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Abstract In response to ionizing radiation, several signaling
cascades in the cell are activated to repair the DNA breaks,
prevent apoptosis, and keep the cells proliferating. AKT is
important for survival and proliferation and may also be an
activating factor for DNA-PKcs and MREI11, which are es-
sential proteins in the DNA repair process. AKT (PKB) is
hyperactivated in several cancers and is associated with resis-
tance to radiotherapy and chemotherapy. There are three AKT
isoforms (AKT1, AKT2, and AKT3) with different expres-
sion patterns and functions in several cancer tumors. The role
of AKT isoforms has been investigated in relation to radiation
response and their effects on DNA repair proteins (DNA-
PKcs and MRE11) in colon cancer cell lines. The knockout
of AKT1 and/or AKT? affected the radiation sensitivity, and a
deficiency of both isoforms impaired the rejoining of
radiation-induced DNA double strand breaks. Importantly,
the active/phosphorylated forms of AKT and DNA-PKcs
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associate and exposure to ionizing radiation causes an increase
in this interaction. Moreover, an increased expression of both
DNA-PKcs and MRE11 was observed when AKT expression
was ablated, yet only DNA-PKcs expression influenced AKT
phosphorylation. Taken together, these results demonstrate a
role for both AKT1 and AKT2 in radiotherapy response in
colon cancer cells involving DNA repair capacity through the
nonhomologous end joining pathway, thus suggesting that
AKT in combination with DNA-PKcs inhibition may be used
for radiotherapy sensitizing strategies in colon cancer.

Keywords AKTI1 - AKT2 - DNA-PKcs - MREII -
Radiation - Colorectal cancer

Background

Colorectal cancer is the third most frequent cancer form in the
world and also the third most common reason for cancer
death. Although surgery is the primary treatment, radiotherapy
and/or chemotherapy are used preoperatively or postopera-
tively to reduce tumor burden and to diminish recurrence risk
[1]. Since not all patients will benefit from chemoradiation
therapy [2], there is a great need to find new drugs with
radiosensitizing properties. Understanding the molecular
mechanisms of this radiosensitivity is essential for developing
more effective radiotherapy treatments. Most colorectal can-
cers initially respond to chemotherapy, although there is a high
development of drug resistance that can be linked to mutations
in the DNA repair mechanism [3, 4].

AKT (also known as Protein Kinase B, PKB) is an impor-
tant serine/threonine kinase in the cell signaling downstream
of several growth factors, cytokines, and in response to expo-
sure of drugs and ionizing radiation. It is involved in survival,
growth, proliferation, glucose uptake, metabolism, and angio-
genesis [5]. There are three isoforms of AKT (AKT1, AKT2,
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and AKT3) that are located on separate chromosomes and are
believed to have different physiological functions, properties,
and expression patterns [6, 7]. AKT isoform knockout mice
have shown that suppression of AKT1 induces a reduction of
body and cell size, AKT?2 knockouts show diabetes mellitus-
like syndrome, and AKT3 deletion causes smaller brain size
and corpus callosum disorganization [§8, 9]. Variations in
AKT expression patterns, mutations, and roles of different
isoforms have been observed in various cancer cell lines
[10]. AKT1 may function as an oncogene and AKT3 as a
tumor suppressor [11], and AKT mutations have been detect-
ed in human colorectal cancer (AKT2) and lung tumors
(AKT1 and AKT3). AKT is also hyperactivated in several
cancer forms and is associated with resistance to radiotherapy
and chemotherapy [12].

Cells exposed to ionizing radiation acquire DNA damage
such as DNA double strand breaks (DSBs), which stimulate
the cells to induce signaling responses including cell cycle
arrest, DNA repair, or apoptosis. The main DNA DSB repair
pathways are nonhomologous end joining (NHEJ) and ho-
mologous recombination (HR) repair. The NHEJ pathway
ligates the DNA ends without a long homologous DNA
template. HR repair requires a homologous DNA template
to be able to repair the DSBs and is therefore most active in
late S/G2 phase. Both these processes are complex and require
several proteins functioning at different stages in the DNA
repair and radiation response [13, 14].

The catalytic subunit of nuclear DNA-dependent protein
kinase (DNA-PKcs) is involved in the NHEJ pathway of
DNA repair [15]. Previous studies have shown that there are
important interactions between AKT and DNA-PKcs. AKT1
has been suggested to act downstream of DNA-PKcs in the
DNA damage response signaling cascade, independent of
ATM (ataxia telangiectasia mutated), where it provides a
prosurvival signal by affecting transcriptional p21 regulation
[16]. On the other hand, it has been shown that suppression
ofAKT1 by siRNA reduced the phosphorylation of DNA-
PKcs (Thr2609), which indicates that DNA-PKcs is instead
downstream of AKT1 [17]. Furthermore, recent findings sug-
gest that meiotic recombination 11 (MRE11), a DSB sensor
protein, promotes AKT phosphorylation in response to
radiation-induced DSB [18, 19]. Thus, AKT seems to interact
with proteins with distinct functions in DSB recognition and
repair, but knowledge of the role of individual AKT isoforms
in the DNA damage response is limited.

