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Atopic dermatitis (AD) is a chronic, itchy skin condition that affects 15e20% of children but may occur at any
age. It is estimated that 16.5 million US adults (7.3%) have AD that initially began at age >2 years, with nearly
40% affected by moderate or severe disease. Therefore, a quantitative measurement that tracks the evolution of
AD severity could be extremely useful in assessing patient evolution and therapeutic efficacy. Currently,
SCOring Atopic Dermatitis (SCORAD) is the most frequently used measurement tool in clinical practice.
However, SCORAD has the following disadvantages: (i) time consuming—calculating SCORAD usually takes
about 7e10 minutes per patient, which poses a heavy burden on dermatologists and (ii) inconsistency—owing
to the complexity of SCORAD calculation, even well-trained dermatologists could give different scores for the
same case. In this study, we introduce the Automatic SCORAD, an automatic version of the SCORAD that
deploys state-of-the-art convolutional neural networks that measure AD severity by analyzing skin lesion im-
ages. Overall, we have shown that Automatic SCORAD may prove to be a rapid and objective alternative
method for the automatic assessment of AD, achieving results comparable with those of human expert
assessment while reducing interobserver variability.
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INTRODUCTION
Atopic dermatitis (AD) is a multifaceted, chronic relapsing
inflammatory skin disease that is commonly associated with
other atopic manifestations such as allergic conjunctivitis,
allergic rhinitis, and asthma (Berke et al., 2012; Bieber, 2008;
Drucker et al., 2017). It is the most common skin disease in
children, affecting approximately 15‒20% of children
and 1‒3% of adults (Eichenfield et al., 2014; Nutten, 2015).
The onset of the disease is most common by age 5 years, and
early diagnosis and treatment are essential to avoid compli-
cations of AD and improve QOL (Eichenfield et al., 2014).

The European Task Force on Atopic Dermatitis developed
the SCOring Atopic Dermatitis (SCORAD) index (Stalder
et al., 1993) to create a consensus on assessment methods
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for AD. The SCORAD index consists of the interpretation of
the extent of the disorder, that is, the intensity, composed of
six visual items (erythema, edema/papules, effect of
scratching, oozing/crust formation, lichenification, and dry-
ness), and two subjective symptoms (itch and sleeplessness);
the maximum score is 103 points. If the subjective symptoms
(itch and sleeplessness) of the SCORAD are not assessed, the
maximum score is 83 points, and it is known as the objective
SCORAD. The SCORAD index is influenced by subjective
ratings that may be affected by social and cultural factors,
and therefore, the European Task Force on Atopic Dermatitis
recommends the objective SCORAD. One of the advantages
of using the objective SCORAD system is that it is based on a
European consensus of experts on pediatric dermatology. The
system is representative and well-evaluated (Schmitt et al.,
2013) but shows, as with all other systems, intraobserver
and interobserver disagreements. However, it is currently
widely used in clinical practice to assess patient evolution
and measure the effectiveness of treatments (Butler et al.,
2020; Nahm et al., 2020; Panahi et al., 2012; Silverberg
et al., 2020; Yoo et al., 2020).

Much work has been done in the development of a better
scoring system to reach a more objective and quicker-to-fill
method. Novel tools for patients, such as the patient-
oriented validated scoring system patient-oriented-
SCORAD (Stalder et al., 2011) detect changes in signs and
symptoms without the intervention of doctors. Likewise, the
Three Item Severity score is a simple method to determine the
severity of AD, and takes about 43 seconds per patient. The
Eczema Area and Severity Index (Hanifin et al., 2001)
showed a good interobserver and intraobserver variability,
but it is a complex and time-consuming index to fill. How-
ever, all these scoring systems still suffer from the same
estigative Dermatology. This is an open
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Table 1. Annotator’s Performance in Lesion Surface
Segmentation

Datasets ACC AUC IoU F11 RSD Cohen’s Kappa

Legit.Health-AD 86.9 0.91 0.91 0.88 8.6 0.78

Legit.Health-AD-Test 81.0 0.91 0.86 0.91 9.1 0.79

Legit.Health-AD-FPK-IVI 91.3 0.91 0.80 0.86 9.0 0.80

Abbreviations: ACC, accuracy; AUC, area under the curve; IoU,
intersection over union; RSD, relative SD.

These results provide the background for comparing with the results of
Legit.Health-SCORADNet.
1F1 denotes F1 score.
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variability problem because they share similarities with
SCORAD (Chopra et al., 2017).

In recent years, artificial intelligence (AI) has achieved
human-expert-like performance in a wide variety of tasks
such as skin cancer classification, detection, and lesion seg-
mentation. Extensive work has been done in the detection of
AD with different imaging methods, including multiphoton
tomography (Guimarães et al., 2020), clinical image (Wu
et al., 2020), and even electronic health records (Gustafson
et al., 2017). Skin pathologies such as psoriasis have also
attracted the attention of researchers for the same reasons as
AD, because the main scoring system, PASI, is a time-
consuming and highly subjective scoring method. Dash
et al. (2019) proved that convolutional neural networks are
able to segment psoriasis with high accuracy, sensitivity, and
specificity, outperforming existing methods. Pal et al. (2016)
showed the effectiveness of convolutional neural networks
in visual sign classification, a key task to automatic severity
grading. Dash et al. (2020) combined both segmentation and
severity grading, creating a computer-aided diagnosis (CADx)
system for psoriasis lesion grading.

