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Inflammatory bowel disease (IBD) is a chronic and relapsing intestinal inflammatory
condition with no effective treatment. Probiotics have gained wide attention because of
their outstanding advantages in intestinal health issues. In previous studies, a novel
soluble protein, HM0539, which is derived from Lactobacillus rhamnosus GG (LGG),
showed significant protective effects against murine colitis, but no clear precise
mechanism for this effect was provided. In this study, we hypothesized that the
protective function of HM0539 might be derived from its modulation of the TLR4/
Myd88/NF-kB axis signaling pathway, which is a critical pathway widely involved in the
modulation of inflammatory responses. To test this hypothesis, the underlying anti-
inflammatory effects and associated mechanisms of HM0539 were determined both in
lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages and in dextran sulfate
sodium (DSS)-induced murine colitis. Our results showed that HM0539 inhibited the
expression of cyclooxygenase-2 (COX-2) and the expression inducible nitric oxide
synthase (iNOS) by down-regulating the activation of their respective promoter, and as
a result this inhibited the production of prostaglandin E2 (PGE2) and nitric oxide (NO).
Meanwhile, we demonstrated that HM0539 could ultimately modulate the activation of
distal NF-kB by reducing the activation of TLR4 and suppressing the transduction of
MyD88. However, even though the overexpression of TLR4 or MyD88 obviously reversed
the effect of HM0539 on LPS-induced inflammation, HM0539 still retained some anti-
inflammatory activity. Consistent with the in vitro findings, we found that HM0539 inhibited
to a great extent the production of inflammatory mediators associated with the
suppression of the TLR4/Myd88/NF-kB axis activation in colon tissue. In conclusion,
HM0539 was shown to be a promising anti-inflammatory agent, at least in part through its
down-regulation of the TLR4-MyD88 axis as well as of the downstream MyD88-
dependent activated NF-kB signaling, and hence might be considered as a potential
therapeutic option for IBD.
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INTRODUCTION

In recent years, owing to the rapid development of microbiome
research related to the interaction of microbes with the host,
administering microbes into patients as well as modulating
human microbiota have become a focus of new therapeutic
strategies (1, 2). Since the term “probiotics” was defined, they
have been shown to act through cellular and molecular
mechanisms involving antagonistic action on pathogens, and
they have been shown to improve protective immunity, reduce
inflammation induced by foreign antigens, and strengthen the
mucosal barrier (2). The specific mechanisms involved
nevertheless deserve further investigation. Probiotics have
become a hot topic of research because of their beneficial
functions in the treatment and prevention of intestinal diseases
resulting from their maintenance of intestinal homeostasis.
Evidence has been provided for probiotics inhibiting harmful
bacteria from adhering to and invading intestinal mucosa,
important since such adhesion and invasion play a key role in
triggering the activation of immune response in IBD (3, 4), and
subsequently enhancing the mucosal barrier and regulating the
balance of intestinal flora, and restoring the function of its
destruction (5, 6).

The efficacy of probiotics is thought to be strain-specific, with
the different strains acting through different mechanisms in
promoting host health (1). Receptors on the cell surfaces of
various microbially derived components appear to play a vital
role in the interaction with microbe-associated molecules and
signals arising transduction, thereby regulating the expression
levels of various cytokines and soluble inflammatory mediators
(7). Systematic reviews have suggested that the interaction of
microbe-associated molecular patterns (MAMPs) with toll-like
receptors (TLRs) or other mucosal pattern recognition receptors
likely contribute to probiotic-mediated improvement of IBD (8).
Several studies have also indicated that TLR4 is the prime sensor
of Gram-negative bacteria-derived LPS in vitro, and that TLR4-
mediated signaling overexpression promotes inflammation and
intestinal damage in mice with dextran sulfate sodium (DSS)-
induced colitis (9), whereas TLR4-deficient (TLR4-knockout)
mice are protected against this condition (10). Hence, TLR4
signaling might play a critical role in intestinal tract injury and
repair processes.

Recently, it has been indicated that apical TLR4 stimulation in
intestinal epithelial cells and mucosal immune cells leads to a
high-intensity immune surveillance (7). However, the binding of
microbe-associated molecules like LPS to receptors can activate
antigen-presenting cells and trigger inflammatory transcriptional
conduction factors, such as nuclear factor kappa B (NF-kB),
thereby stimulating the transcription of inflammatory mediators
(11, 12). Interestingly, the pro-inflammatory cytokines produced
by macrophages, in turn, can directly trigger the NF-kB signaling
transduction pathway through an auto-regulatory feedback loop
mechanism to further amplify the inflammatory response and
result in gut tissue destruction (13). The growing evidence for
TLR4 as the main and probably only receptor for LPS is
compelling. The mechanism underlying the beneficial effects of
Frontiers in Immunology | www.frontiersin.org 2
probiotics is believed to be associated with immunomodulation
mediated by the TLR4 signaling pathway (14, 15).