The interactions between AKT and DNA-PKcs and
MRE11 are probably dependent on a number of factors, such
as celltype, genotype, and microenvironment. Previous stud-
ies have used AKT inhibitors, which are somewhat unspecific,
or siRNA against AKT, which does not deplete the expression
completely. In this study, two colorectal cancer cell lines,
HCT116 and DLD-1, were used in which the AKT isoforms,
AKTI1 and AKT2, have been knocked out with no residual
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protein expression, which enables the analyses of the different
AKT isoforms to be more reliable. The two colon cancer cell
lines, HCT116 and DLD-1, have mutated PI3KCA and KRAS
genes. These mutations are also common in colorectal cancer
patients [20, 21]. Further, the DLD-1 cell line has a p5S3 muta-
tion, and the HCT116 cell line has a MRE11 mutation. Muta-
tions in MRE11 are common in microsatellite-unstable colorec-
tal cancer and cause a higher sensitivity to radiation. HCT116
cells have defective MRE11 protein that lacks exons 5-7, leading
to defective 3'-5' exonuclease activity. However, it still possesses
the ability to bind to DNA. These mutations are known to cause
abnormal cell signaling and have to be considered when study-
ing protein interactions and evaluating future therapies.

This study investigated how the AKT isoforms influence
radiation sensitivity and affect the DSB repair rate as well as
their interaction with MRE11 and DNA-PKcs. In addition, it
explored how the interaction between EGFR and DNA-PKcs
is affected by AKT depletion after exposure to ionizing radi-
ation. Since the microenvironment may also play an important
role in therapy response, both high and low concentrations of
serum were used in the cell culture media.

Material and methods

Cell culture The colon cancer cell lines DLD-1 and HCT116
X-MAN™ ijsogenic cell lines were obtained from Horizon
Discovery Ltd. with the different AKT isoforms genetically
knocked out (parental, AKT1 KO, AKT2 KO, and AKT1 and
AKT2 double KO). DLD-1 parental and HCT116 parental
express both AKT1 and AKT2, however not AKT3. The cells
were cultured in 75 cm? culture flasks (Nunclon Surface,
Roskilde, Denmark) in McCoy’s SA medium (Flow Irvine,
UK) with 10 % fetal bovine serum (Sigma Aldrich), 2 mML-
glutamine, 100 TU/ml penicillin, and 10 pg/ml streptomycin
all from Biochrom Kg, Berlin, Germany. All cells were cul-
tured in a humidified incubator with 5 % CO, at 37 °C and
trypsinized with trypsin-EDTA (0.25 % trypsin and 0.02 %
EDTA, Biochrom Kg).

Irradiation Cells were irradiated with y-radiation '*’Cs
source (Gammacell® 40 Exactor,BestTheratronics, Ottawa,
Canada) at a dose rate of 1 Gy/min. The radiation dose was
optimized for the assay performed.

SIRNA transfection The cells were seeded in antibiotic-free
cell culture media and incubated overnight at 37 °C with 5 %
CO,. Transfection was made according to Thermo Scientific
DharmaFECT siRNA transfection protocol with siRNA
against DNA-PKcs (ON-Target SMART pool, PRKDC with
DharmaFECT1) or against MRE11 (ON-TARGET SMART
pool, MRE11A, with DharmaFECT2). The mock treatments
were made with ON-TARGET plus Non-targeting Pool and
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the corresponding DharmaFECT solution. Three days after
transfection, the cells were used for analysis.

