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Abstract

In this paper, we present a toolset and related resources for rapid identification of viruses and microorganisms from
short-read or long-read sequencing data. We present fastv as an ultra-fast tool to detect microbial sequences present in
sequencing data, identify target microorganisms and visualize coverage of microbial genomes. This tool is based on the
k-mer mapping and extension method. K-mer sets are generated by UniqueKMER, another tool provided in this toolset.
UniqueKMER can generate complete sets of unique k-mers for each genome within a large set of viral or microbial genomes.
For convenience, unique k-mers for microorganisms and common viruses that afflict humans have been generated and are
provided with the tools. As a lightweight tool, fastv accepts FASTQ data as input and directly outputs the results in both
HTML and JSON formats. Prior to the k-mer analysis, fastv automatically performs adapter trimming, quality pruning, base
correction and other preprocessing to ensure the accuracy of k-mer analysis. Specifically, fastv provides built-in support for
rapid severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) identification and typing. Experimental results showed
that fastv achieved 100% sensitivity and 100% specificity for detecting SARS-CoV-2 from sequencing data; and can
distinguish SARS-CoV-2 from SARS, Middle East respiratory syndrome and other coronaviruses. This toolset is available at:
https://github.com/OpenGene/fastv.
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Introduction

The coronavirus disease-2019 (COVID-19) pandemic has spread
to over 200 countries and territories, and it has made a terri-
ble impact on lives and economies worldwide [1–3]. Based on
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the current pandemic situation and many research reports [4],
COVID-19 may continue to spread for a long period of time and
may eventually become a flu-like seasonal outbreak [5]. Under
these circumstances, it is important to develop new technologies
for rapid detection of COVID-19.

https://academic.oup.com/
https://github.com/OpenGene/fastv
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Nucleic acid sequencing is a key technology for identifying
and studying severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), the causative agent of COVID-19. Metagenomic
and metatranscriptomic next-generation sequencing (mNGS)
are powerful tools to study the genetic composition and function
of microbial populations, as well as to analyze the relationship
between microorganisms and their host or environment [6, 7].
Since the first clinical application of metagenomic sequencing
(mNGS) for the diagnosis of leptospirosis in 2014 [8], mNGS has
been used widely for the identification and diagnosis of new and
rare pathogens.

Next generation sequencing (NGS) technology has also
played an important role in COVID-19 diagnosis and research.
The earliest COVID-19 case, which was initially diagnosed as
pneumonia caused by an unknown pathogen, was identified due
to the presence of SARS-like sequences found using mNGS [9].
The first complete genome of SARS-CoV-2 (GenBank: MN908947)
reported on January 11, 2020 was assembled using NGS data
[10]. Soon after, the whole-genome sequence of SARS-CoV-
2 was also obtained by mNGS using the Oxford Nanopore
platform supplemented with Sanger sequencing [11]. The rapid
acquisition and publication of the SARS-CoV-2 genome was
essential to design fluorescent polymerase chain reaction (PCR)
probes for COVID-19 nucleic acid detection kits.

With the viral genome in hand, we can now explore the
possibility of using mNGS directly as a detection method to
determine whether SARS-CoV-2 RNA is present or absent in a
sample. In theory, a simple and straightforward approach would
be to first map sequencing reads obtained from the sample
to the viral genome using common aligners such as Burrows–
Wheeler aligner (BWA) [12] or Bowtie2 [13], and then to analyze
the alignment results to determine the coverage of the viral
genome and the number of properly mapped reads. However, in
practice, such an alignment-based method is prone to problems
stemming from both false positives and false negatives. On one
hand, some viruses have genomes very similar to SARS-CoV-2,
which can lead to false positive results. For example, the genome
of bat coronavirus RaTG13 is sufficiently similar to SARS-CoV-2
(96% identity) to cause non-specific alignment [14]. On the other
hand, in some cases the virus-specific reads obtained may not
be abundant enough for unambiguous detection, which can lead
to false negative results. Examples of such cases may be when
the viral RNA is highly degraded, or when the sequencing library
has been incompletely target enriched by multiple PCR [15] or
hybrid capture [16]. In these scenarios, alignment-based meth-
ods may be not specific or sensitive enough. Such alignment-
based methods are also computationally intensive and therefore
not particularly fast or efficient.