Probiotics raise the attractive possibility that altering bowel
flora could facilitate intestinal homeostasis in humans, but
reservations remain about whether probiotics in IBD should
represent biological response modifiers (16). The proposed
health benefits of probiotics, including considering them as a
conventional therapy for IBD, have undergone increasingly
rigorous scientific scrutiny. However, there remains a lack of
strict guidelines on the assessment of the safety and efficacy of
probiotics, especially for their use in treating vulnerable neonates
and immune-compromised individuals. Critically ill or preterm
neonates with potentially impaired intestinal integrity are at
higher risk of probiotic sepsis due to translocation, and even at
increased risk of a cytokine storm induction (17–20). Hence,
probiotics research is still in its early stages, and many more
studies need to be conducted to confirm the stability, antibiotic
resistance, and safety of probiotics when used to treat IBD (16).

Interestingly, more recent evidence indicated that the viability
of probiotics is not deemed necessary to exert the protective
functions, as not all clinical benefits or functionary mechanisms
are directly based on living bacteria (21). There is increasing
evidence for the beneficial effects of several different probiotics
strains depending on soluble factors secreted from them, with
these factors recently denoted as “postbiotics” (22–24).
Regarding Lactobacilli, which is the most commonly referred
to of the several reported strains of probiotics (25), note that
beneficial effects of p40 and p75 purified from Lactobacillus
rhamnosus GG culture supernatant (LCS) have been reported
(26, 27). p40 and p75 protect epithelial cells against cytokine-
induced apoptosis through activation of EGFR and its
downstream target Akt (28, 29). Subsequent investigations
have shown p40 to modulate the transactivation of EGFR and
result in the up-regulation of mucin secretion in mice and
human colon cancer cells (30).

Recently, we used LC-MS/MS to identify a novel soluble
protein from LCS and provisionally named this protein
HM0539. Interestingly, HM0539 was nearly the most abundant
of the at least 58 proteins identified in the LCS. Gene expression
analysis and amino acid sequence alignment of HM0539
revealed low sequence identities with p40 and p75; HM0539 is,
therefore, considered to be a novel potential effector protein (31).
We thus have constructed successfully the recombinant HM0539
plasmid and prepared highly purified recombinant protein for
functional study. A subsequent study found HM0539 exhibiting
intestinal barrier protective function characteristics, specifically
with respect to promoting secretion of mucin and improving gut
permeability. By exploring its therapeutic potential, specifically
by introducing intestinal barrier associated models in vivo, we
have provided evidence for the potential usefulness of HM0539
in preventing intestinal barrier dysfunction, bacteria
translocation, and liver injury. In this context, considering the
protective effect of HM0539, the mechanism by which HM0539
might be indirectly involved in immune regulation still remains
unclear. Our previous studies constitute the cornerstone laying
the foundation for further exploration of this subject.
October 2020 | Volume 11 | Article 551449
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Even though the precise composition of probiotics is still
under investigation, only a few reports have focused on the
underlying mechanisms of anti-inflammatory bioactivities. Thus,
in this study, we investigated the anti-inflammatory properties
and potential molecular mechanisms of the involvement of
HM0539 in LPS-stimulated RAW264.7 macrophages and DSS-
induced colitis in a murine model.
MATERIALS AND METHODS

Cell Culture
Cells of the murine macrophage cell line RAW264.7 were
purchased from the American Center for Type Culture
Collection (ATCC, Rockville, MD, USA). The cells were
cultured in Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 10% heat-inactivated fetal bovine serum
(FBS, PAN Biotech, Aidenbach, Germany), 100 units/mL
penicillin (HyClone, USA), and 100 mg/mL streptomycin
(HyClone, USA) at 37°C in an incubator with 5% CO2.

Analysis of Cell Viability
Cell viability was assessed by performing the methylthiazol
tetrazolium (MTT) assay (32). RAW264.7 cells were inoculated
into a 96-well plate at a density of 1×105 cells/mL and incubated
with 5% CO2 at 37°C. Afterwards, the cells were pretreated with
specific concentrations of HM0539 (6.25, 12.5, 25, 50, 100 ng/
mL) for 24 h, and subsequently stimulated with or without LPS
(1 µg/mL, Sigma-Aldrich) for a further 24 h. Then, a volume of
20 mL of an MTT solution (0.5 mg/mL, Jiancheng, Nanjing,
China) was added to each culture well. Each mixture was allowed
to incubate for 4 h, and then a volume of 200 mL of DMSO was
added to each one, and the plate was shaken at 320 g for 30 min.
The absorbance was measured at a wavelength of 570 nm with a
microplate reader (Tecan M200 PRO NanoQuant).

