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Abstract: The endocannabinoid system has been shown to be associated with 

neurodegenerative diseases and dementia. We review the preclinical and clinical data on 

cannabinoids and four neurodegenerative diseases: Alzheimer’s disease (AD), 

Huntington’s disease (HD), Parkinson’s disease (PD) and vascular dementia (VD). 

Numerous studies have demonstrated an involvement of the cannabinoid system in 

neurotransmission, neuropathology and neurobiology of dementias. In addition, several 

candidate compounds have demonstrated efficacy in vitro. However, some of the 

substances produced inconclusive results in vivo. Therefore, only few trials have aimed to 

replicate the effects seen in animal studies in patients. Indeed, the literature on cannabinoid 

administration in patients is scarce. While preclinical findings suggest causal treatment 

strategies involving cannabinoids, clinical trials have only assessed the suitability of 

cannabinoid receptor agonists, antagonists and cannabidiol for the symptomatic treatment 

of dementia. Further research is needed, including in vivo models of dementia and  

human studies. 
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1. Introduction  

Neurodegenerative diseases and dementia have a great impact in today’s aging society, including 

high costs and burden of disease. Today, about 24 million people suffer from dementia worldwide and 

the number is expected to double every 20 years [1]. The prevalence rates vary among the different 

types of dementia. Alzheimer’s disease (AD) is the most common dementia, accounting for 50–60% of 

all cases. Prevalence rates increase with age [2]. In Parkinson’s disease (PD) the risk for developing 

dementia is increased 6-fold [3]. Approximately 30% of stroke survivors develop post stroke dementia 

[4]. Far lower prevalence rates are documented for Huntington’s disease, which is frequently 

associated with dementia [5]. Although researchers focus on causal treatments, at this moment only 

symptomatic treatments are available for any type of dementia [4,6–8].  

For more than 4,000 years, the hemp plant has been used in China and India for its medicinal effects. 

These were recognized in Europe in the 19th century [9]. Research increased tremendously after 1964, 

when Gaoni and Mechoulam [10] identified the correct chemical structure of 9-tetrahydrocannabinol (9-

THC), the main psychoactive compound of marijuana. Later, in the 1990s receptors for cannabinoids were 

found [11,12]. It would be out of the scope of this article to review the pharmacology of cannabinoids 

(CB) in general. We recommend existing excellent reviews on the topic [9,13–19]. In short, 

endogenous cannabinoids serve as neuromodulators via retrograde signaling [19], they are synthesized 

on demand from membrane phospholipids [18,20]. Inactivation of endocannabinoids is accomplished 

either through transport back into the cell or hydrolysis by the enzyme fatty acid amide hydrolase 

(FAAH) [9,18]. Currently, two cannabinoid receptors are known in the brain, CB1 [11] and CB2 [12], 

while there is ongoing discussion as to whether there are even more cannabinoid receptors [9]. Highest 

densities of CB1 were found in the basal ganglia, amygdala, hippocampus and cerebellum [21–24]. 

Both CB receptors mediate action via G-protein coupling. Moreover, cannabinoids may activate 

multifunctional mitogen-activated protein kinases (MAP-kinases) and may regulate phosphatase 

activity [9]. The mechanism of action for cannabidiol (CBD) is not known. In fact, the 

phytocannabinoid CBD has only very low affinity to either CB receptor and may elicit anti-

inflammatory action as it mimics an inverse CB2 agonist [17]. Cannabinoids mentioned in this paper 

and their classification are given in Table 1. Note, that this table is far from being a complete list  

of cannabinoids.  

Because of their broad impact on neurotransmission through retrograde signaling and involvement in 

inflammation, endocannabinoids have been suggested as modulators of various neurodegenerative 

diseases [9,25–30]. However, the growing preclinical data have not yet been influencing the treatment 

regimes of our patients. Instead, the few clinical trials of dementia with cannabinoid compounds were 

initiated because the use of marijuana in several neurological and psychiatric disorders has been 

known for centuries [9].  