Creating a more objective and practical scoring system for
AD assessment is key to improving evidence-based derma-
tology. In this study, we introduce the Automatic SCORAD
(ASCORAD), an automatic version of the SCORAD that
provides a quick, accurate, and fully automated scoring
method.
RESULTS
Annotation

Firstly, we calculated the variability among the expert
dermatologists across the three datasets. This provided a
baseline that made possible the appraisal of the results of the
Legit. Health-SCORADNet algorithm. We found out that the
lesion segmentation annotation was very consistent across
datasets, with an accuracy of 81.0‒91.3%, area under the
curve (AUC) of 0.91, F1 of 0.86‒0.91, and relative SD (RSD)
of 8.6‒9.1%. It can also be seen that Legit.Health-AD-FPK-
IVI had the largest disagreement, if we look at the intersec-
tion over union (IoU) metric, with 0.80 against 0.86 and 0.91
on light-skin datasets. Note that the F1 score is also the
lowest for the light-skin dataset. In regard to visual sign
severity assessment, Legit.Health-AD had more disagreement
among the specialists, but the other datasets had more posi-
tively skewed distributions, meaning that the majority of the
intensity values were close to 0.
JID Innovations (2022), Volume 2
Lesion surface segmentation. We compared the difference
at pixel-level because there was no physical reference on
the images to obtain the real size of the lesions. As shown in
Table 1, the annotations of the three datasets had an RSD
close to 9%, Cohen’s kappa of 0.79, and AUC around 0.90.
Despite the similarity in the results on the previously
mentioned metrics, Legit.Health-AD-FPK-IVI seemed to
have more discrepancies among the annotators because it
showed the lowest IoU and F1 values, 0.80 and 0.86,
respectively.

Visual sign severity assessment. The results presented in
Tables 2‒4 provide the baseline to appraise the results of
Legit.Health-SCORADNet in the visual sign severity-assess-
ment task. All the values are below random RSD and above
random full agreement rate (FAR), partial agreement rate
(PAR) 1, and PAR2 for all visual signs. Erythema was the
visual sign that obtained the best Cohen’s kappa value in
general, and lichenification (0.06) in Legit.Health-AD and
excoriations (0.08) and dryness (0.09) in Legit.Health-AD-
FPK-IVI had values very close to 0. The six visual signs
constitute a maximum of 63 points of the SCORAD because
the sum of the intensities was multiplied by 7

5 (equation 2).
Given the RSD results in terms of SCORAD points, the
variability of Legit.Health-AD was around 11 points
( dRSD ¼ 17%), and both Legit.Health-AD-Test and
Legit.Health-AD-FPK-IVI had the same variability, on
average, of 8 points ( dRSD ¼ 12%).

Legit.Health-SCORADNet

Legit.Health-SCORADNet was validated through two exper-
iments in which the network was trained on several data
splits because we applied a k-fold cross-validation technique:
6-fold for the first experiment and 3-fold for the second
experiment. All the results presented in Tables 5‒9 were
obtained by averaging the results of the network’s perfor-
mance on the different data splits and were measured using
the same metrics as the annotation, with the purpose of
making a direct comparison of both.

Legit.Health-SCORADNet showed a good performance at
visual sign severity assessment, obtaining a relative mean
absolute error (RMAE) of 13.0% and AUC of 0.93 at surface
estimation. The total execution time of Legit.Health-
SCORADNet for a single image was 0.34 seconds, running
on an Intel Xeon Platinum 8260 CPU at 2.40 GHz (Intel,
Santa Clara, CA).

Lesion surface segmentation. Legit.Health-SCORADNet’s
lesion surface segmentation results are presented in Tables 5
and 6. The AUC, IoU, and F1 for light skin were 0.93, 0.64,
and 0.75, respectively, whereas the results on those metrics
were 0.83, 0.32, and 0.42, respectively, for dark skin.
However, when training in a small subset of dark skin im-
ages (experiment 2), the results significantly improved (0.41
for IoU and 0.33 for F1), as shown in Table 6. Figures 1 and
2 show the ground truth and the prediction for a sample
case of Legit.Health-AD-Test and Legit.Health-AD-FPK-IVI,
respectively.

Visual sign severity assessment. On average, we achieved
the best performance when we trained the network with the
ground truth that resulted from applying the median and



Table 2. Annotator’s Performance in Legit.Health-AD Visual Sign Severity Assessment

Visual Signs RSD RMAE (Mean) RMAE (Median) FAR PAR1 PAR2 Cohen’s Kappa

Erythema 11.5 10.7 8.3 33.1 92.0 94.5 0.34

Edema 16.2 14.7 11.9 21.3 74.1 84.9 0.15

Oozing 20.0 18.2 14.8 18.0 59.6 79.3 0.19

Excoriations 17.4 15.9 12.9 22.6 66.5 81.2 0.17

Lichenification 20.3 18.3 15.1 10.7 59.1 74.6 0.06

Dryness 18.7 16.9 12.8 20.0 69.3 82.3 0.14

Average 17.4 15.8 13.8 14.4 64.7 79.3 0.17

Abbreviations: FAR, full agreement rate; PAR, partial agreement rate; RMAE, relative mean absolute error; RSD, relative SD.