Western blotting for cell signaling Cells were cultivated in
3 cm petridishes for at least three doubling times prior to
exposure to radiation. Lysates were prepared in posttreatment
by washing the cells with ice-cold PBS followed by addition
of 10, 000, 000 cells/ml lysis buffer containing 1 % Tween-20,
20 mM Tris (pH 8.0), 137 mM NaCl, 10 % glycerol, 2 mM
EDTA, 1 mM activated sodium orthovanadate (Sigma), and
protease inhibitor cocktail (P8340, Sigma) and incubation on
ice for 30 min. Lysates were centrifuged for 10 min in 4 °C.
The supernatant was transferred to new tubes, and the pellet
was discarded. The protein concentration of the lysate was
determined by BCA protein assay (Pierce). Equal amounts of
protein were loaded on an SDS PAGE and afterward trans-
ferred to a nitrocellulose membrane by wet blotting. The
nitrocellulose membrane was blocked for 1 h in 5 % BSA,
PBS and then incubated with the primary antibody overnight
at 4 °C. Antibody specific for DNA-PKcs (ab1832), phospho-
Ser2056-DNA-PKcs(ab18192), and phospho-Thr2609-DNA-
PKcs (ab18356) were from AbCam (Cambridge, UK). Anti-
body against MRE11 (PC388) was from Calbiochem (EMD
Millipore Corporation, Billerica, MA, USA). AKT1(sc55523
and AKT?2 sc5270) were purchased from Santa Cruz Biotech-
nology (Santa Cruz, CA, USA), and antibodies recognizing
the phosphorylated forms of AKT phospho-Ser-473/474AKT
(9271) and AKT phospho-Thr308/309 (9275) were from Cell
Signaling Technology (Beverly, MS, USA). Antibody against
[3-actin (A5441) was from Sigma-Aldrich (St. Louis, USA).
After washing in PBS with 1 % Tween-20, the membrane was
incubated with horseradish peroxidase-labeled secondary an-
tibody (626520 and 656120) (Invitrogen) for 1 h at room
temperature. Immunoreactive bands were visualized in a
CCD camera (SuperCCD HR, Fujifilm, Japan) after treatment
with electrochemiluminescent solution (Immobilon) for
5 min.

Immunohistochemistry with PLA Proximity ligation assay
(PLA) detects proteins that are in close proximity/interacting
with each other. Primary antibodies (from different species)
recognize the proteins of interest and species-specific second-
ary antibodies, so called PLA probes, with a unique short
DNA strand attached to it, bind to the primary antibodies.
When the proteins are interacting, the PLA probes are in close
proximity, and the DNA strands can, when hybridized with
connector oligos, form circled formed DNA oligonucleotides.
The circular DNA is amplified via rolling circle amplification
to hundredfold replication of the DNA circle and
fluorochrome-labeled complementary oligonucleotide probes
highlight the product [22]. Cells were seeded on 8-well cham-
ber slides (Nunc) in PEST-free cell culture media (McCoy’s,
Sigma) and treated with siRNA or mock after 24 h. Three days

after transfection, the cells were exposed to radiation (10 Gy),
fixated in ice-cold ethanol 1 h postirradiation, and finally,
dipped in acetone. Complexes of EGFR and DNA-PKcs or
phospho-Thr2609-DNA-PKcs with phospho-S473-AKT
were detected using the Duolink Proximity Ligation kit (Olink
Biosciences). Cells were incubated with antibody
EGFR(1005):s¢-03 (SantaCruzBiotechnology) together with
DNA-PKcs (1832) (AbCam) or phosphor-Thr2609-DNA-
PKcs (10B1) (AbCam) together with phospho-Ser473474-
AKT (Cell Signaling). Cells were incubated with complemen-
tary oligonucleotide-conjugated anti-rabbit and anti-mouse
secondary antibodies followed by ligation and rolling circle
amplifications in the presence of Texas Red conjugated nu-
cleotide. The fluorescent amplicons manifest as red fluores-
cent dots, with each dot representing an interaction between
the two specific proteins. Cells were costained with DAPIL, and
images were acquired using a Zeiss Axiophot fluorescence
microscope. Cell profiler image software was used to measure
600800 nuclei per experiment [23].

mRNA quantifications with real-time gPCR Total RNA was
extracted from three biological replicates using an RNA iso-
lation kit (Ambion). cDNA was synthesized from 0.1 pg total
RNA using RevertAid H Minus First Strand cDNA Synthesis
Kit with random hexamer primers (Thermo Scientific). gPCR
was performed with Maxima SYBR Green/ROX qPCR Mas-
ter Mix (2X) (Thermo Scientific) with gSTARqPCR primer
pairs against DNA-PKcs and MRE11 and Beta-actin
(OriGene) in a Step-OnePlus Real-Time PCR system (Ap-
plied Biosciences). Data were analyzed with Applied Biosci-
ence qPCR software.

Cell cycle analysis

Cells were fixated with 70 % ethanol, 10 % PBS and kept
at —20 °C for at least 24 h. Cells were centrifuged for 10 min,
200G at 4 °C and washed twice with PBS before incubation
with 5 pg Propidium lodine(Sigma)/0.1 % NP-40(Sigma) in
PBS together with 5 pg RNase (Sigma) for 30 min at room
temperature. Analysis was made with flow cytometry (BD
LSRII Biosciences).