Here, we review the evidence for cannabinoids in common forms of dementia associated with 

neurodegeneration: Alzheimer’s disease (AD), vascular dementia (VD), Huntington’s disease (HD), 

and Parkinson’s disease (PD). For better reading, we sorted the results according to the type of 

research (preclinical vs. clinical). 
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Table 1. Cannabinoids mentioned in this paper. 

 Name Mechanism of action 

Phytocannabinoids  9-Tetrahydrocannabinol 
(9-THC/dronabinol)) 

CB1 and CB2 agonist 

8-Tetrahydrocannabinol (8-THC)  CB1 and CB2 agonist 
Cannabidiol (CBD) no activity at CB1 and CB2, inhibition 

of AEA uptake and metabolism 
Endogenous 
cannabinoids 

Anandamide (AEA) CB1 >> CB2 agonist 
2-Arachidonoyl glycerol (2-AG) CB1 and CB2 agonist 

Synthetic cannabinoids HU-210 CB1 and CB2 agonist 
 Nabilone CB1 and CB2 agonist 

WIN55,212-2 CB1 and CB2 agonist 
CP55,940 CB1 and CB2 agonist 
JWH015 CB2 selective agonist 
HU-308 CB2 selective agonist 
SR141716A CB1 selective antagonist 
AM404 anandamide transport inhibitor 
UMC707 anandamide transport inhibitor 
Arvanil CB1 agonist, vanilloid receptor agonist 

2. Methods 

We performed a PUBMED search in February 2010 using the terms DEMENTIA and 

CANNABINOID that led to 80 documents. Of those, 27 were reviews, 50 research articles and three 

case reports. Furthermore, we used the information from the reviews to find additional related papers 

and performed individual searches for associations between the cannabinoid system and single 

symptoms of dementia. 

3. Results and Discussion  

3.1. Preclinical findings 

3.1.1. Alzheimer’s disease 

Alzheimer’s disease is characterized by extracellular neuritic plaques of -amyloid (A) deposits 

and by intracellular tangles that are formed by hyperphosphorylated tau protein [2,31]. Finally, it is 

believed that the combination of oxidative stress and abnormal mitotic signaling leads to the 

neuropathological AD phenotype [32]. 

A body of literature reports on the involvement of the endocannabinoid system in Alzheimer’s disease 

pathology [26,27,33]. CB1 receptors were found in rat brains in the hippocampus, striatum, cingulate 

gyrus and entorhinal cortex [34,35]. Especially in the limbic system CB1 receptors show high densities, 

where agonists inhibit -amino butyric acid (GABA) release and modulate glutamate release [23,24,36]. 

Thus, CB1 receptors regulate neurotransmitters involved in excitotoxic neurodegenerative processes. 

In fact, neurodegeneration in AD includes excitotoxic neuronal death as a result of A-induced 

neuroinflammation. Activated microglia produce nitric oxide, which in turn inhibits neuronal 
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respiration and thereby leads to glutamate release. As a result, neurons are killed by excitotoxicity [37]. 

Furthermore, microglia activation and migration seems to be regulated by CB2 receptors [38]. 

However, some of the action is not mediated by CB receptors but is elicited by antioxidant compounds 

such as cannabidiol (CBD). 

3.1.1.1. Effects mediated via cb1 and cb2 Receptors 

In AD brains cannabinoid receptor binding was reduced in the hippocampal formation and caudate[39], 

whereas the mRNA levels did not differ from controls. Concerning the CB1 receptor, one study 

reported no difference in CB1 density around the neuritic plaques [40], while another study found CB1 

receptor positive neurons to be reduced in areas of microglial activation [41]. The difference may stem 

from the different brain regions investigated [41].  

In the hippocampus of rats CB1 agonists inhibit the presynaptic release of glutamate via G-protein 

mechanisms [42], which was later shown to prevent excitotoxicity in vitro [43]. In fact, protection 

against excitotoxicity by the endocannabinoid system was shown be activated on demand [44]. 