In order to detect SARS-CoV-2 more quickly and accurately,
we have developed an alignment-free method based on k-mer
mapping and extension. The use of k-mer-based methods to
analyze microbial sequencing data is not a new method. For
example, researchers have developed k-mer based algorithms to
analyze plasmid-derived sequence fragments in metagenomics
data [17, 18]. Several k-mer based tools for species classification
and sequencing read annotation have also been reported. For
example, SPINGO [19] provides rapid species classification for
microbial amplicon sequences based on k-mer mapping tech-
nology. Kraken2 [20], a very popular taxonomic classification
system, is also based on k-mer matches. KrakenUniq [21], which
is built on Kraken [22], can partially address problems due to
false positives by using unique k-mer analysis. However, we are
currently unaware of a fast, reliable and user-friendly k-mer-
based tool for identifying nucleic acids from SARS-CoV-2 and

other viruses or microorganisms using sequencing data. This
unmet need has led us to develop a new toolset and to provide
corresponding k-mer resources.

Here, we present fastv and UniqueKMER, along with the
precomputed unique k-mer resources. The fastv tool has three
major functions: (i) to analyze which viral and/or microbial
sequences are present in the sequencing data, (ii) to determine
whether sequences from a specific virus or microorganism (e.g.
SARS-CoV-2) can be found in the sequencing data and (iii) to
analyze coverage of a specific viral or microbial genome by a
set of sequencing data. All three of these methods rely on a
unique k-mer set for each microorganism, making it essential to
produce high-quality unique k-mer sets. We developed another
tool, UniqueKMER, to generate a complete set of unique k-mers
for each of a large set of microbial genomes. The unique
k-mers can be filtered to remove the k-mers that can be mapped
to a reference genome (e.g. the human genome). Generating
unique k-mers for tens of thousands of viral and microbial
species would typically require tremendous memory and
computing resources. We have designed efficient algorithms to
make this computation feasible on ordinary computing servers.
UniqueKMER requires only 1 h to generate reference-filtered
unique k-mers for about 12 000 viral genomes on an ordinary PC.

As a lightweight tool, fastv accepts FASTQ data as input
and directly outputs the results in HTML and JSON formats.
The HTML result is highly informative and provides interactive
reports for manually reading, while the JSON result is structured
such that it can easily be used by downstream analysis tools.
Prior to the k-mer analysis, fastv automatically performs adapter
trimming, quality pruning, base correction and other prepro-
cessing to ensure the accuracy of k-mer analysis. These prepro-
cessing features are derived from fastp [23], a popular quality
control and filtering tool for NGS data previously developed by
our group. The fastv tool is ultra-fast - it can process 10 M+ bases
per second - and can complete the processing of a typical mNGS
dataset in a few minutes.

We conducted identification experiments on 27 samples
positive for SARS-CoV-2 and 25 samples negative for SARS-
CoV-2. The results showed that fastv achieved 100% sensitivity
and 100% specificity; and that it can distinguish SARS-CoV-2
from SARS [24], middle East respiratory syndrome (MERS) [25]
and other coronaviruses [26]. Although our original intention
in developing these tools was to quickly identify SARS-CoV-2
from sequencing data, our tool can detect any target virus or
microorganism for which a unique k-mer file is provided. We
also conducted experiments using several other viral genomes
such as Epstein–Barr virus (EBV), human papillomavirus (HPV)
and hepatitis B virus (HBV). The results demonstrated that our
tools perform well on a variety of viral genomic datasets.

Material and methods
This section consists of three subsections: rapid identification of
microorganisms from sequencing data, algorithms for efficiently
generating unique k-mer sets and pregeneration of unique
k-mer sets for common viruses and microorganisms.