Clonogenic assay

To study the effect on cell survival of radiation, clonogenic
survival assays were performed using standard technique. The
cells were preplated before radiation since this allows the cells
to be undisturbed after the radiation exposure. Cells were
harvested by using trypsin for cell detachment followed by
counting in a Z2 Coulter Counter Analyzer (Beckman Coulter,
FL, USA), and a certain number of cells (300 up to 20, 000
depending on treatment) were preplated in 25 cm? tissue
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culture flasks with 10 ml complete medium. The cells were
allowed to attach during culture conditions in humidified air
with 5 % CO2 overnight to give them time to regain their cell-
surface receptors after trypsinization. The following day, the
cells were exposed to radiation (4 Gy). Control cultures were
left unexposed and some cultures were exposed to radiation
only. After 8—14 days incubation (depending on the doubling
time of the cell lines), cells were washed in 1 XPBS, and fixed
with 99.5 % ethanol and stained with Mayer’s Haematoxylin.
Colonies containing more than 50 cells were counted
manually.

The plating efficiency (PE), number of colonies formed/
number of cells seeded, in the untreated control and the
survival fraction (SF), number of colonies formed after
treatment/number of seeded cellsxPE, were calculated. All
experiments were repeated in triplicate at least three times.
The survival curve was analyzed using the linear—quadratic
formula (SDose/S0)=exp(xD+D2).

Detection of DNA double strand breaks by pulsed-field gel
electrophoresis.

Pulsed-field gel electrophoresis (PFGE) is a method to ana-
lyze the rapid rejoining of radiation induced DNA double strand
break [24]. This method was chosen over YH2AX foci formation
assay since DLD-1 and HCT116 forms stacked cell clusters
which make the detection of foci difficult. Cells for PFGE were
plated in 3-cm dishes and labeled with 2 kBg/ml [methyl-"*C]
thymidine (Perkin Elmer) for approximately two doubling times.
The dishes were put on ice 20-30 min before irradiation and
were kept on ice during the entire irradiation. Cells were prepared
for PFGE as described previously [25]. After irradiation and
repair in incubation at 37 °C, cells were trypsinized and mixed
with low gelling-point agarose (InCert, Cambrex) to a final
concentration of 1.5-2.5x10° cells/ml in 0.6 % agarose. The
mixture was transferred into plug-molds. The plugs with cells
were then transferred to ESP lysis buffer at 4 °C [2 % N-
lauroylsarcosine (Sigma), 1 mg/ml proteinase K (Roche), all
diluted in 0.5 M EDTA (Nay) at pH 8.0]. After >20 h, the ESP
buffer was removed and replaced with 20 plug volumes HS-
buffer and incubated overnight at 4 °C (HS, high salt; 1.85 M
NaCl, 0.15 M KCl, 5 mM MgCl,, 2 mM EDTA, 4 mM Tris,
0.5 % Triton X-100, pH 7.5, Triton X-100 was added just before
use). Plugs were washed in 0.1 M EDTA and once in 0.5xTBE at
4 °C prior to electrophoresis. The plugs were then loaded into
wells in a chilled (4 °C) agarose gel (0.8 % SeaKem Gold,
Lonza). The gel was placed into a PFGE unit (Gene Navigator,
Amersham Pharmacia Biotech, Uppsala, Sweden) with 120°
between the fields. Following electrophoresis, the gels were
sliced at the position of the 5.7 Mbp chromosome from
S. pombe (BMA), and "C in the gel segments was measured
by liquid scintillation. The fraction of radioactivity corresponding
to DNA of size less than 5.7 Mbp was divided by the total
radioactivity in the lane, giving the fraction of DNA <5.7 Mbp,
which is a relative measure of DNA double-strand breaks.
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Statistical analysis

The data were processed with Microsoft Office Excel 2007
(Microsoft, Redmond), and all graphs were plotted in
GraphPad Prism 5 (GraphPad Software, San Diego).

Statistical analysis was performed using GraphPad Prism
or Excel to a perform 2-sided Student’s 7 test. A significance
level of 95 % was used. This analysis evaluated whether the
effects of treatments or genetic knockout were significantly
different from the untreated controls.

Results

The influence of AKT isoforms on the expression of DNA-
PKcs and MREI1 Two colorectal cancer cell lines, DLD-1
and HCT116, and their corresponding isogenic AKT isoforms
knockout cell lines were used to show whether AKTI or
AKT?2 were activated after exposure to ionizing radiation
and their effect on the expression of MRE11 and DNA-
PKcs. The DLD-1 parental cell line had an increased expres-
sion of phospho-AKT at Ser473/474 after exposure to ionizing
radiation, 1 h post IR (Fig. 1a). The AKT1 and AKT2 knock-
out cell lines, which had a higher constitutive activation of the
remaining AKT isoform compared to parental cells, had no
further increase in phosphorylation after exposure to radiation.
In the case of HCT116, the AKT1 KO cell line had a lower
phosphorylation of AKT compared to the parental and AKT2
KO, suggesting that AKT1 is the isoform that is mainly
activated in HCT116 (Fig. 1b).