In vivo N-methyl-D-aspartate (NMDA) injection into the rat cortex leads to a pronounced increase 

of the endogenous cannabinoid anandamide, which may represent a protective mechanism to restrict 

neurotoxicity [45]. In line with that finding, in vivo models of excitotoxicity demonstrated that the 

administration of either 9-THC or anandamide reduced neuronal damage via CB1 receptor mediated 

effects [46,47]. CB1 agonists were shown to prevent A-induced neurotoxicity in vitro [48]. One 

mechanism of action is the reduction of nitric oxide production, which in turn led to reduced tau 

protein hyperphosphorylation [49]. Another mechanism suggested is that the brain-derived 

neurotrophic factor (BDNF) mediates the neuroprotective effects of CB1 agonists [50]. Furthermore, 

both CB receptor types regulate the release of the interleukin 1 receptor antagonist (IL–1ra) from glia 

cells, which is in turn essential for the CB mediated neuroprotection [51]. 

CB2 receptors are highly expressed in microglia. In post-mortem AD brains, CB2 receptor mRNA was 

demonstrated to be upregulated in the hippocampus [52] as well as in microglia and astrocytes 

surrounding neuritic plaques [40]. Indeed, CB2 receptors were also expressed within neuritic plaques of 

AD brains [41]. Therefore, an association of CB2 receptors in neuroinflammation was suggested. In fact, 

CB2 receptors in microglia were upregulated by proinflammatory cytokines such as interferon (-IFN) 

and granulocyte macrophage-colony stimulating factor (GM-CSF) in animal models [53,54]. 

Experimental brain inflammation increased mRNA expression of CB2 receptors 100-fold [54].  

Three potential interventions were identified in experiments targeting CB2 receptors. First, CB2 

agonists suppress the neuroinflammatory process via both, reduction of CD40 expression and 

reduction of nitric oxide and tumor necrosis factor  (TNF-production in activated microglia [53]. 

Second, in vitro models of AD suggested that CB2 agonists may lead to -amyloid removal via 

stimulation of human macrophages [55] and the suppression of CD40-mediated inhibition of 

microglial phagocytosis [53]. Third, microglia activation may be reduced by the CB1/CB2 agonists 

WIN55212-2 [35] and HU-210 [41]. Furthermore, along with the prevention of microglial activation, 

CB1/CB2 agonists led to improved memory performance in rat models of AD and normal aging [34,41].  

Taken together, CB1 agonists may interrupt the mechanisms of excitotoxicity as they reduce 

glutamate release, and CB2 agonists may suppress neuroinflammation and lead to plaque removal. 
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Moreover, one study demonstrated that 9-THC inhibits the acetycholine esterase in vitro and prevents 

acetylcholine esterase induced A-aggregation [56]. 

3.1.1.2. Effects of Cannabidiol 

Antioxidant effects have been ascribed to CBD [27,33]. Still, the mechanism of action of CBD 

remains unclear. No specific receptor has been identified and it is hypothesized that CBD influences 

the metabolism of endocannabinoids such as anandamide [33].  

CBD was shown to protect against A-induced neurotoxicity in vitro. CBD as an antioxidant and 

anti-apoptotic compound reduced DNA fragmentation, lipid peroxidation, the production of reactive 

oxygen species, the levels of key enzymes for apoptosis as well as the intracellular calcium [57]. 

Further, after A-challenge in vitro CBD inhibited intracellular signaling pathways and thereby 

suppressed tau protein hyperphosphorylation [58] and the production of nitric oxide [59]. These results 

were further corroborated by an in vivo model, in which A (1–42) protein was injected in the right 

dorsal hippocampus of mice. In this experiment CBD dose dependently suppressed the production of 

proinflammatory molecules, including Interleukin 1 and nitric oxide [60]. 