Fastv: rapid identification of microorganisms from
sequencing data

Fastv is a highly optimized FASTQ scanner and k-mer mapper.
Sequencing reads are first preprocessed to remove adapters and
unqualified bases. Continuous k-mers are then computed for
each read to be mapped to unique k-mer indexes. Fastv accepts
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Figure 1. Overview of the fastv workflow. The items with grey backgrounds are input files, while the items with black backgrounds are results that will be output to

HTML/JSON reports. An individual thread loads the FASTQ data to read packs (pack size = 1000). Multi-threaded read processors process data pack by pack. For each

read or read pair, preprocessing is performed as in fastp. k-mers are extracted from the read and its reverse complement and are then converted to 64-bit keys. Each

64-bit key is used to search one of the three k-mer indexes built from the k-mer collection file, k-mer file, or genome(s) file.

input from any or all of the following three FASTA file types to
generate corresponding k-mer indexes:

a. Unique k-mer collection for a large set of viruses or microor-
ganisms. This file contains a list of viruses or microorgan-
isms along with their unique k-mers. The identifier of each
FASTA entry represents the name of a viral or microbial
genome, while its corresponding multiline sequences rep-
resent its unique k-mer keys. This file typically consists of
all viruses or microorganisms that might be detected, with
reference genomes available.

b. Unique k-mer set for a specific virus or microorganism. This
file contains a list of k-mer keys unique to a specific virus
or microorganism. The sequence of each FASTA entry repre-
sents a k-mer key, while its corresponding FASTA identifier
represents its position in the viral or microbial genome. This
file typically represents the unique k-mer set for the virus
or microorganism of interest, such as SARS-CoV-2.

c. Genome sequences for a specific virus or microorganism.
This file contains one or more reference genomes for the
target virus or microorganism. Typically, multiple genomes
represent different subtypes of the target virus or microor-
ganism. For instance, if the target virus is HPV, the genomes

may comprise HPV-16, HPV-18, HPV-31, etc [27]. Due to the
differences among different genome sequences, the cov-
erage and mismatch rate of each genome will be differ-
ent. This information can be used for microbial subtype
identification.

Extraction of k-mers from reads and processing of k-mer
indexes are independent processes. Figure 1 summarizes the
fastv workflow.

Read preprocessing

To avoid generating erroneous k-mer keys, sequencing adapters
and low-quality bases must be removed. Fastv utilizes the
adapter cutting and quality pruning features from fastp, which
we developed previously. Adapter sequences can either be auto-
detected or specified from the command line. For paired-end
sequencing data, overlapping regions are detected and incorrect
bases in the overlapping regions are corrected. The algorithms
for, and implementations of, these features can be found in the
fastp publication [23]. For data generated by long-read platforms
(e.g. PacBio or Oxford Nanopore Technologies (ONT)), long reads
are segmented, generating multiple short reads.
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K-mer generation and representation

To accelerate k-mer generation and lookup, we use a unique
64-bit integer to represent each k-mer. A base (A/T/C/G) is rep-
resented by two bits, so a 64-bit integer can represent up to
a 32-mer, which is sufficiently long for identifying a virus or
microorganism. Any k-mer key that contains a degenerate base
(i.e. N base) is ignored. This k-mer representation has been
used widely in our previous works, such as GeneFuse [28]. A
progressive method for k-mer calculation is applied to accelerate
k-mer generation. The formula to compute the nth k-mer key
can be denoted as: kmer(n) = ((kmer(n-1) < < 2) + base2bit(n)) &
bit_mask, where base2bit(n) is the 2-bit representation of a base
(A/T/C/G), and bit_mask is a 64-bit value determined by the length
k of k-mer.

K-mer collection scanning

The k-mer collection file can contain unique k-mers for tens of
thousands of viral or microbial genomes, with each containing
hundreds to thousands of k-mer keys. Therefore, there may be
tens of millions of k-mer keys in total. It would be trivial to use
a map<key, id> to index this data, but such an implementation
would result in very slow access. Our approach was to build a
hash function to hash the 64-bit key to a larger number (i.e. 230),
which stores the index to the k-mer element. Because of the
nature of the hash function, two different keys may have the
same hash value, resulting in a hash collision [29]. However, as
long as the hash function is sufficiently random, the probability
of collision will follow a probability distribution that will result
in only a small fraction of keys to have hash collisions. This kind
of space-for-time approach results in a significant increase in
efficiency and makes it feasible to detect tens of thousands of
microorganisms at once. The algorithm to build such a k-mer
collection index is briefly illustrated as Algorithm 1. It should
be noted that, to obtain a higher running speed, we did not use
mutex locks to synchronize the k-mer hit counting operation
between multiple threads. Our results demonstrate that, while
this might lead to slight instability in the results (less than 1
in 104), it does not have an impact on the overall quality of the
results.