The expression of DNA-PKcs and MREI11 proteins were
influenced by the AKT isoforms. Single depletion of AKT1 or
AKT?2 resulted in lower protein levels of DNA-PKcs and
MREII in DLD-1. However, double depletion of AKT1 and
AKT?2 caused an increase in the expression of DNA-PKcs and
MREL1I. In contrast, in the HCT116 cell-line, DNA-PKcs
expression was only reduced in the AKT2 KO cells and the
MREI11 expression was low in parental as well as the single
AKT isoform knockout cell lines.

To gain further insight in the expression of DNA-PKcs and
MRE11, mRNA levels were quantified with qPCR using the
delta-delta Ct-calculation. There was a 4-fold increase in mRNA
levels of DNA-PKcs in the AKT1/2 KO cell line compared to the
parental DLD-1, which confirms the western blot data, but there
was no difference in the mRNA level of MREI11 (Fig. 1c). In
HCT116, there was a slight decrease in mRNA levels of DNA-
PKcs and MRE11 in the AKT2 KO but not in AKT1 or AKT1/2
KO cell lines, which is in agreement with the western blot data
(Fig. 1d). Notably, the dramatic increase in MRE11 protein in the
AKT 1/2 KO cell line (Fig. 1b) seems to be completely due to
posttranslational regulation such as increased protein stability or
low degradation.



Tumor Biol. (2014) 35:3525-3534

3529

Fig. 1 Protein expression and
mRNA levels of DNA-PKcs and
MREI1 are influenced by the
AKT isoforms. Western blots
were performed to study the
protein expression and
phosphorylation of the AKT
isoforms, DNA-PKcs and
MREI11 in the colorectal cancer
cell lines DLD-1 (a) and HCT116
(b) and their corresponding AKT
isogenic knockout. Cell-lysates
were made before and after
irradiation (1 h post IR 6 Gy). The
mRNA level of DNA-PKcs and
MRE!11 were analyzed with
qPCR in DLD-1 cells (¢) and
HCT116 cells (d) and their
corresponding AKT isogenic
knockouts. The data is from at
least two biological replicates
with each sample measured in 6
triplicates using Beta-actin as
reference in the delta-delta Ct
model. The error bars represent
the normalized RQ min and max

DNA-PKcs
MRE11
AKT1
AKT2

— |
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There were no variations in the cell-cycle distributions
among the AKT isoform knockouts suggesting that the differ-
ences seen in mRNA level or protein expression/activation
were not due to differences in cell-cycle (Table 1).

Phosphorylation of AKT is influenced by DNA-PKcs but not
MREII To study the interaction between AKT and the DNA
repair proteins (DNA-PKcs and MRE11) further, cells were
treated with siRNA against either DNA-PKcs or MRE11. In
DLD-1 but not in HCT116, AKT activation was influenced by
DNA-PKcs shown by a small reduction in the phospho-
Ser473/474-AKT after treatment with siRNA against DNA-
PKcs. DNA-PKcs might therefore be one of the PDK2 pro-
teins which activate AKT (Fig. 2a and b). Treatment with
siRNA against MREI11 had no effect on the phosphorylation
of AKT and is therefore not considered as PDK2 in these cell
lines. However, suppression of MRE11 caused a reduction in
the expression of phosphorylated Thr2609-DNA-PKcs, sug-
gesting that MRE11 and DNA-PKcs interact with each other.

Phospho-Thr2609-DNA-PKcs interacts with phospho-
Ser473-AKTI and phospho-Ser474-AKT2 As indicated
above, AKT affects the expression of DNA-PKcs, which in
turn has a role in the activation of AKT. Proximity Ligation
Assay (PLA) was performed to define better how DNA-PKcs
and AKT interacts and how this relates to the presence of

| At den Beta actin - .