In summary, CBD as a nonpsychoactive cannabinoid targets the oxidative stress in AD as well as 

tau phosphorylation. More animal studies are required to substantiate these findings in vivo and to 

prepare prospective human studies. 

3.1.2. Vascular dementia 

Vascular dementia develops as a consequence of brain ischemia. In animal in vivo models of focal or 

global cerebral ischemia, several CB1 agonists reduced infarct volume and neuronal cell death [61–67], 

most likely because of hypothermia and NMDA antagonism [68]. However, some groups reported 

contradictory findings. CB1 antagonists reduced neuronal death and endogenous cannabinoids 

increased neuronal damage [69]. Because cannabinoids mediate action mainly via retrograde signaling, 

it was suggested that in ischemia, CB1 activation leads to inhibition of GABA and glutamate release 

the former resulting in neurotoxic effects and the latter in neuroprotection [68]. Because of the 

inconsistent findings, no cannabinoid based intervention in cerebral ischemia is at sight. Still, after 

further research the cannabinoid system may become a target for interventions, as CB2 activation may 

influence stroke outcome [29]. Currently, no data are available on the molecular mechanisms of VD. 

However, cerebral infarction is the major cause for VD [70]. 

3.1.3. Huntington’s disease 

Huntington’s disease is an autosomal dominant inheritable disorder that leads to excessive body 

movements and cognitive decline [8]. Worldwide a prevalence of 5–8/100,000 is observed, with 

highest frequencies in Europe and India. HD patients have longer CAG repeats in the DNA of the 

huntingtin gene. The neurodegenerative process is driven by neurotransmitter changes (mainly loss of 

GABA transmission) and focuses on basal ganglia projections [5]. 

Neuropathological studies have linked the CB receptor density in basal ganglia to the stages of HD. 

In fact, CB receptors were found to be located within the substantia nigra [71]. In HD brains, CB 
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receptor binding in basal ganglia decreases with disease progression [71,72]. The loss of CB receptors 

mainly affects striatal projections [73]. During the course of the disease striatopallidal neurons are 

affected: first projections to the lateral globus pallidus, secondly those to the substantia nigra and 

finally, the neurons projecting to the medial segment of the globus pallidus. The main 

neurotransmitters involved are GABA, enkephaline and substance P [72]. An upregulation of GABA 

receptors in the globus pallidus was found in HD brains and thought to exert a compensatory 

mechanism to the reduced GABAergic transmission following striatopallidal neurodegeneration [74]. 

In addition, in the striatum of an HD transgenic mouse model postsynaptic activity was increased. 

Interestingly, the CB1 and CB2 receptor agonist HU210 failed to reduce GABA transmission in the 

striatum of HD mice and even increased postsynaptic activity [75]. 

Rodent models of HD neurodegeneration have repeatedly demonstrated the link to the cannabinoid 

system. Transgenic HD mice expressed less CB1 receptors in the lateral striatum, within a subset of 

neurons in the cortex and in the hippocampus compared to age-matched controls [76]. Furthermore, 

the relative expression level of mutant huntingtin or the length of the CAG repeat or both were found 

to affect the onset and rate of the decrease of CB1 receptor transcription [77]. Likewise, in another 

transgenic HD mouse model CB1 receptor expression in the caudate-putamen and its projection areas 

were decreased as well as the efficacy of CB1 receptor activation in the globus pallidus compared to 

age-matched controls [78]. Interestingly, transgenic HD mice housed in enriched laboratory 

environments showed less depletion of CB1 receptors in basal ganglia than their counterparts in 

standard laboratory environments [79]. 

Alterations of CB1 receptor expression may develop in different directions according to the brain 

region involved. In fact, in a toxic rat model of HD endocannabinoids levels were decreased in the 

striatum and increased in the ventral mesencephalon, where the substantia nigra is located; both sites 

of alterations were suggested to contribute to the hyperkinesia seen in HD patients [80]. 

