 in (1) Vi ∼ Bell(W0(Ei�i)) and 
Vj ∼ Bell(W0(Ej�j)) , such that under H0 , we have �i = �j = � . The KL divergence is:

Under the constraints of (7) the divergence is given by:
(8)

W(i, j) = Ei�i(ln
W0(Ei�i)

W0(Ei�)
) + Ej�j(ln

W0(Ej�j)

W0(Ej�)
) + eW0(Ei� ) − eW0(Ei�i) + eW0(Ej� ) − eW0(Ej�j).
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where
�̂�i = W0(vi),   �̂�j = W0(vj) ,    �̂� = W0((vi + vj)∕2).
After the KL divergence determination, we propose Algorithm 3 for the irregular 

Bell scan:

Algorithm 3 Irregular Bell scan statistics algorithm.
1: Find the MST based on the KL divergence using (8) (or (9), when Ei’s are equal).
2: Find the best partition of the MST based on a valindex.
3: Find the class of the candidates by the LTSS property [30].
4: For the first candidate in the candidate class, using Monte-Carlo decide that if it is

significant or not as a cluster.
5: Repeat step 4 for all Z,s in the candidate class one by one.
6: Show the significant clusters on the map.

4  Simulation

In this section, following the type of maps from our application, we study maps sim-
ilar to the one presented in Fig. 2. Our simulation is based on three main scenarios 
to detect irregular shape spatial clusters and each scenario has 3 steps where the 
relative risk of the cluster areas is increased in each scenario. Three spatial scans 
(Bell, binomial, Poisson) are compared based on these scenarios.

(9)

W(i, j) = �̂�i exp �̂�i log
�̂�i

�̂�
+ �̂�j exp �̂�j log

�̂�j

�̂�
− (exp �̂�i − exp �̂�) − (exp �̂�j − exp �̂�)

Fig. 2  Study region with cluster 
area in red color. The shape of 
clusters is not circular (Color 
figure online)
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4.1  Poisson Maps

In the first scenario, we generate the map with 20 × 20 cells using Poisson distribu-
tion. The population of each cell is constant and set as 1000. We consider irregular 
shape clusters with different shapes in the map: (1) L shape, (2) circular, (3) circular 
with tail, (4) snake and (5) snake with two heads. These shapes are shown with red 
color in Fig. 2. Inside the red areas, we generate the number of cases using Pois-
son(12) and outside of those areas, using Poisson(10), which means a higher rela-
tive risk inside the cluster of 20% . Then, we apply three different algorithms, i.e., 
Ir-Poisson (Algorithm 1), Ir-binomial (Algorithm 2), and Ir-Bell (Algorithm 3) to 
detect clusters. We repeat this process 200 times. Using four criteria we compare the 
three algorithms. These criteria are biasness, recall, precision and harmonic mean of 
precision and recall (F1), which are as follows.

First, Prates et al. [36] discussed the relative risk and biasness in spatial scan sta-
tistics. The bias is defined as the true ratio of the parameters inside and outside the 
cluster to the ratio of their estimated value. Bias values near 1 mean that the selected 
clusters are better to estimate the relative risk between the cases inside and outside 
the clusters than detected clusters with a bigger or smaller value for biasness. The 
precision and recall are two famous criteria in clustering problems which are defined 
as:

and also

such that |A| is the cardinality of set A.
The results for this simulation are shown in Fig. 3. According to this figure, the 

recall for Ir-binomial is higher, but its precision is lower than the other scans. This 
means this model leads to over-estimation in cluster detection. The Ir-Poisson and 
Ir-Bell have very similar behavior in precision and recall. The bias values are almost 
the same for the three models. In the case of F1, Ir-Poisson and Ir-Bell are very 
similar and some times the F1 for them reaches to above 0.5, where Ir-binomial scan 
cannot reach that.

In the next step of the simulation, we change the parameter inside the cluster to 
20 and consider the parameter outside cluster 10 providing a relative risk of 100%. 
The results of cluster detection are shown in Fig.  4. The recall (precision) for Ir-
Poisson is higher (lower) than other scans. Since the recall for Ir-Poisson is near 1 
and its precision is high, it means the true clusters are detected with few non-cluster 
areas also included as clusters. Ir-binomial has more bias, and the other scans are 
very similar to each other in this case. F1 for Ir-Bell and Ir-binomial are a little 
higher than Ir-Poisson.