These results provide the baseline to appraise the results of Legit.Health-SCORADNet.

Table 3. Annotator’s Performance in Legit.Health-AD-Test Visual Sign Severity Assessment

Visual Signs RSD RMAE (Mean) RMAE (Median) FAR PAR1 PAR2 Cohen’s Kappa

Erythema 12.1 11.2 8.8 34.0 88.0 91.5 0.35

Edema 7.9 7.3 5.6 55.8 93.1 96.7 0.22

Oozing 10.3 9.5 7.5 44.4 89.9 93.1 0.39

Excoriations 12.7 11.6 9.4 39.7 79.0 87.1 0.20

Lichenification 10.1 9.3 7.4 46.8 88.0 92.9 0.21

Dryness 16.5 14.9 12.2 20.4 72.4 80.3 0.19

Average 11.6 10.6 8.5 40.2 85.0 90.3 0.26

Abbreviations: FAR, full agreement rate; PAR, partial agreement rate; RMAE, relative mean absolute error; RSD, relative SD.

These results provide the baseline to appraise the results of Legit.Health-SCORADNet.

Table 4. Annotator’s Performance in Legit.Health-AD-FPK-IVI Visual Sign Severity Assessment

Visual Signs RSD RMAE (Mean) RMAE (Median) FAR PAR1 PAR2 Cohen’s Kappa

Erythema 11.9 10.8 8.8 42.3 80.1 88.2 0.23

Edema 8.6 8.0 6.3 54.0 90.9 94.5 0.13

Oozing 12.7 11.6 9.4 35.1 81.9 87.3 0.27

Excoriations 9.7 9.0 7.0 45.0 92.7 95.5 0.08

Lichenification 13.3 12.2 9.7 27.9 85.5 90.9 0.27

Dryness 18.2 16.4 13.4 10.8 70.2 81.0 0.09

Average 12.4 11.3 9.1 35.9 86.6 89.6 0.18

Abbreviations: FAR, full agreement rate; PAR, partial agreement rate; RMAE, relative mean absolute error; RSD, relative SD.

These results provide the baseline to appraise the results of Legit.Health-SCORADNet.

Table 5. Legit.Health-SCORADNet’s Results in Light Skin Lesion Surface Segmentation

Clinical Sign ACC, % (95% CI) AUC (95% CI) IoU (95% CI) F11 (95% CI)

Lesion surface 84.6 (80.9‒88.3) 0.93 (0.90‒0.96) 0.64 (0.59‒0.69) 0.75 (0.71‒0.79)

Abbreviations: ACC, accuracy; AUC, area under the curve; CI, confidence interval; IoU, intersection over union.
1F1 denotes F1 score.
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normalizing the outcome into the 0‒100 range (Table 7).
Using that configuration, we ran experiments 1 and 2, and
we got an RMAE of 13.0% in Legit.Health-AD-Test, which
had an interobserver RMAE of 10.6%, having trained
Legit.Health-SCORADNet on a dataset with 15.8% RMAE
(Table 8). The RMAE on Legit.Health-AD-FPK-IVI was slightly
higher: 14.3% (Table 9) when including dark skin images in
the training set, and 19.8%, without including dark skin im-
ages. The visual sign with the worst performance on light skin
was oozing (19.4%), followed by edema (16.0%). Lichen-
ification (19.8%) and dryness (19.3%) were the most difficult
visual signs for the algorithm to correctly predict on dark
skin, with edema (15.4%) also having a value above the
average. Interestingly, oozing got a much lower RMAE on
Legit.Health-AD-FPK-IVI, whereas both test datasets had the
same oozing intensity distribution. The distribution of pre-
dicted intensity values was plotted next to the ground truth
distributions (Figure 3) to show that Legit.Health-
www.jidinnovations.org 3
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Table 6. Legit.Health-SCORADNet’s Results in Dark Skin Lesion Surface Segmentation

XXX

Experiment 1 Experiment 2

ACC, %
(95% CI)

AUC
(95% CI)

IoU
(95% CI)

F11

(95% CI)
ACC, %
(95% CI)

AUC
(95% CI)

IoU
(95% CI)

F11

(95% CI)

Lesion surface 74.0 0.83 0.32 0.42 79.2 0.87 0.45 0.55

(65.9‒82.1) (0.76‒0.90) (0.23‒0.41) (0.33‒0.51) (66.3‒92.1) (0.76‒0.98) (0.29‒0.61) (0.39‒0.71)

Abbreviations: ACC, accuracy; AUC, area under the curve; CI, confidence interval; IoU, intersection over union.