Algorithm 1: Generation of k-mer collection index

HASH_LENGTH = (1 < <30)
index = array(HASH_LENGTH)
tmp_valid_kmer = array()
final_valid_kmer = array()
initialize(index, undefined)
for id in genomes_of_kmer_collection

for seq in kmer_of_genome(id)
key64 = seq_to_key64(seq)
offset = hash(key64)
if index[offset]! = undefined and index[offset]! = id

index[offset] = collided
else

index[offset] = id
tmp_valid_kmer.add(id, key64)

counter = 0
for id, key64 in tmp_valid_kmer

offset = hash(key64)
if index[offset] == id

inal_valid_kmer.add(id, key64)
index[offset] = counter
counter++

The hash function used in Algorithm 1 is a simple formula
that can be calculated efficiently. We have used this hash func-
tion in previous work [30]. It utilizes the multiplication and bit
manipulation of the key with several large prime numbers:

hash(key64) = (
1713137323 ∗ key64 + (

key64 >> 12
)

∗7341234131 + (
key64 >> 24

) ∗ 371371377
)

&

(HASH_LENGTH − 1)

K-mer scanning for a specific virus or microorganism

Since the k-mer list of a specific virus or microorganism is
typically small, it is trivial to implement k-mer scanning on
such a short list. A simple unordered map is used to represent
the index for such a k-mer set, with the values used as k-mer
hit statistics. In contrast to k-mer collection scanning, where
multiple threads share a single hit counting statistics array, each
thread in the k-mer scanning operation uses its own statistics
array. These arrays are subsequently merged to generate the
overall statistics, making the k-mer scanning result stable and
reproducible.

Genome coverage statistics and subtyping

The genomes are indexed as a map, with its key as the same
64-bit k-mer key, and its value as a list of genome positions
(GP). A genome position includes a genome ID and a position
in that genome. For a given read, if one of its 64-bit k-mer keys
is a hit to the genome index, the read will be mapped to the
corresponding genome location. The edit distance [31] between
the read and the genome sequence will be obtained; and if the
edit distance is less than or equal to the threshold, a match will
be recorded and the coverage of that genome will be updated.
It is worth mentioning that some microbial genomes (i.e. EBV)
have a large number of repeated sequences [32], which will result
in some keys being hits to many different genome positions. In
such cases, fastv divides the coverage and mismatch numbers
of a read into multiple parts and distributes them to each posi-
tion, producing smooth and uniform coverage. When multiple
genomes are input, the coverage result will be sorted by the
coverage. This feature can help identify a subtype of a specific
virus or microorganism.

Visualization

The k-mer scanning results of different inputs are visualized in
a figure on a single HTML page. For k-mer scanning of a specific
virus or microorganism, the result is simply plotted with the
widely used library Plotly.js. For genome k-mer scanning results,
we developed a much more efficient toolkit based on native
browser utilities to illuminate genome coverage and mismatch
ratios. Our highly optimized method can easily support the
visualization of hundreds of genomes, which is impossible for
most common plotting libraries. A demonstration of a fastv
HTML report is shown in Figure 2.

UniqueKMER: efficient unique k-mer generation for
large datasets

Since the key features of fastv rely on unique k-mer mapping
and extension, it is important to obtain high-quality unique
k-mer sets for microorganisms of interest. Although a number
of k-mer generation tools are currently available [33–35], none
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are suitable for our application because we must both gen-
erate unique k-mers for tens of thousands of viruses and/or
microorganisms and filter the k-mer keys based on the reference
genome. For instance, KMC3 [35] is an excellent tool for handling
k-mer generation for each genome, but is inconvenient and less
efficient for generating unique k-mers. It also is limited in the
number of genomes (255 for the current version) for which it
can perform unique k-mer extraction, thus making it unsuitable
for generating unique k-mers for thousands of genomes. These
unmet needs have led us to develop UniqueKMER, a new unique
k-mer generation tool. The workflow of UniqueKMER is briefly
described in Figure 3.