In vitro cell-based assays revealed the potential use of cannabinoids (8-THC, 9-THC, CBD) and 

caspase inhibitors, because they were able to protect neurons from death caused by an expanded 

polyglutamine form of huntingtin exon 1 [81]. In contrast, in a toxic rat model of HD the CB1 agonist 

9-THC as well as the CB1 antagonist SR141716A increased the toxic lesions. The authors suggested 

that protective and toxic effects may overlap in a dose dependent manner [82]. In fact, the mechanisms 

are not clear yet. CB1 upregulation in HD brains concurred with the upregulation of BDNF in 

corticostriatal neurons [83]. Furthermore, neuroinflammation seems to be involved in HD as well. The 

CB2 receptor expression increased in the striatal microglia of HD transgenic mice and of HD patients, 

and CB2 agonists reduced neuroinflammation, striatal neuronal loss and motor symptoms in a toxic 

mouse model of HD [84]. Microglial activation was demonstrated in post-mortem HD brains [85], in 

vivo in HD patients [86] and asymptomatic Huntington gene carriers [87]. 

In addition, a number of in vivo models of HD investigated substances that may reduce 

hyperactivity [88–90]. Indeed, AM404, UCM707 and Arvanil modulate endocannabinoid signalling. 

AM404 and UCM707 are inhibitors of endocannabinoid uptake, while Arvanil is an inhibitor of the 

endocannabinoid transporter and a direct CB1 agonist. In addition, AM404 and Arvanil are agonists at 

the vanilloid receptor TPRV1. 

In normal and HD human brain CB1 positive proliferating cells were detected in the subependymal 

layer, raising the intriguing possibility that these cells could provide a suitable source of cells for 
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endogenous replacement of lost cells in HD, if they could be mobilized [91]. In summary, CB 

receptors in the basal ganglia are lost during the disease progression and CB agonism reduced 

hyperactivity in vivo. The role of CBs in HD neuroinflammation remains still unclear. 

3.1.4. Parkinson’s disease 

PD has a lifetime prevalence of 1.5% and is characterized by progressive motor, cognitive and 

behavioural disturbances [7]. Preclinical research in PD has focused mainly on neuroprotection, 

neurotransmission and the neurobiology of dyskinesia. Neuroprotection in PD is mostly mediated via 

antioxidant properties of cannabinoids. Indeed, the CB1/CB2 receptor agonist CP55, 940 protected 

against paraquat toxicity, which induces acute parkinsonism [92]. The mechanism of action however, 

was not receptor mediated. Instead, the neuroprotection was achieved through inactivation of the 

oxidative stress responsive Jun-N-terminal kainase signalling. As a result, Drosophila melanogaster, 

which have no cannabinoid receptors, were able to climb again after CP55,940 administration.  

Cannabinoids reduced neuronal damage via various pathways (CB1, CB2 and CBD) in animal 

models of neurodegeneration in PD. 9-THC, a CB1 agonist with antioxidant properties, CBD and 

AM404, an inhibitor of endocannabinoid inactivation with antioxidant properties, ameliorated the 

effect of nigrostriatal lesions in a PD rat model probably as a result of their antioxidant properties [93]. 

Likewise, the CB2 receptor agonist HU-308 produced a small recovery of nigrostriatal lesions, 

indicating that the activation of CB2 receptors might also contribute to neuroprotection [94]. However, 

in a different PD rat model [95] the non-selective CB receptor agonist WIN55, 212-2 ameliorated the 

effect of nigrostriatal lesions independently of CB1 receptor activation, which is in contrast to the 

former study [94], where it didn’t have any effect. In the same rat model, WIN55, 212-2 and the CB2 

receptor agonist JWH015 reduced the lesion–induced and potentially deleterious microglial activation [95]. 