Results are divided by experiment. The algorithm in experiment 1 was trained solely on light-skinned patient images, and the algorithm in experiment 2 was
trained on mixed data containing 8% of dark-skinned patient images.
1F1 denotes F1 score.

Table 7. Legit.Health-SCORADNet’s Results in Visual Sign Severity Assessment

Range Training GT

Legit.Health-AD-Test Legit.Health-AD-FPK-IVI

RMAE 11.(95% CI) RMAE 22 (95% CI) RMAE 1 (95% CI) RMAE 2 (95% CI)

0‒3 Median 13.6 (9.7‒17.5) 14.3 (10.4‒18.2) 21.2 (17.3‒25.0) 20.8 (16.9‒24.7)

0‒10 Median 14.3 (10.4‒18.2) 13.2 (9.3‒17.0) 22.8 (18.9‒26.7) 20.0 (16.0‒23.9)

0‒100 Median 14.4 (10.5‒18.3) 13.0 (9.1‒16.9) 22.6 (18.7‒26.5) 19.8 (15.9‒23.7)

0‒100 Mean 13.5 (9.6‒17.4) 13.4 (9.5‒17.3) 21.1 (17.2‒25.0) 19.9 (16.0‒23.8)

Abbreviations: CI, confidence interval; DEX, Deep EXpectation; RMAE, relative mean absolute error.

The models were trained on Legit.Health-AD using a different range and ground truth method and tested on Legit.Health-AD-Test and Legit.Health-AD-FPK-
IVI.
1RMAE 1 is obtained by applying the argmax function to the prediction.
2RMAE 2 is obtained by applying the DEX method to the prediction.

Table 8. Legit.Health-SCORADNet’s Results in Light-
Skin Visual Sign Severity Assessment

Visual Signs RMAE 11 (95% CI) RMAE 22 (95% CI)

Erythema 14.1 (10.2‒18.0) 13.3 (9.4‒17.2)

Edema 16.1 (12.2‒20.0) 16.0 (12.1‒19.9)

Oozing 22.3 (18.4‒26.2) 19.4 (15.5‒23.3)

Excoriations 11.5 (7.6‒15.4) 9.6 (5.7‒15.4)

Lichenification 10.3 (6.4‒14.2) 8.7 (4.8‒12.6)

Dryness 12.4 (8.5‒16.3) 11.3 (7.4‒15.2)

Average 14.4 (10.5‒18.3) 13.0 (9.1‒16.9)

Abbreviations: CI, confidence interval; DEX, Deep EXpectation; RMAE,
relative mean absolute error.
1RMAE 1 is obtained by applying the argmax function to the prediction.
2RMAE 2 is obtained by applying the DEX method to the prediction.

Table 9. Legit.Health-SCORADNet’s Results in Dark Skin

Visual Signs

Experiment 1

RMAE 11 (95% CI) RMAE 22 (95

Erythema 17.8 (13.9‒21.7) 15.7 (11.8‒

Edema 16.8 (12.9‒20.7) 18.6 (14.7‒

Oozing 24.9 (21.0‒28.8) 22.7 (18.8‒

Excoriations 10.1 (6.2‒14.0) 9.6 (5.7‒1

Lichenification 25.9 (22.0‒29.8) 20.6 (16.7‒

Dryness 39.9 (36.0‒43.8) 31.7 (27.8‒

Average 22.6 (18.7‒26.5) 19.8 (15.9‒

Abbreviations: CI, confidence interval; DEX, Deep EXpectation; RMAE, relativ

Results are divided by experiment. The algorithm in experiment 1 was trained so
trained on mixed data containing 8% of dark-skinned patient images.
1RMAE 1 is obtained by applying the argmax function to the prediction.
2RMAE 2 is obtained by applying the DEX method to the prediction.

A Medela et al.
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SCORADNet was able to predict values in the whole range
and not only the mean of the distribution.

DISCUSSION
ASCORAD shows promise as an automatic scoring system
that might enable a more objective and quicker evaluation.
Indeed, a deep learning algorithm could simplify the
assessment of AD, a very common skin disease that affects
15‒20% of children (Asher et al., 2006) and 1‒3% of adults
worldwide. Scoring systems such as SCORAD and Eczema
Area and Severity Index have high interobserver variability
and are time-consuming. An AI-automated approach may
help to reduce such bias and therefore be a more precise and
objective criterion for evaluation in pharmaceutical studies
and routine clinical practice.
Visual Sign Severity Assessment

Experiment 2

% CI) RMAE 1 (95% CI) RMAE 2 (95% CI)

19.6) 16.2 (12.2‒20.2) 14.3 (10.3‒18.3)

22.5) 18.1 (14.1‒22.0) 15.4 (11.4‒19.4)

26.6) 9.3 (5.3‒13.3) 9.0 (5.0‒13.0)

3.5) 10.2 (6.2‒14.2) 8.0 (4.0‒12.0)

24.5) 24.0 (20.0‒28.0) 19.8 (15.8‒23.8)

35.6) 26.0 (22.0‒30.0) 19.3 (15.3‒23.3)

23.7) 17.3 (13.3‒21.3) 14.3 (10.3‒18.3)

e mean absolute error.

lely on light-skinned patient images, and the algorithm in experiment 2 was



Figure 1. Lesion surface segmentation

masks. (a) Original image. (b)

Legit.Health-SCORADNet’s

prediction. (c) Ground truth. (d) Mask

drawn by the first specialist. (e) Mask

drawn by the second specialist. (f)

Mask drawn by the third specialist.