Recall =
|Detected cluster ∩ True cluster|

|True cluster|
,

Precision =
|Detected cluster ∩ True cluster|

|Detected cluster|
,

F1 =
2(recall × precision)

recall+precision
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To have a better vision about the performance of three scans, we select the first 
50 iterations of simulations and plot precision and recall point-wise in Fig. 5. Based 
on this figure, in the case of Ir-Poisson and Ir-Bell, precision is always under recall 
which is not true for Ir-binomial. Correlation of recall and precision for Ir-Bell, Ir-
binomial, and Ir-Poisson are 1, −0.17 , −0.03 . This means we have more over-estima-
tion and under-estimation in applying Ir-binomial. Considering these facts and the 
graph of bias value, we believe that Ir-Poisson and Ir-Bell detect clusters better in 
this scenario comparing to the Ir-binomial.

The increasing of the parameter inside the cluster from 20 to 40, causes recall, 
precision, bias, and F1 to become very close to 1, as expected because in this step 
the distinction between the cluster areas in comparison to the non-cluster areas is 
very large.

Fig. 3  Data for the map are generated from the Poisson with parameter 12 and 10 respectively inside and 
outside cluster. From the top left to the bottom right: the violin plot for the recall, precision, bias, and F1. 
The number of iteration is 200. The red, green and blue colors are respectively for the Ir-Bell, Ir-binomial 
and Ir-Poisson scans (Color figure online)
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4.2  Binomial Maps

The results of cluster detection for binomial maps for different scenarios are pre-
sented and discussed in details in the Supplementary Material Section SM-3. 
Briefly, the Ir-Bell and Ir-binomial perform better in irregular shape cluster detec-
tion comparing to the Ir-Poisson scan.

4.3  Bell Maps

In the first step of this scenario, the cluster areas in the map are generated from 
a Bell(W0(12) ). A Bell(W0(10) ) is used to generate cases outside the cluster areas. 
Therfore, we guaratee a relative risk of 20% inside the cluster. We apply three dif-
ferent scans (Ir-Bell, Ir-Poisson, Ir-binomial) to detect clusters. The results of 

Fig. 4  Data for the map are generated from the Poisson with parameter 20 and 10, respectively, inside 
and outside cluster. From the top left to the bottom right: the violin plot for the recall, precision, bias, 
and F1. The number of iteration is 200. The red, green and blue colors are respectively for the Ir-Bell, Ir-
binomial and Ir-Poisson scans (Color figure online)
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comparison are presented in Fig. 6. We can see that the Ir-Bell scan outperforms the 
other methods under this scenario. Notice that F1 is much higher than the other two 
with a smaller bias.

Increasing W0(12) to W0(20) leads us to declare that the Ir-Bell scan has better 
performance in cluster detection. Because bias values for this model are smaller than 
the two other models, and its F1 is higher. The results of the cluster detection are 
shown in Fig. 7. The three models have almost the same recall but the precision for 
Ir-Bell is considerably higher than the other two. This leads to high F1 and better 
bias value for the Ir-Bell scan. Finally, we increase the parameter inside the cluster 
to W0(40) . In this case, the three scans have perfect performance and all criteria are 
close to 1.

Overall, we can conclude that the Ir-Bell scan is robust to other generation 
schemes (model misspecification) and outperform the other scans when is the true 
distribution. It is a strong candidate to consider when analysing real data.

Fig. 5  Variation of the recall and precision in the first 50 iteration of the simulation study for the scenario 
Poisson(10)-Poisson(20). The Ir-Bell, Ir-binomial and Ir-Poisson are presented
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5  Application

5.1  Irregularly Shaped Spatial Clusters in a Medical Image

In this section, a real data set is studied. Since we concluded in Sect. 4 that the Ir-
Bell is a more robust scan statistics, we will proceed with our analysis using the 
Ir-Bell scan.