Cannabinoids play an important role in neurotransmission in PD. In a rat model of parkinsonism the 

dopamine D2 receptor agonist quinpirole caused an alleviation of akinesia, which was reduced by 

coinjection with the CB receptor agonist WIN 55, 212-2 [96]. In addition, in that same rat model 2AG 

levels were increased sevenfold in the globus pallidus [97], whereas CB1 receptor mRNA expression in 

the striatum are reduced [98]. Furthermore, in another PD rat model the metabolism of 

endocannabinoids was impaired with increased striatal anandamide levels and elevated striatal 

glutamatergic transmission. The elevated glutamatergic transmission was reversed by administration of 

anandamide membrane transporter (AMT) inhibitors, fatty acid amide hydrolase (FAAH) inhibitors or 

a CB1 agonist [99]. In fact, CB1 agonists were able to decrease glutamate release from afferent 

terminals in the striatum in post–mortem rat brains [100].  

CB1 antagonists may help to alleviate motor dysfunction in PD. Animal models of PD demonstrated 

a beneficial effect of CB1 antagonists augmenting levodopa in rats [101] and rhesus monkeys [102]. In 

a PD rat model locomotion was restored by coadministration of the dopamine D2 agonist quinpirole 

and the selective CB1 receptor antagonist SR141716A, which augmented the quinpirole effect [97]. 

Likewise, in another rat model, the systemic administration of SR141716A exerted an antiparkinsonian 

effect, but only in rats with very severe nigral lesion (>95%) [103]. However, in a PD primate model, 

SR141716A failed to alleviate motor deficits, probably due to interspecies differences [104]. Further, 

in a mild PD marmoset model 9-THC improved motor deficits. It was therefore suggested that CB1 
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agonists could be the compound of choice in the early symptomatic phase of PD, as CB antagonists 

would work in a later phase [105]. 

In animal models of levodopa–induced dyskinesia, coadministration of CB agonists (HU-210 and 

nabilone) with levodopa reduced dyskinesia [106,107]. Indeed, levodopa reduces extracellular 

glutamate, an effect that is prevented by CB agonists. Extracellular glutamate is inversely correlated 

with dyskinesia, i.e., higher glutamate levels were seen in animals with less dyskinesia [108]. 

In summary, cannabinoids may reduce neurotoxicity in PD and CB agonists were shown to reduce 

dyskinesia. However, results were inconclusive to whether CB agonists or antagonists could alleviate 

motor symptoms in PD. 

3.2. Clinical findings 

In Alzheimer’s disease, clinically used strategies involve acetylcholine esterase inhibitors and 

memantine to slow symptom progression. Experimental approaches currently study the use of secretase 

modulators, A-immunotherapy, A-fibrillisation inhibitors, anti–inflammatory drugs, antioxidants and 

cholesterol-lowering drugs [2]. Today, there is no causal treatment for HD, PD or VD either [5,7,8,109]. 

To our knowledge, there are currently no data available on curative treatment of any dementia using 

cannabinoids [110]. However, a small but growing body of literature reports on the use of cannabinoids 

in the symptomatic treatment of dementia and neurodegenerative diseases. Interestingly, none of the 

studies focused on cognition or memory. Instead, behavioral and motor symptoms were approached. 

3.2.1. Alzheimer’s disease 

Two clinical trials and one case report are available on the topic. The two studies used dronabinol 

and one case report used nabilone, both substances are CB1 and CB2 agonists [9]. Volicer and 

colleagues [111] investigated 15 institutionalized patients with severe dementia who presented with 

food refusal in a randomized double blind placebo controlled crossover trial of dronabinol 2.5 mg b.i.d. 

Each period lasted for six weeks. Of the 15 participants three experienced severe side effects (seizures, 

intercurrent infections) and had to be excluded. Body weight increased and agitation decreased during 

dronabinol periods. In addition, the authors observed a considerable carry over effect on agitation in 

those who received active treatment first. 