Determination of NO Production
The production of NO in the culture supernatant was quantified
by evaluating the nitrite content according to the standard Griess
reaction (33, 34). RAW264.7 cells were inoculated at a density of
1×105 cells/mL in a 96-well plate and incubated with 5% CO2 at
37°C. Cells were pretreated with dexamethasone (MCE, New
Jersey, USA) or specific concentrations of HM0539 (25, 50, 100
ng/mL) for 24 h and then further stimulated with or without LPS
(1 µg/mL) for 24 h. The cell culture medium (100 mL) in each
case was collected and incubated with 100 mL of Griess reagent
(Solarbio, Beijing, China) at room temperature for 15 min. At the
end point of the treatment, the absorbance was measured at a
wavelength of 550 nm in a microplate reader. NO (mM) levels
were calculated on the basis of the sodium nitrite standard (35).

Determination of the Production of PGE2
and Pro-Inflammatory Cytokines
RAW264.7 cells were seeded at a density of 1×105 cells/well in
96-well plates and incubated with 5% CO2 at 37°C. The cells were
then incubated with specific concentrations of HM0539 for 24 h,
Frontiers in Immunology | www.frontiersin.org 3
and further treated with or without LPS (1 µg/mL) for 24 h.
Levels of secreted TNF-a, IL-1b, IL-6, IL-18, and PGE2 (36, 37)
in the culture supernatant were measured by using an ELISA kit
(Proteintech Group, Chicago, USA) fol lowing the
manufacturer’s instructions, and the absorbance in each case
was measured at a wavelength of 450 nm in a microplate reader.

Transfection of TLR4 and MyD88 Genes
in Cells
TLR4 and MyD88 were overexpressed in RAW264.7 cells
respectively (38, 39). In brief, when the RAW264.7 cells
reached 60% confluence, they were transfected with pcDNA3-
TLR4-YFP plasmid DNA (Addgene, Cambridge, MA, USA) and
pcDNA3-Myd88-CFP plasmid DNA (Addgene, Cambridge,
MA, USA) using Lipofectamine 3000 Reagent (Invitrogen Life
Technologies, CA, USA) following the manufacturer’s
instructions. Twenty-four hours after the last transfection, the
cells were starved for 24 h in totally serum-free culture before
being stimulated with LPS (1 µg/mL) in the presence or absence
of HM0539 for an additional 24 h.

Western Blotting Analysis
The total protein was collected using trypsin with 0.25%
ethylenediaminetetraacetic acid, PBS, and cell lysis buffer, and
its quantity was measured by performing the bicinchoninic acid
protein assay (40). The lysate (40 µg) was separated using SDS-
PAGE and transferred onto polyvinylidene difluoride (PVDF)
membranes (0.45 mm, Millipore, USA) by using a Trans-Blot
TurboTM (Bio-Rad, USA). The membranes were blocked with
5% (w/v) bovine serum albumin (BSA) dissolved in Tris-buffered
saline Triton-X100 (TBST), and each was incubated with a
different primary polyclonal antibody, i.e., against TLR4
(1:1000), MyD88 (1:1000), TRAF6 (1:1000), IRAK1 (1:1000),
IRAK4 (1:1000), NF-kB p65 (1:1000), p-NF-kB p65 (1:1000),
IkB-a (1:1000), p-IkB-a (1:1000), COX-2 (1:1000), iNOS
(1:1000), or GAPDH (1:20000), overnight at 4°C, and all
dilutions were in TBST blocked with 5% BSA. The membranes
were analyzed using ECL reagents.

Encapsulation of HM0539
Zein-pectin (core/shell) nanoparticles loaded with HM0539 were
prepared based on previously published methods (41, 42), but
with appropriate modifications and improvements. A pectin
solution (5% w/v) was completely dissolved in distilled water.
The resulting solution was subjected to centrifugation, and
soluble protein HM0539 (6% w/v) was added into the resulting
supernatant. A zein solution (1% w/v) was completely dissolved
in an 85% ethanol solution with CaCl2 (0.5% w/v). Afterward,
the pectin-protein solution was added drop-wise into the zein
solution through a sterile silicone tube (diameter, 0.8 mm)
connected to a 23G syringe pump. Microspheres formed
immediately after the pectin drops (50 mL/drop) came into
contact with the zein solution. The resulting mixture was
stirred continuously for 2 min to keep the microspheres from
sticking to each other. The zein-pectin (core/shell) nanoparticles
loaded with HM0539 (5 mg/bead) were washed with distilled
water, naturally dried at room temperature, and then preserved
October 2020 | Volume 11 | Article 551449
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at 4°C. As a negative control, zein-pectin core/shell nanoparticles
without HM0539 were prepared (43).