Legit.Health-AD-Test sample image

gathered from Danderm Dermatology

Atlas with the owner’s permission.

Figure 2. Results of experiments 1 and 2 models on a dark skin image. (a) The predicted surface mask of the model trained on light skin. (b) The predicted

surface mask of the model trained on both light and dark skin. (c) The ground truth mask. Legit.Health-AD-FPK-IVI sample image gathered from Danderm

Dermatology Atlas with the owner’s permission.
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Our results show that deep learning may be noticed as a
fast and objective alternative method for the automatic
assessment of AD with great potential, already achieving
results comparable with those of human expert assessment,
while reducing interobserver variability and being more time-
efficient. ASCORAD could also be used in situations where
face-to-face consultations are not possible, providing an
automatic assessment of clinical signs and lesion surface. It
could also be a potential tool to reduce the time and effort of
training clinical assessors for clinical trials and in clinical
practice.

However, additional validation studies are needed in real-
world settings and with diverse populations to ensure
generalizability. Despite that the dataset used in this study
captures the variability of a wide range of parameters, the
algorithm should be tested on other datasets to prove its
robustness and generalizability, in particular to dark skin
tones. In the future, we intend to test ASCORAD in validation
studies in which the objective part of the SCORAD will be
assessed in person by the dermatologist. Comparing the result
of the algorithm with those of face-to-face assessment is
crucial because some visual signs such as edema, dryness, or
oozing might present more difficulties in estimating the
severity by image than in person. Furthermore, the AI Marker
will be used in this study, helping the CADx system to
correctly calculate the surface by converting lesion pixels
into a metric unit of measurement.

To put our results into clinical context, the annotated lesion
area was compared with the algorithm-predicted area.
Because some photographs do not show the complete lesion
www.jidinnovations.org 5
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Figure 3. Legit.Health-AD-Test visual sign intensity distribution of ground truth labels and predictions. The horizontal axis is in the range 0‒100 because the

results are given using the best performing model, which was trained with ground truth labels in that range.
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area, live assessment method cannot be directly compared
with the photograph assessment method. However, image-
based area assessment by an expert and predicted area
have the same basis for their analysis and are therefore
directly comparable. Legit.Health-SCORADNet resulted in a
good overall RMAE of 13.0% and an excellent AUC of 0.93
and IoU of 0.75 for lesion surface estimation on light skin.

Legit.Health-AD-Test and Legit.Health-AD-FPK-IVI data-
sets have strong positively skewed distributions for all the
visual signs, which means that the most frequent intensities
are 0 and 1. It seems that a vast majority of images are of
mild AD or that the observers had a strong bias toward low-
intensity values. If the majority of the visual signs are close
to zero intensity, it is possible that the RSD reflected
lower disagreement (9% vs. 17% in Legit.Health-AD). In
fact, Oranje et al.(2007) found an RSD of 20%, which
was very close to the interobserver variability found in
Legit.Health-AD.
JID Innovations (2022), Volume 2
Looking at Cohen’s kappa values, it seems that some of the
visual signs such as lichenification in Legit.Health-AD and
excoriations and dryness in Legit.Health-AD-FPK-IVI have a
null interobserver agreement. However, Cohen’s kappa is a
statistical measure for nominal classification problems, and
metrics such as RSD, RMAE, FAR, PAR1, and PAR2 show that
the annotation of the specialists is far from random. For
example, the visual sign excoriations in Legit.Health-AD-
FPK-IVI obtains a Cohen’s kappa value of 0.09 and PAR2 of
95.5%, far from the random value (62%).

In short, we have proved that a convolutional neural
network trained with the observer’s average results can
achieve an RMAE similar to that of one of the experts.
Furthermore, our automatic method outputs a value in the
range 0‒100 for each visual sign instead of the range 0‒3 as
the usual SCORAD, broadening the spectrum of possible
outputs and turning the discrete problem into more
continuous.



Table 10. Demographic Characteristics

Datasets

Age Groups (%) Sex (%) Skin Type (%)

<18 18‒29 30‒39 40‒49 50‒64 >65 Male Female Light Dark

Legit.Health-AD 31 23 26 14 4 2 39 61 100 0

Legit.Health-AD-Test — — — — — — — — 100 0

Legit.Health-AD-FPK-IVI — — — — — — — — 0 100

1 Lakshminarayanan B, Teh YW. Inferring ground truth from multi-annotator ordinal

data: a probabilistic approach. arXiv 2013.
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We believe that our algorithm has the potential to reduce
costs in dermatology by saving time while improving the
documentation process of the evolution of the disease. This
could be interesting for the application in pharmaceutical
clinical trials, as well as in clinical practice.