DNA-PKcs
MRE11

AKT1 -
AKT2

— —

PAKT S473/474 =

pAKT T308/309 -

. ——

d

[J DNA-PKcs
Il MRE11

HCT116 [ DNA-PKcs
M MRE11

2.0
1.5

1.0

Normalized RQ

0.5

AKT. PLA detects proteins in close proximity and when the
specific proteins are close enough, there will be a fluorescent
spot which can be seen with microscopy. There was a low but
detectable number of phospho-Thr2609-DNA-PKcs and
phospho-Ser473/474-AKT in close proximity, shown as
spots, in the DLD-1 parental, AKT1, and AKT2 KO cell lines,
indicating that DNA-PKcs interacts with both AKT1 and
AKT2. This interaction was most prominently detected in
the cell nucleus. In unirradiated cells there was no difference
between the parental and the AKT1 KO or AKT2 KO cell
lines. After exposure to radiation (1 h post-IR) this interaction
increased significantly, with slightly higher number of spots in

Table 1 Cell cycle distribution in cells with knockout of different AKT

isoform

Cell line GO0/1 S G2/M
DLD-1 Parental 52 28 18
DLD-1 AKTI KO 58 23 17
DLD-1 AKT2 KO 50 26 22
DLD-1 AKT1/2 KO 55 21 23
HCT116 Parental 76 7 11
HCT116 AKT1 KO 78 6 10
HCT116 AKT2 KO 74 7 13
HCT116 AKT1/2 KO 73 5 16
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Fig. 2 The phosphorylation of a

AKT is influenced by DNA-PKcs DLD-1 HCT116

but not MRE11. DNA-PKcs and
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shown pAKT S473/474 o - —— — 1. L
Beta actin VY —— - —

the AKT1 and AKT2 KO cell lines compared to the parental
cell line (Fig. 3a).

EGFR interaction with DNA-PKcs is dependent on
AKT EGFR may directly or indirectly interact with DNA-
PKecs; and therefore, the amount of EGFR in close proximity
to DNA-PKcs was analyzed. The majority of the spots were
detectable in the cell nuclei. There was no difference in the
number of EGFR-DNA-PKcs spots in the parental cell line
before and after radiation (Fig. 3b). In contrast, DLD-1
AKT1/2 KO cells have no DNA-PKcs-EGFR in close prox-
imity to each other under normal conditions. However, 1 h
after exposure to radiation the number of DNA-PKcs and
EGEFR in close proximity were the same in the AKT1/2 KO
as in the parental cell line, suggesting that this interaction was
triggered by radiation even in the absence of AKT.

Both AKTI and AKT?2 contribute to survival following radia-
tion exposure To evaluate if the radiation sensitivity was
dependent on the different AKT isoforms, cells were exposed
to 4 Gy and analyzed with clonogenic assay. There was a
significant (p <0.05, Student’s 7 test) increase in the sensitivity
to radiation in the DLD-1 single AKT1 and AKT2 KO and an
even further increase in the double AKT1/2 KO cell line.
Since growth factors are involved in the radiation response
and cell survival, the radiation response was also studied in
cells that were starved 24 h before radiation in 0.5 % FBS
culture media. The reduction in FBS significantly (p <0.05,
Student’st test) increased the radiation sensitivity in parental
as well as single and double AKT isoform KO cells (Fig. 4a).

Suppression of DNA-PKcs leads to higher radiosensitivity The
radiation sensitivity in DNA-PKcs suppressed cells was ana-
lyzed. Since there was a small reduction in the phosphorylation
of AKT Ser473 in DLD-1 cells treated with siRNA against
DNA-PKcs, an increase in radiation sensitivity was expected.
The DLD-1 parental and the different AKT isoform KO cell
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lines were treated with siRNA against DNA-PKcs and irradiated
(4 Gy) in the presence of 10 % FBS or 0.5 % FBS. Suppression
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Fig. 3 DNA-PKcs is in close proximity to phospho-Ser473/474-AKT or
EGFR in DLD-1 cells. DLD-1 and its corresponding AKT isotype knock-
out cells were exposed to radiation (1 h post IR 10 Gy) and analyzed with
the proximity ligation assay (PLA) of the particular proteins. The interac-
tion between phospho-Thr2609-DNA-PKcs with phospho-Ser473/474-
AKT A) as well as between DNA-PKcs and EGFR B) were analyzed
before and after irradiation (1 h, post IR10 Gy). The error bars represents
the standard deviation from five measurements. The difference was ana-
lyzed with Student’s ¢ test where *P <0.05, **P <0.01, and ***P <0.001



Tumor Biol. (2014) 35:3525-3534

3531

[V

DLD-1 AKT knockout

0.34

Survival fraction (SF)

10% FBS 0.5% FBS

Fig. 4 Radiation survival is dependent on AKT, DNA-PKsc and serum
concentration. Radiation sensitivity was analyzed with clonogenic assay
(4 Gy) in DLD-1 AKT isoform knockout cell lines treated with mock (a)
or siRNA against DNA-PKcs (b) in 10 % FBS and 0.5 % FBS. The cells
treated with 0.5 % FBS were first seeded in flasks with 10 % FBS and
incubated for 24 h to allow attachment before changing to 0.5 % FBS.

of DNA-PKcs caused a reduction (p <0.05, Student’s ¢ test) in
the survival fraction, and in combination with starvation (0.5 %
FBS) the radiation sensitivity was further increased. The highest
radiosensitivity was observed in the AKT KO cell line treated
with siDNA-PKcs in 0.5 % FBS (Fig. 4b).