DSS-Induced Murine Colitis In Vivo
Adult female C57BL mice (6–8 weeks old, weighing 18–20 g)
were obtained from the laboratory animal center of Southern
Medical University (Guangzhou, China). To analyze the efficacy
of the encapsulated HM0539 at preventing and treating
inflammatory lesions of acute colitis, after one week of
acclimatization the mice were divided into four groups
(control group, DSS-induced colitis group, DSS-induced colitis
with encapsulated HM0539 group, and encapsulated HM0539
group), with 10 mice per group (10, 44, 45). Experimental acute
colitis was induced in mice by feeding them 3% DSS (molecular
weight, 40 kDa) and allowing them to drink freely for 7 days (46).
The mice were gavaged with or without HM0539 beads (10 µg/
mouse/day), and simultaneously treated with DSS, until
sacrificed. All mice under standard laboratory conditions were
housed five per cage at a temperature of 23 ± 2°C, a relative
humidity of 45% to 65%, a light/dark cycle of 12 h, and fed with
standard laboratory diet and water. All animal care and
experimental procedures were strictly performed following the
guidelines of the Medical Ethics Committee of Southern Medical
University (Guangzhou, China) and conformed to the protocol
on animal protection and welfare.

Immunohistochemistry for MyD88 and
NF-kB p65
Paraffin-embedded samples after dewaxing were treated with a
rabbit anti-MyD88 polyclonal antibody or a rabbit anti-NF-kB
p65 polyclonal antibody (Proteintech Group, Chicago, USA)
Frontiers in Immunology | www.frontiersin.org 4
followed by being incubated with HRP-conjugated anti-rabbit
(Proteintech Group, Chicago, USA) secondary antibodies. The
staining index was calculated based on the proportion of
positively stained cells and the intensity of staining (47).

Statistics
Data are presented as mean ± standard deviation (SD). Statistical
comparisons were performed using a one-way analysis of
variance (ANOVA) test with SPSS software (20.0). A threshold
of p < 0.05 was considered to be statistically significant.
RESULTS

HM0539 Improved Cell Viability in LPS-
Stimulated RAW264.7 Cells
LPS activated the inflammatory pathway in an auto-regulatory
feedback loop through cell surface pattern recognition receptors
and regulated inflammatory responses. In the absence of the
positive control (dexamethasone), the viability of RAW264.7
cells was not significantly altered as a result of being treated for
24 h with HM0539 of several concentrations (Figure 1A). In a
comparison of these results for cells stimulated by LPS (1 mg/mL)
(Figure 1B), these results indicated that treatment of HM0539
significantly improved cell viability. Furthermore, cell
morphology was examined using an inverted microscope.
RAW 264.7 Cells cultured with HM0539 inhibited the
differentiation and senescence of RAW 264.7 cells to some
degree in morphological change (Figure 1C). Considering the
results, subsequent experiments were performed using HM0539
at concentrations of 25, 50, and 100 ng/mL, respectively.
A

B

C

FIGURE 1 | HM0539 improves cell viability in LPS-induced RAW264.7 cells. (A) The morphological changes in LPS-stimulated RAW 264.7 cells were viewed under
a light microscope. The cells were incubated with the specific concentrations of HM0539 for 24 h (B) with LPS or (C) without LPS. Dexamethasone (0.1, 0.2, 1M)
was used as a positive control, and cell viability was measured using the MTT assay. Red arrows indicate the differentiation and senescence of cells. The viability of
cells for HM0539 at specific concentrations is expressed as a respective percentage of the non-treated control. Statistical analysis was carried out by performing a
one-way analysis of variance test. Data shown are representative of at least three independent experiments, and indicate the mean ± SD (n=3). #p < 0.05, ##p <
0.01, ###p < 0.001 compared with the control group, and ***p < 0.001 compared with the LPS-induced group.
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HM0539 Reduced TLR4/MyD88/NF-kB
Axis Signaling In Vitro
To further investigate the anti-inflammatory effect of HM0539
on LPS-induced inflammation, the related protein levels in the
TLR4/MyD88/NF-kB axis were assessed in LPS-induced
RAW264.7 cells. As shown in Figure 2A, the increase of TLR4
and MyD88 expression induced by LPS was suppressed by
HM0539, and HM0539 decreased the phosphorylation of IkB
in a dose-dependent manner. The phosphorylation and
degradation of IkB might be involved in the initial step of NF-
kB activation. Furthermore, HM0539 markedly inhibited the
phosphorylation of NF-kB p65 and suppressed the translocation
of NF-kB p65 subunits into the nucleus.