Walther and colleagues [112] used actigraphy and the Neuropsychiatric Inventory (NPI) [113] to 

investigate the effects of oral dronabinol 2.5 mg administered at 7 PM on night-time agitation and 

behavioral disturbances in an open label pilot study including six patients with dementia (5 AD and  

1 VD). Over two weeks of treatment objectively measured nocturnal motor activity and the NPI total 

score were reduced, as were the NPI items agitation, aberrant motor behavior, appetite disturbances, 

irritability and night-time behaviors. This study found no adverse effects during the two week trial period.  

Subsequently, Walther and colleagues started a randomized, double-blind, placebo-controlled, 

crossover trial of dronabinol 2.5 mg to further evaluate the effects on circadian rhythm and behavioral 

disturbances in Alzheimer’s disease. The study, however, was aborted due to recruitment failure. Still, 

two patients were included and both displayed reduced nocturnal motor activity and stabilized 

circadian rhythms without any side effects during the dronabinol period (Walther et al. unpublished data). 
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Nabilone was used in a patient with Alzheimer’s disease [114] who had been subsequently treated 

with donezepil, memantine, trazodone, quetiapine, and olanzapine without any impact on the 

behavioral symptoms. Nabilone 0.5 mg was introduced once daily and later increased to bid 

administration. Clinicians observed dramatic improvement of agitation and restlessness within weeks 

and noted no emergent side effects during three months continuous treatment. 

All reports stated improvements of behavioral disturbances after oral administration of nabilone or 

dronabinol. It remains unclear, how the behavioral changes in the late dementia stages are modulated 

by CB1/CB2 agonists. Data from various animal models suggest that feeding behavior, sleep induction, 

circadian rhythm and serotonergic transmission are modulated via CB1 receptor agonism [115–119]. 

We found no report on CBD in AD and neither did we find a current clinical trial in the registries. 

3.2.2. Vascular dementia 

Currently, there are no studies or case reports on cannabinoids in patients with vascular dementia. 

However, one of the six participants of the study by Walther et al. [112] was suffering from vascular 

dementia and improved during dronabinol treatment. The scarcity of reports on cannabinoid use in 

these patients may be a result of the symptoms presented. Patients with vascular dementia frequently 

suffer from apathy (65%), depression (45%), irritability (42%), and agitation (40%) [120]. Still, the 

literature suggests positive effects of cannabinoids in the pharmacotherapy of depression [121].  

3.2.3. Huntington’s disease 

We could identify two clinical trials and two case reports of cannabinoid treatment in Huntington’s 

disease. Nabilone was the cannabinoid investigated in most reports. In fact, a randomized placebo 

controlled double blind crossover trial over five weeks each of nabilone 1 or 2 mg/d in 44 patients with 

HD found strong effects for nabilone on cognition, behavior and chorea symptoms [122]. In total, 

seven patients were withdrawn during the trial; some for adverse effects including suicidal ideation in 

one patient. However, in the other patients nabilone was well tolerated. 

An early report of a randomized, placebo controlled, double blind crossover trial of CBD (10 mg/kg/d) 

for six weeks in 15 patients with HD failed to detect any effect [123]. CBD was neither toxic nor 

efficient in reducing symptoms of HD. 

In a case report, a 42 year old woman with chorea Huntington history of 19 years and marked 

behavioral disturbances (agitation, impatience, rejection of care) acutely improved after smoking 

cannabis [124]. Later, the general practitioner administered nabilone 1 mg/d, which led to further 

improvements in behavior and chorea.  

Conversely, a 58 year old man with Chorea Huntington symptoms for six years, could not benefit 

from a single 1.5 mg nabilone administration [125]. Chorea symptoms as assessed before and after 

administration deteriorated for the following 24 hours. 

The CB1/CB2 agonist nabilone reduced behavioral symptoms and choreatic movements in HD. 

However, in the case report of the 58 year old man, chorea worsened after a single administration. 