Any image can be considered as a map with many cells. Therefore, the scan sta-
tistic method was applied by Popescu and Lewitt [37] to detect circular small nod-
ules on a medical image. We use the same image to detect small nodules with more 
details (irregular shape nodules) and compare the performance of our algorithm 
with their results. This image has 205 × 205 = 42, 025 pixels.

The location and the size of the true clusters are not known in practice. Hence, 
choosing the size of the scanning window in spatial clustering problems is a 

Fig. 6  Data for the map are generated from the Bell with parameter W
0
(12) and W

0
(10) respectively 

inside and outside cluster. From the top left to the bottom right: the violin plot for the recall, precision, 
bias, and F1 in 200 iteration. The red, green and blue colors are for the Ir-Bell, Ir-binomial and Ir-Pois-
son scans (Color figure online)
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challenge for researchers. According to Kim and Jung [38], little research has been 
done on the maximum scan window size or maximum reported cluster size. Wang 
et al. [39] stated that the maximum window size effects on the size of detected clus-
ters. According to their paper, historical information and information about the real 

Fig. 7  Data for the map are generated from the Bell with parameter W
0
(20) and W

0
(10) respectively 

inside and outside cluster. From the top left to the bottom right: the violin plot for the recall, precision, 
bias, and F1. The number of iteration is 200. The red, green and blue colors are respectively for the Ir-
Bell, Ir-binomial and Ir-Poisson scans (Color figure online)

Fig. 8  From the left to the right: (1) detection of circular small nodules in a medical image by Popescu 
and Lewitt [37]. (2), (3) and (4): Detection of small irregular shape nodules in a medical image by the Ir-
Bell scan statistic using, respectively, 1%, 5% and 10% of total image as window size
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cluster can help to determine the maximum size of the scanning window. For exam-
ple, a researcher may be interested in finding small clusters (such as small cancerous 
glands), in which case it is recommended that the maximum size of the window be 
considered small. But, sometimes the goal of research is to find larger clusters, such 
as the clusters in the Covid-19 disease, which may even involve half of the popula-
tion. In such cases, the researcher can consider the size of the scanning window to 
be large. Therefore, a suitable window size can be determined by the researcher’s 
prior information and experience.

Currently, the Gini coefficient and the maximum clustering set-proportion statis-
tic (MCS-P) are the most common choices to select appropriate window size with-
out any prior information [39]. Nevertheless, in our application we have prior infor-
mation about the clusters [37], and since our goal is to provide algorithms for spatial 
cluster detection, we do not focus on the Gini coefficient to determine window size. 
Popescu and Lewitt [37] considered very small scan window size (about 0.5% of the 
image) such that the total detected area is about 10% of the total image because the 
detection of small nodules is the study objective.

The left side of Fig. 8 shows the circular scan window and the detected clusters. 
Our goal is to scan this image to find irregularly shaped clusters and compare the 
results with the result of Popescu and Lewitt [37]. We use the proposed Ir-Bell, Ir-
Binomial, and Ir-Poisson scan algorithms and consider the maximum size window 
varying from 1%, 5%, and 10% of the image. As previously mentioned, the loca-
tion and size of the correct clusters are unknown in real data. On the other hand, 
the maximum scanning window size affects clustering results. Based on the results 
of Popescu and Lewitt [37], we choose equal window sizes. These choices have 
the following advantages: scanning by 1% determines the center of the cluster, in 
other words, where a nodule starts to grow. Scanning by 5% and 10% helps us to see 
whether increasing the window size has a significant effect on cluster detection or 
not. The significant difference can be examined through eye comparisons. As we can 
see, there is no significant difference between the latter two results. It is worth not-
ing that the method of Popescu and Lewitt [37] has at least two disadvantages: first, 
it detects clusters in a circular shape, and second, as can be seen in Fig. 8 (left side), 

Fig. 9  From the left to the right: (1) Irregular shape clusters detected by the Ir-Bell model based on 
Monte-Carlo. (2) Irregular shape clusters detected by the Ir-Binomial model based on Monte-Carlo and 
without it. (3) Irregular shape clusters detected by the Ir-Poisson model with and without Monte-Carlo. 
The explored area is 50 × 50 pixels on the top left of medical image
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the radius of blue circles are equal. It is expected that the size of cancerous glands 
in the body does not have such restriction, as can be seen in the other windows of 
Fig. 8.