HM0539 Reduced iNOS and COX-2 Protein
Expression
The reduction in intracellular NO production is generally
ascribed to the down-regulation of iNOS, a major pro-
inflammatory enzyme that catalyzes the production of NO.
COX-2, a rate-limiting enzyme that catalyzes the conversion of
arachidonic acid to prostaglandins, is widely involved in
inflammatory reactions. Compared with the control group, the
Frontiers in Immunology | www.frontiersin.org 5
levels of COX-2 and iNOS protein in the cells stimulated with
LPS were significantly up-regulated. Importantly, as shown in
Figure 2B, treatment of cells with HM0539 markedly suppressed
the expressions of COX-2 and iNOS, and did so to an even
greater extent than did the positive control. These results were
consistent with the inhibitory effects of HM0539 on NO and
PGE2 production described below.

HM0539 Reduced Production of NO and
Pro-Inflammatory Cytokines In Vitro
NO, as an indicator of NF-kB-mediated oxidative inflammatory
response, facilitates the development of inflammatory diseases.
As expected, the intracellular NO level increased markedly after
the cells were stimulated with LPS, but decreased significantly
after subsequent treatment with dexamethasone. Similarly,
treatment of the cells with HM0539 was shown to significantly
suppress LPS-induced intracellular NO production each of the
several tested concentrations of before HM0539 was shown
(Figure 3A). Besides, several pro-inflammatory cytokines could
directly trigger the distal NF-kB signaling pathway, and thus
their expressions were usually positively correlated with the
activation of NF-kB signaling. The levels of pro-inflammatory
A

B

FIGURE 2 | HM0539 attenuates inflammation in vitro. (A) Effect of HM0539 on the protein levels of TLR4, MyD88, IRAK1, TRAF6, IkB, p-IkB, and NF-kB p65 in
RAW 264.7 cells. (B) Effect of HM0539 on the protein levels of COX-2 and iNOS. Dexamethasone was used as a positive control. The control level was normalized
against its corresponding GAPDH, used as an internal control. The target protein was quantified using densitometry, and relative values of inhibition were calculated
as the ratio relative to the control. Each experiment was performed five times independently and representative blots are shown. Statistical analysis was carried out
by performing a one-way analysis of variance test. Data are presented as the means ± SD (n=5). #p < 0.05, ##p < 0.01, ###p < 0.001 compared with the control
group, and *p < 0.05, **p < 0.01, ***p < 0.001 compared with the LPS-induced group.
October 2020 | Volume 11 | Article 551449
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cytokines expressed in the high-HM0539-dose group were
somewhat, but not to a statistically significant level, lower than
were those in the low-dose group. Thus, our results showed that
exposure of LPS-stimulated macrophages to specific
concentrations of HM0539 inhibited up-regulation of LPS-
induced PGE2, IL-1b, TNF-a, IL-6, and IL-18 (Figures 3B–F).

HM0539 Attenuated Inflammation
Mediated by TLR4/MyD88/NF-kB Axis
Signaling Pathway In Vivo
Regarding the above in vitro investigations, the interaction between
HM0539 and TLR4 in regulating signaling was preliminarily
explored. Western blotting analysis further demonstrated that
DSS significantly increased the expression of TLR4 protein
compared with the control group. As shown in Figure 4A, DSS
triggered significant increases in the levels of the TLR4, MyD88,
IRAK1, IRAK4, and TRAF6 proteins of the TLR4/MyD88 signaling
pathway and their downstream related proteins of NF-kB compared
with the control group, while their expressions were to some extent
yet significantly inhibited by HM0539, in a dose-dependent
manner. Consistent with these results, immunofluorescence
staining showed high densities of MyD88 (Figure 4B) and NF-kB
p65 (Figure 4C) positive cells in the colon tissue of the DSS group,
while expression decreased upon following the treatment with
HM0539. Collectively, these results suggested that TLR4/MyD88/
NF-kB signaling is involved in DSS-induced development of
murine colitis, and that HM0539 plays a suppressive role in the
DSS-induced inflammatory response.
Frontiers in Immunology | www.frontiersin.org 6
HM0539 Inhibited TLR4/MyD88/NF-kB
Signaling Pathways
To further investigate the mechanism by which HM0539
attenuated LPS-induced inflammation through the TLR4/
MyD88/NF-kB axis s igna l ing pathway , TLR4 was
overexpressed in some RAW264.7 cells and MyD88 was
overexpressed in other RAW264.7 cells. Our experiments
showed that the expressions of proteins of the TLR4 signaling
pathway and downstream related proteins (Figures 5A, B) and
pro-inflammatory cytokines (IL-1b, TNF-a, IL-6, and IL-18
levels) (Figures 6A, B) in LPS-stimulated cells were
significantly inhibited by HM0539, with this inhibition
presented in a somewhat dose-dependent manner .
Nevertheless, overexpression of transfected TLR4 or MyD88
dramatically reversed the effect of HM0539 while still
maintaining its significant inhibitory effect. These results
indicated that the MyD88-dependent pathway might be
associated with an inhibition by HM0539 of the TLR4-
mediated NF-kB hyperinflammatory signaling pathway.
DISCUSSION