CBD instead had no effect. 
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3.2.4. Parkinson’s disease 

A survey in PD patients (age 45–83 years) suggested that 25% have used cannabis to treat 

symptoms [126]. In 45% of these cannabis users PD symptoms such as rigidity, tremor, bradykinesia 

and dyskinesia improved. Indeed, dyskinesia has been the primary target symptom of cannabinoid 

treatment approaches in PD. An open label study of CBD over six weeks in five patients with various 

etiologies of dyskinesias demonstrated improvement of dyskinesia between 20–50% [127]. The only 

PD patient improved 50% in terms of dyskinesia and worsened after cessation of CBD, however he 

experienced slight exacerbation of hypokinesia and tremor. Two double-blind, placebo-controlled, 

randomized crossover trials were performed to investigate the effect of cannabinoids on levodopa–induced 

dyskinesia. Oral nabilone (0.03 mg/KG) reduced dyskinesia by 22% in seven patients in a levodopa 

challenge test [128]. Nabilone was well tolerated and had no intrinsic antiparkinson action. In contrast, 

oral cannabis extract (2.5 mg 9-THC and 1.25 mg CBD) administered for four weeks in 19 PD 

patients although well-tolerated had no effect on dyskinesia [129]. The contradictory findings may be a 

result of the substances used (CB1/2 agonism vs. a combination of CB1/2 agonism and CBD), the 

administration period (once vs. four weeks) or a result of skewed data given the small sample size in 

the first trial [128]. Taken together, results are neither encouraging enough to support the use of 

cannabinoids in dyskinesia in PD [129], nor in primary dystonia [106].  

In an exploratory randomized, double blind, placebo-controlled study, the CB1 antagonist SR 

141716 failed to improve motor dysfunction or dyskinesia in PD after 16 days [130]. However, the 

number of patients on the active compound was very low (n = 4).  

Finally, a recent study investigated the effect of CBD on psychotic symptoms in PD [131]. The 

open label administration of oral flexible dose CBD (mean 400 mg/d) in six PD patients who had 

experienced psychotic symptoms for more than three months led to a significant decrease in 

psychopathological scales with most effect on delusions, thought disorder and retardation. Thus, CBD 

has some potential to become an alternative to antipsychotic drugs for psychosis in PD. 

4. Conclusions  

Several lines of evidence have demonstrated the role of cannabinoids in dementia. Cannabinoids 

seem to be involved in disease pathology in various ways, and some compounds were suggested to 

have therapeutic potential in neurodegenerative diseases. For instance, CB1/CB2 agonists may interrupt 

excitotoxicity and reduce neuroinflammation in AD brains, modulators of endocannabinoid signaling 

may reduce hyperactivity in HD, while CB1 agonists could reduce dyskinesia in PD. However, most of 

the in vitro findings need replication in animal studies and afterwards human trials are required. 

In the field of human trials, curative or disease modifying approaches have not been followed yet. An 

interesting study objective would be to investigate in a prospective trial whether the non-psychoactive 

compound CBD may slow down the cognitive decline in AD. Furthermore, it should be evaluated 

whether the administration of CBD in combination with CB1 agonists or alone could slow the 

neurodegenerative process in patients suffering from HD and PD. Cannabinoid based drugs may 

therefore become a therapeutic option to modify the course of neurodegenerative diseases.  
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The small but successful human trials with CB1 agonists in HD and AD that ameliorated behavioral 

disturbances are promising. The reported beneficial effects of Nabilone in HD or dronabinol in AD 

with behavioral disturbances call for replication in larger trials covering longer periods of observation. 

Given, that both substances prove to be save in long term administration, Dronabinol and Nabilone 

could soon become an adjunct treatment option in these severe conditions, i.e., late stages of AD or 

HD with poor prognosis and behavioral disturbances.  

The transition of findings from bench to bedside and the extension of results from small clinical 

trials should be on the research agenda for the near future. Because treatment strategies for dementia 

are so preliminary at the current state of knowledge and the need for a cure is so desperate, it is worth 

pursuing the quest for one or more cannabinoid compounds in the field. 
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