As shown in Figure 3, the UniqueKMER workflow consists of
two parts: unique k-mer generation and unique k-mer filtering.
In the first part all k-mer keys are extracted, and keys that belong
to more than one genome are removed as non-unique keys. In
the second part, both the keys that exactly match the reference
genome and the keys that can be partially mapped to reference
genome are removed. Although this can be done with a common
aligner such as BWA or Bowtie2, these are not ideal for partial
mapping of short sequences. We developed an algorithm based
on S-bit seeding and edit distance computation to address this
problem, as briefly shown in Algorithm 2.

Algorithm 2: unique k-mer filtering by reference genome

// KMER length in bases, by default, kmer_len = 25
kmer_len = 25
unique_keys = compute_unique_keys(genomes, kmer_len)
// seed_len is much less than kmer_len
seed_len = min(14, kmer_len)
seed_bit_len = 2 ∗ seed_len
bloom_filter_len = 1 < < seed_bit_len
bloom_filter = array(bloom_filter_len)
key_genome_pos = map < key, genome_pos_list>
// Initialize the bloom filter
for key64 in unique_keys

for s_bit_key in tranverse_by_bits(key64):
bloom_filter[s_bit_key] = true

// Index the reference genome
for s_bit_key, genome_pos in reference_genome

if bloom_filter[s_bit_key] == true
key_genome_pos[s_bit_key].add(genome_pos)

// Remove the unique KMER keys that can be mapped to
reference genome
for key64 in unique_keys

for s_bit_key in tranverse_by_bits (key64)
for genome_pos in key_genome_pos[s_bit_key]

key_seq = to_sequence(key64)
ref_seq = get_ref_sequence(reference_genome, genome_pos)
ed = edit_distance(key_seq, ref_seq)
if ed < THRESHOLD

unique_keys.remove(key64)

Pregeneration of unique k-mers for SARS-CoV-2 and
other common viruses and microorganisms

We pregenerated unique k-mers for two datasets. The first
dataset is the National Center for Biotechnology Information
(NCBI) viral genomes RefSeq database [36], which can be found
at https://ftp.ncbi.nlm.nih.gov/refseq/release/viral/. The other
pregenerated dataset is the NCBI human bacterial microbiome

RefSeq database [37], which can be found at https://ftp.ncbi.
nlm.nih.gov/genomes/HUMAN_MICROBIOM/Bacteria/. Because
bacterial genomes often have multiple contigs, we concatenated
contigs from a single bacterial genome by inserting 32 Ns
between each contig, guaranteeing that no artifactual k-mer
keys will be introduced unexpectedly. The generated resources
can be found at the UniqueKMER repository (https://github.co
m/OpenGene/UniqueKMER).

SARS-CoV-2 is included in the viral genome list so its unique
k-mer set was also generated. We selected 12 SARS-CoV-2
genomes from the GISAID database, which is a global initiative
on sharing genomic data of influenza viruses and SARS-CoV-
2. These genomes were not used for SARS-CoV-2 unique k-
mer generation, but for coverage evaluation for genomes from
different strains. Forster et al. recently conducted evolutionary
analysis of 160 SARS-CoV-2 genomes [38]. They classified SARS-
CoV-2 into three types (A, B and C) according to amino acid
changes and determined the evolutionary relationships of these
types. Based on this work, we selected two ancestral and derived
genomes from each type, taking into consideration the date and
location of the collected samples. Because SARS-CoV-2 has few
mutations to date [39], the similarity between the genomes of
different types is very high. Nevertheless, coverage sorting is
able to identify the most closely related genome to the query
sequence data. The selected SARS-CoV-2 genomes are available
at the fastv repository (https://github.com/OpenGene/fastv)
and will be updated periodically as new genomes are made
available.