IBD is a multifactorial immune disorder characterized by
chronic inflammation and apoptosis of intestinal cells, which
lead to intestinal mucosa damage, oxidative stress, and activation
of immune cells with multiple inflammatory mediators (48–51).
The soluble factors produced by probiotics, for which the term of
A B

D E F

C

FIGURE 3 | HM0539 attenuates inflammation in vitro. (A) Effect of HM0539 on NO production in LPS-stimulated RAW 264.7 cells. NO production was measured
using the Griess reagent. (B–F) Effects of HM0539 on (B) PGE2, (C) IL-1b, (D) TNF-a, (E) IL-6, and (F) IL-18 production levels in LPS-stimulated RAW 264.7 cells.
The relative inflammatory mediators were measured in the culture supernatants by performing an ELISA. Dexamethasone (0.1, 0.2, 1 M) was used as a positive
control. Statistical analysis was carried out by performing a one-way analysis of variance test. Data are representative of at least three independent experiments and
indicate the mean ± SD (n=3). #p < 0.05, ##p < 0.01, ###p < 0.001 compared with the control group, and ***p < 0.001 compared with the LPS-induced group.
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“postbiotic” was recently coined, have been reported to alleviate
the IBDs (22, 25, 52). Recently, we identified and purified a novel
soluble protein from LCS, provisionally named HM0539, and it
was found to protect the intestinal barrier (31). The results of our
current study showed that HM0539 exerted protective effects
strongly mediated by reducing the inflammatory response. Based
on our observations of the effects of HM0539 in LPS-induced
RAW 264.7 macrophages and DSS-induced murine colitis, we
might expect HM0539 to serve as an agent of a prominent
therapeutic strategy for treating IBD.

It has previously been reported that LCS ameliorated acute
alcohol-induced development of intestinal and liver injury (53,
54). In addition, LGG has been observed to enhance the defense
of a host intestine by regulating cell proliferation and apoptosis
through a specific signal transduction system in the developing
murine gut (55). But to the best of our knowledge, few studies
have made a thorough inquiry into the precise composition of
the active components and the underlying anti-inflammatory
mechanisms of probiotics. Previous findings have shown both
live and UV-inactivated LGG displaying similar effects on
decreasing the inflammatory response, indicating that the anti-
Frontiers in Immunology | www.frontiersin.org 7
inflammatory effect of LGG may not depend on the bacteria
being alive, but on the metabolites released by the bacteria during
the fermentation process (21, 25, 56). As a consequence,
scientific evidence for the beneficial effects of soluble LGG-
derived factors is accumulating (25).

IBD refers to a heterogeneous group of diseases that present
with an imbalance between inherent and acquired immunity as a
result of its inevitably being accompanied by the production
and release of different inflammatory cytokines in mucosal
immune cells (57). Dysregulation of cytokines likely leads to
the establishment of a characteristic inflammatory status in
the intestinal tract. Furthermore, during the local inflammatory
response in IBD, neutrophils and macrophages contribute to the
recruitment of other immune cells, which leads to inflammatory
cell infiltration (58). The gut, which is the largest independent
immune system in the body, is integral to the recognition of
various virulent pathogens and the immune protective antigen
proteins (59). The gastrointestinal mucosa contains the largest
pool of macrophages in the body. Macrophages are widely
present throughout the gastrointestinal mucosa, especially
distributed between the intestinal lamina propria and epithelial
A

B

C

FIGURE 4 | HM0539 attenuates inflammation in vivo. (A) Effect of HM0539 on the protein levels of TLR4, MyD88, IRAK1, IRAK4, TRAF6, and NF-kB p65 in mice.
The control level was normalized against its corresponding GAPDH, used as an internal control. The relative intensity was calculated as the ratio of target protein to
that of GAPDH and expressed as relative values of inhibition compared to the control group. (B, C) Effects of HM0539 on the levels of (B) TLR4 and (C) MyD88
based on immunohistochemistry assays (20×, 40× objective lens). For achieving statistical analyses of (B) MyD88 and (C) NF-kB staining indexes, each experiment
was performed five times independently. Representative blots are shown. Statistical analysis was carried out by performing a one-way analysis of variance test. Data
are presented as the means ± SD, with n=10 mice for each group. ##p < 0.01, ###p < 0.001 compared with the control group, and ***p < 0.001 compared with
DSS-induced group.
October 2020 | Volume 11 | Article 551449