The results of cluster detection in the medical image are in Fig. 8 for Ir-Bell scan. 
The regions of detected clusters by the Ir-Bell scan algorithm are very similar to the 
locations of the clusters detected by Popescu and Lewitt [37]. However, our algo-
rithm is capable of providing more details in the shape of the clusters, avoiding over 
or under detection of the clusters areas. It should be noted that by applying Ir-Bino-
mial and Ir-Poisson scans, similar results are obtained. In Fig. 9, a part of the image 
is selected and magnified to see the same performance of Ir-Bell, Ir-Poisson, and Ir-
Binomial more clearly. They perform equally for different scanning methods.

5.2  Execution Time for New Algorithms

According to Zhou et al. [25], 20, 000 random data sets are needed to find irregu-
lar shape clusters based on Monte-Carlo hypothesis testing. The scan process for 
this number of data sets is troublesome when the map is big. Hence the elimination 
of Monte-Carlo from irregular shape cluster detection can decrease detection time 
making the methodology better prepared for the real-life challenges of nowadays.

Algorithms  1 and 2 (Ir-Poisson and Ir-binomial respectively) in our paper are 
independent of the Monte-Carlo method. Therefore, we can compare the execution 
time to detect irregular shape clusters with and without Monte-Carlo hypothesis 
testing.

To this aim, we select just 50 × 50 pixels in the top left of the medical image. 
This partial area is selected because the traditional algorithms require 20, 000 itera-
tions of Monte-Carlo and this study would be time-consuming for the whole image 
with 42,  025 pixels. The detected clusters by the different methods are shown in 
Fig. 9. As expected, all models return the same clusters for the fast and slow ver-
sions. Unlike Popescu and Lewitt [37], we do not have access to a cluster of high 
computational performance. Instead, we used our R [40] coding in a desktop com-
puter core i5 with 4Gb of RAM and Windows 7. Under such a configuration, the 
Ir-Bell method takes about 8 h to scan the entire image.

The execution times and p values are in Table 1. First, it is important to empha-
size that the p values returned by Monte-Carlo and theoretical are the same. Also, 
this table reveals the advantage of the elimination of the Monte-Carlo procedure in 
decreasing detection time which is decreased by an order of 50% . All of our codes 

Table 1  Execution time in 
minutes for detecting spatial 
clusters with and without the 
Monte-Carlo procedure

Bell Binomial Poisson

With Monte-Carlo 30.41 43.28 36.62
Without Monte-Carlo – 17.44 16.01
p-value < 0.0002 < 0.0002 < 0.0002
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are performed in R and more improvement can be done in the execution time if a 
better implementation of the methods is explored.

6  Conclusion

In this paper, we introduce new approaches to handle big maps in spatial clustering 
problems. To do this, three scan statistics are presented: Ir-Poisson scan, Ir-binomial 
scan (Sect. 3.1), and Ir-Bell scan (Sect. 3.2).

By our simulation studies, we show that the Ir-Bell scan statistic outperforms the 
traditional Poisson and binomial scan statistics in cluster detection when it is the 
true distribution.

We apply our methods to a medical image. The results verify the results of Pope-
scu and Lewitt [37], however, provide more insights and richness in terms of inter-
pretation, since the shape of the detect cluster are more precise. Moreover, using our 
naive R implementation, we show that, with the same results, the fast scan versions 
of the Ir-Poisson and Ir-binomial (Algorithms 1 and 2) perform at least two times 
faster than the traditional ones that rely on Monte-Carlo simulation.

Finally, as future work, we are interested in studying and extending these irregular 
shape cluster detection to their zero-inflated fast versions. Nowadays it is common to 
have data sets that are zero-inflated. Thus, zero-inflated methods have become rel-
evant to provide more realistic, precise, and adequate analysis for the data.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s12561- 022- 09353-7.
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