MATERIALS AND METHODS
Datasets and annotations

In this retrospective, noninterventional study, three new annotated

datasets were constructed to train and validate the performance of

the lesion surface segmentation and visual sign severity assessment

algorithms. The first two datasets comprise solely light-skinned pa-

tients (Fitzpatrick I‒III) because it proved to be easier to gather

datasets of such characteristics, whereas the third consists of images

of IV‒VI skin types according to the Fitzpatrick scale. Demographic

characteristics of each dataset are gathered in Table 10. Clinical

images were collected from online public sources, and patient

consent and ethics committee approval were not necessary. Pub-

lished images belong to Danderm Dermatology Atlas, and the author

gave his consent for publication.

Legit.Health-AD dataset. Legit.Health-AD is a dataset collected

from online dermatological atlases that consist of 604 images that

belong to light-skinned patients, of which one third are children

(Table 10), suffering from AD, with lesions present on different body

parts. The dataset contains the following percentage of body zones:

head (22%), trunk (11%), arms (23%), hands (9%), legs (16%), feet (8%),

genitalia (3%), full body (1%), and skin close-up (7%). The dataset

contains a substantial variety of clinical images taken from different

angles, distances, light conditions, body parts, and disease severity.

Figure 4 depicts the normalized intensity distributionby visual sign. The

images have a minimum size of 260 � 256 pixels, an average size of

667 � 563 pixels, and a maximum size of 1,772 � 1,304 pixels.

Legit.Health-AD-Test dataset. A second dataset, Legit.Health-

AD-Test, was built for testing purposes. The dataset was gathered

from several dermatological atlases publicly available and contains a

total number of 367 images that belong exclusively to light-skinned

patients. The dataset is only characterized by skin type (Table 10),

and basic demographic information such as age and sex is missing

because the original sources do not provide that information. The

images were downloaded one by one, and each of them was

reviewed by a physician to approve the inclusion of the image in the

dataset. Duplicates or very similar images were removed, and no

other data sampling technique was applied. Similar to Legit.Health-

AD, the dataset contains images of children and adults with great

variability in angles, distances, light conditions, body parts, and

disease severity. The dataset contains the following percentage of

body zones: head (35%), trunk (20%), arms (18%), hands (7%), legs

(13%), feet (2%), genitalia (2%), and skin close-up (3%). The visual

sign intensity distribution of this dataset is different from that of
Legit.Health-AD, having more cases of zero intensity for most of the

visual signs (Figure 4). The images have a minimum size of 313 �
210 pixels, an average size of 574 � 537 pixels, and a maximum

size of 2,848 � 3,252 pixels.

Legit.Health-AD-FPK-IVI dataset. Legit.Health-AD-FPK-IVI is a

dataset collected from online dermatological atlases that contain

photos of children and adult patients with Fitzpatrick IV‒‒VI skin

types suffering from AD. The same manual procedure as that of

Legit.Health-AD-Test was applied to gather the dataset, and basic

demographic information such as age and sex is also missing

(Table 10). It is composed of 112 images with a minimum size of 200

� 204 pixels, an average size of 766 � 695 pixels, and a maximum

size of 3,024 � 4,032 pixels. The dataset contains the following

percentage of body zones: head (41%), trunk (10%), arms (17%),

hands (8%), legs (13%), feet (3%), and skin close-up (8%). The goal

of including this dataset in the study was to gather preliminary evi-

dence of the efficiency of the algorithms in dark skin.

Ground truth labels

The corresponding ground truths of each datasetwere prepared by nine

experts, three for each dataset, who treat patients with AD in their daily

practice, to reduce variability by combining their results. The experts

annotated the images without more context than the images. They had

to draw a mask over the lesion and choose a score from 0 to 3 for each

visual sign that comprise the SCORAD.

We obtained the ground truth labels for lesion segmentation and

visual sign intensity classification by averaging the masks of the three

annotators and by averaging the intensity levels. We chose the mean

over the median because it is the statistical measure that gets the best

results for generating ground truth labels from multiannotator ordinal

data (Lakshminarayanan and Teh, 20131).

Data preprocessing

Images were resized to 512 � 512, and pixel values scaled between

0 and 1. In addition, images in which the disease was too small in

the picture were cropped, focusing on the disease. Ground truth

labels were obtained from averaging the results as explained in the

previous section. However, we ran some additional experiments

using an alternative ground truth only for the training set, consisting

of the median visual intensity, instead of the mean. As a result of

applying the mean and median, discrete visual sign intensity levels

yielded real numbers, which had to be rounded to return to the

discrete range 0‒3. To prevent information loss, we considered

rescaling the values to 0‒10 and 0‒100 before rounding and

compared these ranges with the original one.

With regard to lesion surfacemasks, the averagemaskwas computed,

resulting in a grayscale image in the range 0‒255. A pixel intensity
www.jidinnovations.org 7
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Figure 4. Comparison of the intensity level distribution by a visual sign of the datasets used in the study.

3 He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition.

arXiv 2015.
4
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threshold of 155was applied to obtain a binarymask thatwas used as the

ground truth. Images were finally normalized to the range 0‒1.