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Li et al. HM0539 Attenuates Inflammation Through TLR4/MyD88/NF-кB
layer (60, 61). Macrophages act as a formidable regulator of host
homeostasis, allowing the host to distinguish harmful antigens
from foreign antigens and promoting recovery from chronic
inflammatory and autoimmune diseases (7). Macrophages might
be evaluated as potential targets for immune regulation of
Frontiers in Immunology | www.frontiersin.org 8
probiotics. In addition, we previously found HM0539 playing a
role in the modulation of the immune response, as reflected by a
resulting down-regulation of inflammatory cytokines including
IL-1b, TNF-a, IL-6, and IL-18 produced by macrophages.
Consequently, it is reasonable to think that macrophages are
A

B

FIGURE 5 | HM0539 inhibits NF-kB transduction associated with TLR4/MyD88-mediated signaling. (A, B) Effects of HM0539 on the expression levels of TLR4,
MyD88, IRAK1, IRAK4, TRAF6, IkB, p-IkB, and NF-kB p65 after transfection of the (A) TLR4 gene and (B) MyD88 gene. Each experiment was performed five times
independently and representative blots are shown. Statistical analysis was carried out by performing a one-way analysis of variance test. Data are presented as the
means ± SD (n=5). #p < 0.05, ##p < 0.01, ###p < 0.001 compared with the control group, and *p < 0.05, ***p < 0.001 compared with the LPS + TLR4 gene or LPS
+ MyD88 gene group.
A B

FIGURE 6 | HM0539 inhibits NF-kB transduction associated with TLR4/MyD88-mediated signaling. (A, B) Effects of HM0539 on the levels of IL-1b, TNF-a, IL-6,
and IL-18 in LPS-stimulated RAW 264.7 cells after transfection of the (A) TLR4 gene and (B) MyD88 gene. Each experiment was performed five times independently
and representative blots are shown. Statistical analysis was carried out by performing a one-way analysis of variance test. Data are presented as the means ± SD
(n=5). ###p < 0.001 compared with the control group, and *p < 0.05, ***p < 0.001 compared with the LPS + TLR4 gene or LPS + MyD88 gene group.
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the main target cells of HM0539, which holds promise for
investigating potential novel therapies to treat IBD.

It is clear that intestinal macrophages express a full range of
TLRs, and even express most in humans, and intestinal
macrophages are well established as a unique population of
cells in maintaining mucosal homeostasis. Continuous
exposure of intestinal mucosa to Gram-negative bacteria-
derived LPS has been shown to activate a large number of
immune cells and inflammatory cells, which usually leads to
IBD or other severe diseases caused by microbial dysbiosis (62,
63). The mechanism of this process has been indicated to involve
multiple upstream signaling pathways that subsequently
augment the release of pro-inflammatory mediators. TLRs are
widely distributed on the surfaces of epithelial cells and immune
cells, and they function as pattern recognition receptors in the
presence of LPS, thus establishing TLRs as receptors that lead to
chronic inflammatory diseases (64, 65). Recently, several reports
indicated that in the presence of organisms of the genus
Lactobacillus, TLRs further serve as key initiators of innate
immune responses and exert respective functions during
homeostatic and inflammatory conditions (66, 67). Evidence
was presented to demonstrate that Lactobacillus jensenii
TL2937 is capable of attenuating the inflammation triggered by
the activation of TLRs in porcine intestinal epithelial cells (68).
In addition, Lactobacilli inhibited IL-8 production through
inhibition of the TLR4 activation induced by Helicobacter
pylori LPS (69). Furthermore, TLR4 was indicated to regulate
the expression levels of inflammatory proteins and inflammatory
cytokines in a model of LPS-induced murine sepsis. The pivotal
signaling pathways involving TLR4 mediating inflammatory
responses have been well established in various LPS-induced
inflammatory diseases. In our current research, we speculated
and then proved that the underlying anti-inflammatory effect of
HM0539 was mainly accomplished by decreasing the levels of
MyD88, TRAF6, p65 (nucleus and cytoplasm), and pp65 via
reducing TLR4 expression. We overexpressed the TLR4 gene in
RAW264.7 cells, and enhancement of TLR4 signaling in our
experiments apparently reversed the effects of HM0539 on LPS-
induced inflammation. TLR4 function was shown to involve
differential engagement of MyD88-independent and MyD88-
dependent signaling pathways—of note since these two
pathways, used either simultaneously or one after the other,
play a critical role in general in LPS-induced inflammatory
response. Nevertheless, the former pathway has been shown to
conduct the signal through more direct and simpler approaches
than the latter. After the MyD88 gene was transfected into
cells, the expression level of MyD88 and subsequent signal
transduction were significantly enhanced, which also reversed
the participation of HM0539 in the down-regulation of
MyD88 and downstream signaling of NF-kB, but without a
significant apparent effect on TLR4 expression. However, the
treatment of HM0539, after overexpression of TLR4 or MyD88
by gene transfection, seemingly indicated its diminished role in
signal regulation, but it still retained a certain degree of a
suppressive effect. Therefore, the results of this study suggested
that HM0539 might attenuate LPS-induced inflammation by
Frontiers in Immunology | www.frontiersin.org 9
interacting with the TLR4/MyD88/NF-kB axis and affecting its
signal transduction.