Results
SARS-CoV-2 identification

To evaluate the performance of fastv for SARS-CoV-2 identifica-
tion, we conducted experiments on 27 samples that were posi-
tive for SARS-CoV-2 and 25 samples that were negative for SARS-
CoV-2. The platforms used for sequencing these samples were
diverse and included Illumina, Oxford Nanopore, BGI-Seq, Cap-
illary (Sanger sequencing) and Ion Torrent. For comparison, we
also conducted alignment-based identification of SARS-CoV-2
using the well-known aligners BWA and Bowtie2; and performed
taxonomic classification with the widely used tools Kraken2
and KrakenUniq. For BWA, we applied the BWA-MEM algorithm,
which performs local alignment. For Bowtie2, we applied the
global alignment method. The results are shown in Table 1.

As shown in Table 1, fastv achieved 100% sensitivity and
100% specificity for all tested samples; and could distinguish
SARS-CoV-2 from SARS, MERS and other coronaviruses. The
ground truth results were collected from corresponding papers
that reported the data. The fastv default cutoff setting was
used for determining whether or not SARS-CoV-2 was present.
The pipelines for alignment-based SARS-CoV-2 identification
are described in Supplementary File 1 (BWA-MEM method) and
Supplementary File 2 (Bowtie2 method). The two alignment-
based pipelines both failed to identify a SARS-CoV-2 sample
(SAMN14445407), which was previously enriched using multi-
plex PCR technology. They also incorrectly identified the bat
coronavirus RaTG13 sample (SAMN14082201) as SARS-CoV-2
since genome of RaTG13 has about 96% similarity to the genome
of SARS-CoV-2 [40]. Even if careful manual adjustment of the
alignment parameters may result in a better result for this
dataset, it is difficult to ensure that the adjusted parameters
can achieve good results on other datasets. The fastv results
are based on the default parameters determined before this

https://ftp.ncbi.nlm.nih.gov/refseq/release/viral/
https://ftp.ncbi.nlm.nih.gov/genomes/HUMAN_MICROBIOM/Bacteria/
https://ftp.ncbi.nlm.nih.gov/genomes/HUMAN_MICROBIOM/Bacteria/
https://github.com/OpenGene/UniqueKMER
https://github.com/OpenGene/UniqueKMER
https://github.com/OpenGene/fastv
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa231#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa231#supplementary-data
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Figure 2. Fastv HTML report demonstration. The result for targeted k-mer hits is visualized using Plotly.js, whereas the result for genome coverage is visualized by

a custom toolkit we developed. The k-mer collection scanning result shows that the data contains sequences of two microbial genomes. One is phi-X174, which is

actually introduced by the Illumina PhiX control library, and the other is SARS-CoV-2. The genome coverage statistics show that SARS-CoV-2 most closely matches

strain Wuhan-Hu-1. The red marks indicate the regions with a high mismatch ratio.

experiment. Therefore results obtained using fastv are more
robust and reliable than those obtained using the BWA and
Bowtie alignment-based methods.

As shown in the last four columns in Table 1, it is dif-
ficult to find a cutoff that reliably identifies SARS-CoV-2
using Kraken2 and KrakenUniq. Some positive samples had
very few reads matching to SARS-CoV-2 (e.g. SAMN14332760
and SAMN14422484), whereas some negative samples had
many reads matching to SARS-CoV-2 (e.g. SAMN03386977 and
SAMN03386974). The SARS-CoV-2 read number ranks obtained
with Kraken2 and KrakenUniq are also not good indicators
of correct positive or negative SARS-CoV-2 identification. For
example, a positive sample SAMN14082200 has a Kraken2 rank
of 130 and a KrakenUniq rank of 24, whereas the Kraken2 and
KrakenUniq ranks of a negative sample (SAMN03386974) are
both 2.

These results indicate that fastv achieved better performance
for SARS-CoV-2 identification than alignment-based pipelines
and taxonomic classifiers. Considering that it can also provide
coverage and subtyping information, fastv is more suitable for
detecting SARS-CoV-2 from sequencing data.