Deep learning model

The ASCORAD calculation can be divided into two parts: lesion

surface segmentation and visual sign severity assessment. We trained

two separated models, one for each task, and named Legit.Health-

SCORADNet to the neural networks involved in the calculation of

the ASCORAD (source code is available at github.com/Legit-Health/

ASCORAD).

Lesion surface segmentation. For the lesion surface segmen-

tation problem, we applied a U-Net, an architecture that was first

designed for biomedical image segmentation and showed great re-

sults on the task of cell tracking (Ronneberger et al., 20152).

The main contribution of this architecture was the ability to achieve

good results even with hundreds of examples. The U-Net consists of
2 Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical

image segmentation. arXiv 2015.

JID Innovations (2022), Volume 2
two paths: a contracting path and an expanding path. The con-

tracting path is a typical convolutional network where convolution

and pooling operations are repeatedly applied. We decided to use

the Resnet-34 (He et al., 20153) architecture, which is the typical

backbone used in the contracting path.
Visual sign severity assessment. We trained a multioutput (Xu

et al., 2020) classifier, with one softmax layer per visual sign

(Figure 5). We used the EfficientNet-B0 network architecture (Tan

and Le, 20194) that was pre-trained on approximately 1.28 million

images (1,000 object categories) from the 2014 ImageNet Large

Scale Visual Recognition Challenge (Russakovsky et al., 20145) and
Tan M, Le QV. EfficientNet: rethinking model scaling for convolutional neural

networks. arXiv 2019.
5 Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. ImageNet large

scale visual recognition challenge. arXiv 2014.



Figure 5. The visual signs that

compose the SCORAD. Each visual

sign can be classified into four

intensity levels: none (0), mild (1),

moderate (2), and severe (3). The

multioutput EfficientNet-B0 network

trained for visual sign intensity

estimation has one head for each

visual sign. Lichenf., lichenification;

SCORAD, SCOring Atopic Dermatitis.
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trained it on our dataset using transfer learning (Pan and Yang, 2010).

EfficientNets achieve better accuracy and efficiency than previous

convolutional neural networks with fewer parameters by applying a

new scaling method that uniformly scales all dimensions of depth/

width/resolution using a simple yet highly effective compound co-

efficient. There are eight versions, consisting of a different number of

parameters, with the B0 being the smallest network that achieves

state-of-the-art 77.1% top-1 accuracy on ImageNet for a network

consisting of 5 million parameters.

Visual sign severity grading can be seen as a piecewise

regression or alternatively as a discrete classification with four

discrete value labels for each visual sign intensity. In the case

of multiple visual signs, a multilabel classification network can

be used to solve the problem. However, to exploit methods

such as Deep EXpectation (Rothe et al., 2015), one softmax

layer per visual sign is needed. So, for the purpose of applying

the Deep EXpectation method, we constructed a multioutput

classifier with six softmax layers consisting of N neurons each,

with N being 4, 11, or 101, depending on the range of the

ground truth labels.

Deep EXpectation method proved to obtain better results on

regression metrics by approaching a regression problem the same

way that you would approach a classification problem, and

therefore applying a softmax expected value:

EðOÞ ¼
XN
i¼ 0

yioi (1)

where O ¼ 0;1; :::; N is the N-dimensional output layer of each

visual sign, representing softmax output probabilities oi˛ O, and

yi are the discrete intensity levels corresponding to each class i.

Evaluation metrics

Dermatologists may have a bias, a fixed effect where one observer

consistently measures high or low. There may also be a random ef-

fect or heterogeneity, where the observer scores higher than others

for some patients and lower for others. To measure interobserver

variability, understand annotation quality in more detail, and

compare it with the performance of the algorithms, we calculated

the following set of metrics.

First of all, we computed the RSD and Cohen’s kappa for all the

visual signs and lesion surface segmentation. In the case of the
annotation of visual sign intensity, we also measured the times that

the three observers gave the same result or the FAR. To complement

FAR, two more metrics were calculated: the times that at least two

observers gave the same result, whereas the third observer gave a

result that deviated �1 from the other observer’s or the PAR1. The

same metrics without the �1 condition for the third observer were

called PAR2. Therefore, the metrics are ordered as follows in regard

to their restrictiveness: FAR > PAR1 > PAR2. To assess the quality of

the annotations and understand the results in more depth, we

compared the results with an algorithm that randomly picked three

intensity values for each visual sign. We ran this millions of times

and found that RSD of a random visual sign evaluation tends to 27%,

FAR tends to 6%, PAR1 tends to 34%, and PAR2 tends to 62%.

We also calculated the metrics that allowed a direct comparison

of the Legit.Health-SCORADNet and the annotation, for both lesion

segmentation and visual sign severity assessment. Pixel accuracy,

AUC, IoU, and F1 score metrics were the preferred metrics for

segmentation, whereas for the severity assessment of visual signs, we

used RMAE.

Experimental setup

We ran two main experiments for each task: one with images con-

taining only light skin and another adding a small number of dark

skin images in the training set.