The AKT isoforms influence the DSB rejoining To study if
radiation sensitivity correlates with an impaired DSB
rejoining rate, pulsed-field gel electrophoresis was performed
on the different AKT KO cell lines. In both DLD-1 and
HCT116 cells, all the AKT isoform KO cell lines showed a
tendency for a slower DNA repair rate compared to the
parental cell line in 10 % FBS (Fig. 5a and b). The DLD-1
AKT1/2 KO cells had a significant slower DSB rejoining rate
compared to the parental cells (p <0.05 in Student’s # test).
The DSB rejoining in siDNA-PKcs-treated cells was impaired
in serum-starved cells (0.5 % FBS). However, this effect was not

Fig.5 DNA double strand break- a

o

DLD-1 AKT knockout
with siDNA-PKcs

0.3

Survival fraction (SF)

10% FBS 0.5% FBS

The cells were incubated in 24 h in 0.5 % FBS before radiation and kept
in the same media after treatment. The error bars represents the standard
deviation from at least three experiments. Student’s ¢ test evaluated if
there were any significant differences in SF between the parental and the
AKT KO cell lines with *P<0.05, **P<0.01, and ***P <0.001

significant in 10 % FBS (Fig. 6a and b). AKT1/2 KO in combi-
nation with siDNA-PKcs in 0.5 % FBS significantly (p <0.05)
reduced the DNA rejoining rate compared to parental in 0.5 %
FBS. On the other hand, this was not seen in 10 % FBS.

Even though MRE11 affects the activation of DNA-PKcs,
a suppression of MRE11 did not reduce the DNA rejoining
rate in any of the cell lines in either 10 or 0.5 % FBS. In
HCT116, neither suppression of DNA-PKcs nor MRE11 re-
duced the DSB rejoining significantly at either 10 or 0.5 %
FBS (data not shown).

Discussion
AKT is mainly activated via the Phosphotidyl Inositol-3 Ki-

nase (PI3K) pathway where PI3K activates PIP2 to PIP3,
which in turn will bind to the PH-domain of AKT and alter

b
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Fig. 6 DNA double strand break-rejoining rate in AKT isoform deficient
DLD-1 with suppressed DNA-PKcs expression. DNA double strand
break rejoining rate, evaluated with pulsed field gel electrophoresis after
irradiation (40 Gy), a in DLD-1 and the AKT isoform knockout cell lines
at 10 % FBS and 0.5 % FBS and b mtreated with siRNA against DNA-
PKecs. ¢ Graph representing unrejoined DNA double strand breaks 4 h

the conformation of AKT to allow subsequent phosphoryla-
tion at a threonine site (Thr308 for AKT1 and Thre 309 for
AKT2) and a serine site (Ser473 for AKT1 and Ser474 for
AKT?2). Phosphoinositide Dependent Kinase-1 (PDK1) is a
known serine/threonine kinase which phosphorylates AKT at
Thr308. However, the mechanism of phosphorylation at
Serd73 is not clear and several theories have been proposed.
The Serd73 is suggested to be either phosphorylated by PDK 1
or by some unknown protein named PDK2. Among possible
PDK2 proteins are ILK-1, mTOR, ATM, DNA-PKcs, and
MREI11 [26]. AKT may also be activated through a PI3K-
independent manner via many different pathways including
other phosphorylation sites such as tyrosines. There are also
indications that Ser473 is autophosphorylated. It has previ-
ously been shown by us and others that AKT activation is
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post irradiation in DLD-1 parental and AKT1/2 KO cell lines treated with
mock or sSiDNAPK-cs in 10 % or 0.5 % FBS. The error bars represent the
standard deviation of at least two measurements. Student’s t-test evaluat-
ed if there were any significant differences in DNA rejoining between the
parental and the AKT KO cell lines with *P <0.05, **P <0.01, and ***P
<0.001

radiation dose and time dependent [27], and it is believed to be
involved in the DNA repair after exposure to ionizing radia-
tion [16, 28].