Identification of other viruses

We also conducted experiments using data from other viruses
and microorganisms. Epstein–Barr virus (EBV) has a long repeti-
tive region within its genome, which often causes difficulties for
other k-mer-based algorithms because these algorithms map a
k-mer key to the location where it first appears. But our opti-
mized k-mer mapping algorithm distributes hits correspond-
ing to a k-mer key to all places where it appears, resulting in
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Figure 3. Overview of the UniqueKMER workflow. The items with grey backgrounds are input files, while the items with black backgrounds are output files. The

original index consists of unique k-mer keys that belong to a single genome. The original index keys that can be mapped to the reference with edit distance less than

the threshold will be filtered out, producing the final index. The S-bit keys are used to identify seeds for key-reference mapping. The k-mer key length N is configurable

and is usually set to a number between 20 and 30. The bit length S of S-bit is an even number much less than 2 N.

smoother coverage. An example of EBV identification is shown in
Figure 4 to illustrate the smooth coverage obtained for genomes
with repetitive regions.

We evaluated the subtyping function of fastv with sequenc-
ing data from samples infected with HPV and HBV. For HPV,
genomes of nine HPV subtypes (HPV-6b, HPV-11, HPV-16,
HPV-18, HPV-31, HPV-33, HPV-45, HPV-52 and HPV-58) were
included in the genomes FASTA file, and three datasets’
Sequence Read Archive (SRA accessions: SRR1609138,SRR160913
and SRR1609140) were tested. For HBV, genomes of eight
HBV subtypes (HBV-A through HBV-H) were included and
four datasets (SRA accessions: SRR11308108, SRR11308109,
SRR11308111 and SRR11308112) were tested. The results showed
that fastv could distinguish virus subtypes for all these data very
accurately. Figure 5 shows the correct HBV subtyping result of
dataset SRR11308112, which is the output from fastv analysis of
sequencing data from a HBV-C infected sample.

Influenza A virus subtyping
Influenza A virus causes seasonal disease epidemics. Influenza
A viruses can be divided into subtypes based on two surface
proteins: hemagglutinin and neuraminidase. Each subtype can
be further divided into different clades and sub-clades according
to their genetic differences. Although subtyping of influenza
A virus commonly performed based on hemagglutinin and
neuraminidase antigenic structures, genomic based methods
are used for influenza A subtyping. These methods typically
employ multiple PCR techniques [41, 42], microarray techniques
[43], and next-generation sequencing with multiplex PCR
enrichment [44].

Due to the high genomic similarity among different influenza
A subtypes, subtyping of influenza A viruses from sequencing
data, especially from mNGS data, can be challenging. We
conducted an experiment to evaluate fastv’s ability to perform
influenza A virus subtyping. We obtained the sequences of the
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Figure 4. EBV identification using fastv. The EBV genome has a large repetitive region between 12 kb and 35 kb. The coverage result generated by fastv (A) shows even

coverage of this region and is similar to the IGV visualization of the BWA alignment result (B). The data used in this experiment was whole genome sequencing of an

EBV-positive sample, downloaded from NCBI Sequence Read Archive (SRA accession: ERR1293949).

Figure 5. HBV subtyping using fastv. Eight HBV subtypes (HBV-A through HBV-H) are included in the genome list. The subtyping result is HBV-C, which is 99.69% covered.

The HBV genome has many conserved regions where the genomes of different subtypes are very similar. This results in partial coverage of other HBV subtypes.

genes encoding hemagglutinin (HA gene) and neuraminidase
proteins (NA gene) for over 38,000 influenza A strains from
the Influenza Research Database [45] and constructed k-mer
collection files for HA and NA genes. These were then used to
identify the hemagglutinin and neuraminidase subtypes from
a test dataset of 25 samples of different subtypes (H1N1, H2N2,
H3N2, H5N1, H7N9 and H9N2). The results showed 24 samples
were successfully classified according to their hemagglutinin
and neuraminidase subtypes. The only sample (SRA accession:
SRR5413408) for which hemagglutinin and neuraminidase
subtypes could not be determined contained many amplicons
with low coverage. The results show that fastv can be used for
influenza A virus subtyping with high-quality sequencing data.

It should be noted that although fastv is effective at iden-
tifying major influenza A subtypes, it may not be suitable for
distinguishing clades and sub-clades, since many sub-clades
have an insufficient number of unique k-mers due to the high
genomic similarity of different influenza A virus strains.