Given that HM0539 has been shown to exert a potent
beneficial effect on the integrity of the intestinal barrier (31),
we hypothesized that it also might have a great potential ability to
control the inflammation in mucosal immunity. In the present
study, establishment of a model of DSS-induced experimental
murine colitis was used to assess the anti-inflammatory potency
of HM0539 in vivo. Although the mechanism underlying the role
of DSS in inflammation has not been completely clarified, it is
widely believed that the activation of macrophages is one of the
mechanisms responsible for DSS-induced colitis in animals,
which would echo the above-hypothesis mechanism derived
from in vitro studies (70, 71). In addition, in our experiments,
the developed encapsulation system apparently sufficiently
protected the soluble protein HM0539 from the acid
environment in the stomach and proteinase hydrolysis in the
gastrointestinal tract when administrated orally. The zein-pectin
(core/shell) nanoparticles, broadly used as a system for delivering
drugs to the colon, were able to regulate drug release rates and
improve the bioavailability (50). The results of western blotting
and immunohistochemistry assays carried out in vivo were
consistent with the results in vitro, which revealed an ultimate
suppression by HM0539 of the activation of NF-kB and
expression of downstream inflammatory mediators through its
involvement in the modulation of MyD88-dependent pathways
of the main TLR4 pathway.

Meanwhile, limitations of the present research are planned to
be addressed in future research. We previously reported low
similarities between the full-length amino acid sequence of
HM0539 and the sequences of any of the TLR4 ligands,
consistent with the idea that HM0539 cannot directly activate
or bind to TLR4. Hence, the mechanisms of the interaction
between HM0539 and TLR4 would be worth further thinking
about and exploring. Interestingly, we did not find any
significant effects of HM0539 on the expression of TLR4 in
colonic epithelial cells isolated from mice, but promotion of
mucin secretion and TJ protein expression and reduction in gut
permeability were noted in this model. This result demonstrated
an active involvement of HM0539 in the maintenance of
intestinal tract homeostasis, which is not confined to TLR4-
mediated modulation of innate immune response. On the other
hand, we still could not rule out the possibility that HM0539
inhibits MAPK, Nrf2/HO-1, AP-1, NOD2, and NLRP3 signaling
regulation of LPS-induced inflammatory response in the cells.
Besides, numerous studies have indicated that TLR4-mediated
inflammation conducts its signals mainly through two basic
intracellular pathways, the MyD88-dependent and MyD88-
independent pathways (72). In this process, LPS is considered
to be the primary trigger, acting through both pathways (73).
Activation of TLR4 through either the MyD88-dependent or
MyD88-independent pathway has been shown to ultimately
result in the priming of distal NF-kB-mediated pathways, with
this priming taking considerably delayed to occur via the
MyD88-independent pathway (74). Our study mainly focused
on TLR4-mediated MyD88-dependent pathways, and we could
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not with certainty directly extrapolate from our studies whether
the MyD88-independent pathway would be involved in the
protective effect of HM0539. Therefore, further investigations
are clearly needed to distinguish the roles of HM0539 in these
two different parallel pathways. The potential for practical
applications of this strategy still needs to be shown by carrying
out further experiments with related gene-knockout
animal models.

This study demonstrated that an HM0539-induced decrease of
TLR4 expressionmight underlie the decreasedMyD88 level, leading
to the inhibition of distal NF-kB activation and pro-inflammatory
mediators, thereby attenuating LPS-induced inflammatory
responses. Further investigations of HM0539 on IBD still remain
to be carried out and verified. It is possible to elucidate the anti-
inflammatory effect of HM0539 at the molecular level, and to
optimize and rationally use various probiotics components to
achieve precise treatments. Based on previous and current studies,
HM0539 deserves further consideration as a potential therapeutic
agent for the treatment of IBD.
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