Previous studies have tried to evaluate the importance of
the different AKT isoforms in terms of radiation response
using siRNA treatment. However, the suppression of pro-
tein expression with siRNA treatment is not complete,
leaving at least 10-20 % of residual protein levels. In a
study by Kim et al. on three different types of tumor cell
lines, including the colon cancer cell line SW480, treat-
ment with siRNA against AKT1 before irradiation reduced
cell survival more than siRNA treatment against AKT2 or
AKTS3 [29]. Bozulicet al. also showed that in mouse em-
bryonic fibroblasts (MEF) cells, treatment with siRNA
against AKT1, but not AKT2 or AKT3, there was an
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increase in the radiation-induced apoptosis. They further
noted that only AKT1 was interacting with DNA-PKcs
[16].

In the present study, isogenic knockouts of AKT were used
instead of siRNA, and it was shown that both AKT1 and
AKT?2 are involved in the response to radiation and that
abolishment of either AKT1 or AKT2 isoforms alone or
together increases the radiation sensitivity. It was further
shown that deleting both AKT1 and AKT2 isotypes simulta-
neously impairs the DNA-rejoining of DSBs. Suppression of
DNA-PKcs had a radiosensitizing effect, which was further
increased in combination with disruption of AKT, and the
PLA assay confirmed that DNA-PKcs interacts with both
AKTI1 and AKT2. Interestingly, suppression of DNA-PKcs
with siRNA also reduced the activation of AKT in DLD-1 but
not in HCT116. The two cell lines harbor different mutations
that evidently affect the interaction between AKT and DNA-
PKcs which should be evaluated further in future studies. The
study also demonstrated the importance of serum level, which
is often abrogated in tumors due to their abnormal growth.

The present study has also shown that the expressions of
DNA-PKcs and MRE11 were increased when both AKT1 and
AKT?2 isoforms were knocked out, as seen in both DLD1 and
HCT116. However, in the single AKT1 or AKT2 KO cell
lines, the expression of DNA-PKcs and MRE11 was reduced,
which suggests a feedback-loop causing an increase in DNA-
PKcs and MRE11 expression only when both isoforms are
disrupted. However, despite the increased expression of the
DNA-repair proteins in the AKT1/2 KO cells, these cells still
had a higher sensitivity to radiation. It has been proposed that
DNA-PKGcs is involved in apoptosis, and an activation of
DNA-PKcs has been detected in several types of cells in the
early stages of apoptosis [30]. When both AKT isotypes are
deleted, there is an increase in apoptosis [31], which could
explain the increase in DNA-PKcs. Interestingly, under stress
conditions, such as low serum, the rejoining was impaired in
DNA-PKecs-suppressed cells but not in 10 % FBS. This im-
plies that even a low expression (<20 %) of DNA-PKcs is
enough for the cell to rejoin DSB under normal growth
conditions. However, the decreased cell survival indicates that
DNA-PKcs have other important roles besides DSB repair,
and recent data suggest that inactivation of DNA-PKcs cause
multipolar spindle and mitotic catastrophe after DNA damage
[32]. The findings of the present study also confirm a recent
study by Reynolds et al., which showed that DNA-PKcs is not
involved in rapid repair of DSBs but is instead recruited to the
slow repairing DSBs, which also require Ku80 in the NHEJ
process [33]. Therefore, the effect of suppressing DNA-PKcs
is only seen in the clonogenic assay, which reveals the long-
term effects of radiation exposure.

It is proposed that the effects in low serum level media
could be due to the reduced growth factors. Recent studies
have shown the importance of growth factor receptors such as

EGFR and HER-2 for the function of DNA-PKcs. Activated
EGFR activates AKT in the nucleus or directly activates
DNA-PKcs in response to ionizing radiation [34-36]. Inter-
estingly, the interaction between EGFR and DNA-PKcs was
dependent on AKT. The PLA assay could not detect any
EGFR-DNA-PKcs in close proximity in AKT1/2 KO cells.
However, when the cells were exposed to radiation, the num-
ber of DNA-PKcs-EGFR spots was the same as in the parental
cells, suggesting that there are other pathways and feedback
loops involved to enable the cell to overcome exposure to
radiation.

The DNA-PKcs activation was also influenced by MRE11,
which is primarily involved in homologous recombination
(HR), but it is also part of the NHEJ pathway. However,
treatment with siRNA against MREI1 did not affect the
DSB rejoining in either DLD-1 or HCT116.

Conclusion

Taken together, our results present strong support for the role
of both AKT1 and AKT?2 isoforms in the response to ionizing
radiation and their interaction with DNA-PKcs and MRE11 in
colon cancer cells. Targeting all AKT isoforms in combination
with a DNA-PKcs inhibitor could have therapeutic implica-
tions when used in combination with radiotherapy in colorec-
tal cancer patients.
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