Identification of pathogen from mNGS data without set
a target virus or microorganism

Fastv can also be used to quickly identify microorganisms and/or
viruses in sequenced samples where the pathogen is unknown.
To use this function, a k-mer collection file containing many
possible viruses and microorganisms should first be prepared.
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For user convenience we have pregenerated a k-mer collection
file which from genomes of all human-associated viruses and
bacteria with a reference genome provided in NCBI RefSeq
database. This pregenerated k-mer collection file can be down-
loaded from the fastv repository. After scanning the FASTQ data,
fastv will report the k-mer coverage for each microbial genome
with valid hits. This information can be used to identify the
pathogen. We evaluated seven mNGS datasets (SRA accessions:
SRP006887, SRP006881, SRP000376, SRP007321, ERS4389819,
SRP000657 and SRP004485), which were generated by Illumina
and LS454 sequencers. All pathogens were correctly detected,
with the k-mer coverage ranging from 15.19% to 99.94%.

Discussion
In summary, we describe a new tool, fastv, for rapid identification
of viruses and microorganisms from sequencing data. This
tool is based on the k-mer mapping and extension method
and relies on high-quality unique k-mers. We also describe a
new tool, UniqueKMER, to generate such high-quality unique
k-mer sets for a large collection of viruses and microorganisms.
Experimental results show that with the k-mers generated by
UniqueKMER, fastv is able to detect SARS-CoV-2 with 100%
sensitivity and 100% specificity.

Because of the rapid and unpredictable spread of COVID-
19, it is important to develop inexpensive, rapid and reliable
methods for identification of its causative agent, SARS-CoV-2.
Next-generation sequencing-based methods are suitable for
SARS-CoV-2 detection and offer some advantages over other
detection methods. Therefore, computational tools that can
rapidly and reliably identify SARS-CoV-2 from sequencing
data will be valuable to the research community. Fastv
can also output on-target (e.g. SARS-CoV-2) clean reads to
individual FASTQ files, which can be input to downstream
analysis pipelines. For example, genome assembly with the
on-target clean reads will be simpler and faster. The on-
target reads can also be input to database search utilities like
BLAST [46].

Although our original intention in developing fastv and
UniqueKMER was to quickly identify SARS-CoV-2 from sequenc-
ing data, these tools can be used more generally to detect any
target virus or microorganism for which unique k-mer files are
provided. The results of our experiments with EBV, HPV and
HBV, sequencing data demonstrate the general applicability of
our tools. Because fastv can rapidly scan tens of thousands of
genomes, it is a powerful tool for identifying pathogens from
mNGS data. Fastv can also be used for rapid identification of
viral and bacterial pathogens from a biological sample. We will
continue to update our resource library so that researchers
can directly use the pregenerated high-quality unique k-mer
files for mNGS data analysis. Currently, fastv sorts the results
according to the genome coverage and median k-mer hits
without considering the pathogenicity of each virus or microor-
ganism. In future work, we will incorporate data from microbial
pathogen databases such as the Database for Reference
Grade Microbial Sequences (FDA-ARGOS) [47], to provide
further assist in pathogen identification. It should be noted
that fastv is unable to identify novel pathogens that are
previously unreported. As sequencing technology continues to
progress, we will update this toolset as needed to ensure its
suitability for pathogen identification using current sequenc-
ing technologies. K-mer resources will be updated at least
once per quarter to include genomes of new viruses and
microorganisms.

Availability
As part of the OpenGene projects, fastv and UniqueKMER
are open-sourced through the MIT license. Fastv is available
at https://github.com/OpenGene/fastv, and UniqueKMER is
available at https://github.com/OpenGene/UniqueKMER. The
precomputed unique k-mer resources are also provided in these
repositories.

Key Points
• This tool presents a new tool fastv for rapid identifi-

cation of SARS-Cov-2, other viruses and microorgan-
isms.

• Another tool UniqueKMER is presented for generation
of high-quality unique k-mers.

• Unique k-mer resources for tens of thousands of
viruses and microorganisms have been precomputed
and uploaded to the fastv repository.

Supplementary data

Supplementary data are available online at https://academic.
oup.com/bib.
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