In the first experiment, we used Legit.Health-AD for training and

Legit.Health-AD-Test and Legit.Health-AD-FPK-IVI for testing. We

followed a six-fold cross-validation strategy to train the models. The

models trained on the different folds were tested on both test sets,

and the results were averaged over the folds to reduce the variance

and bias.

The second experiment was built to better understand the per-

formance of the network on dark skin when including a tiny fraction

of dark-skinned patient images in the training set. In this experiment,

we used Legit.Health-AD, Legit.Health-AD-Test, and a subset of

Legit.Health-AD-FPK-IVI for training and the rest for testing. The

training and test subsets of Legit.Health-AD-FPK-IVI were obtained

with a three-fold cross-validation strategy. This means that the

training set was composed of 971 light-skinned patient images,

Legit.Health-AD and Legit.Health-AD-Test combined, and 75 dark-

skinned patient images, which is a tiny fraction of the total images

(8%). The dark skin test set was composed of the remaining 37 im-

ages. This split was done three times (three-fold), including different

images in the training and test set, to obtain more reliable results.
www.jidinnovations.org 9
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Figure 6. CADx system. (a) Illustration

of the questionnaire. (b) Illustration of

the report generated by the CADx

system. The report contains the

evolution across the time of the

ASCORAD, the last reported

ASCORAD item by item, a picture of

the lesion surface predicted by the

algorithm, the final ASCORAD score

with its translation to a category, and

some additional information such as

image quality. The example record

shown is fictional. ASCORAD,

Automatic SCOring Atopic Dermatitis;

CADx, computer-aided diagnosis;

CET, Central European Time; DIQA,

Dermatology Image Quality

Assessment; DLQI, Dermatology Life

Quality Index; Jul, July.
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In the case of visual sign severity assessment, we also ran exper-

iments to find the optimal range, testing 0‒3, 0‒10, and 0‒100

ranges. In addition, we tested the mean and the median as the sta-

tistical measure for obtaining the ground truth of the training set. This

project was entirely run on a single NVIDIA Tesla V100 (32 giga-

bytes) graphics processing unit (Nvidia, Santa Clara, CA).

CADx system

With the objective of making the algorithms accessible to the

healthcare professional, we created a fully integrated CADx

system, a web application that integrates the Legit.Health-

SCORADNet algorithm and calculates the patient-based

ASCORAD using clinical images. The CADx system includes

three stages: uploading the images of the affected areas,

processing the images, and reporting the ASCORAD.

In the first stage, images of affected areas are uploaded to the

system using a simple user interface, depicted in Figure 6a. The user

has to choose the body zone from the options defined in the original
JID Innovations (2022), Volume 2
SCORAD (Stalder et al., 1993): head and neck, right upper limbs, left

upper limbs, right lower limbs, left lower limbs, anterior trunk, back,

and genitals. In some cases, such as children aged <2 years with all

bodies affected, a full-body photograph can also be uploaded. In

addition, the patient answers a simple questionnaire of two items:

itchiness (0‒10) and sleeplessness (0‒10).

In the second stage, the Legit.Health-SCORADNet algorithm

processes the images and automatically calculates the severity of AD

by calculating the intensity of each visual sign and the surface of the

lesion. Finally, the output of the algorithm is shown in a user-friendly

report containing an image with the estimated lesion surface and a

chart with the evolution of the ASCORAD over time. The final report

of the proposed CADx system is depicted in Figure 6b.

Computing the ASCORAD requires calculating the proportion of

skin covered by the lesion. We solved this by including a small piece

of hardware called AI Marker, a sticker with several shapes and

colors that helps to translate pixels into a metric unit of measure-

ment. The AI Marker should be kept close to the lesion, and it is
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automatically detected. In addition, the body surface area is calcu-

lated with the patient’s height and weight using the Mosteller (Lee

et al., 2008; Orimadegun and Omisanjo, 2014) formula. Once the

surface of the lesion and body surface area are estimated, the per-

centage can be calculated by dividing the surface of the lesion by the

body surface area (equation 2). This allows the CADx system to

calculate the final value of ASCORAD. When the AI Marker is not

used, lesion surface percentage is input by the user manually,

although the CADx system is still capable of calculating the visual

sign intensity values automatically.

When more than one image is uploaded, the surface of the images

is summed, and the maximum (Dirschka et al., 2017) of each visual

sign intensity is used for the ASCORAD calculation. Therefore, the

final formula for N images of the whole body can be written as

follows:

ASCORAD ¼ 1

5

XN
i

ai
body surface area

þ 7

2

X6
j¼ 1

max
�
Bi;1; :::;Bi;N

�þ C

(2)

where a stands for the lesion surface in a metric unit of measure-

ment, B˛ð0;3Þ stands for visual sign intensity, C ˛ ð0; 20Þ stands for
the sum of the symptoms input by the patient.

Software and statistical analysis

The models were implemented and trained using Pytorch (Paszke

et al., 2019); Metrics and k-fold were calculated in Python using

the SciKit-Learn package (Pedregosa et al., 20126) and plotted using

MatPlotLib (Hunter, 2017).
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