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Abstract 
The proposition of a post-antimicrobial era is all the more realistic with the continued rise of antimicrobial resistance. The 
development of new antimicrobials is failing to counter the ever-increasing rates of bacterial antimicrobial resistance. This 
necessitates novel antimicrobials and drug targets. The bacterial cell membrane is an essential and highly conserved cel-
lular component in bacteria and acts as the primary barrier for entry of antimicrobials into the cell. Although previously 
under-exploited as an antimicrobial target, the bacterial cell membrane is attractive for the development of novel antimicro-
bials due to its importance in pathogen viability. Bacterial cell membranes are diverse assemblies of macromolecules built 
around a central lipid bilayer core. This lipid bilayer governs the overall membrane biophysical properties and function of 
its membrane-embedded proteins. This mini-review will outline the mechanisms by which the bacterial membrane causes 
and controls resistance, with a focus on alterations in the membrane lipid composition, chemical modification of constituent 
lipids, and the efflux of antimicrobials by membrane-embedded efflux systems. Thorough insight into the interplay between 
membrane-active antimicrobials and lipid-mediated resistance is needed to enable the rational development of new antimi-
crobials. In particular, the union of computational approaches and experimental techniques for the development of innovative 
and efficacious membrane-active antimicrobials is explored.

Keywords Bacterial lipids · Antimicrobial resistance · Lipidomics · Bacterial membranes · Antimicrobial peptides · 
Molecular dynamics simulation · Experimental characterisation

Introduction

Antimicrobial resistance (AMR) is one of the foremost 
threats facing global public health. A 2016 review on 
antimicrobial resistance gave a conservative estimate of 
700,000 deaths caused by AMR annually (O’Neil Jim 
2016). As a result of the continuing rise of AMR infections 
in conjunction with limited advances in the development 
of novel antimicrobials, the number of AMR-related deaths 
is predicted to increase to an alarming 10 million annu-
ally by 2050 (O’Neil Jim 2016). Traditional antimicrobial 

therapeutics generally function either by altering bacterial 
cell wall synthesis (β-lactams, glycopeptides), inhibiting 
protein or nucleic acid synthesis (macrolides, quinolones 
and tetracyclines), or interfering with metabolic pathways 
(sulfonamides) (Reygaert 2018; Streicher 2021). Treat-
ment strategies often use a combination of antimicrobials 
to simultaneously target multiple biochemical sites. Resist-
ance to a single antimicrobial can arise through a myriad 
of point mutations in different genes, whilst resistance to 
combination therapies commonly occurs when several muta-
tions are acquired which reduce or eliminate susceptibility 
to multiple antimicrobials, making the pathogen multidrug 
resistant (MDR) (Alekshun and Levy 2007). The ongoing 
acquisition of AMR against most currently available antimi-
crobials requires new and innovative solutions. The bacte-
rial cell membrane is the primary barrier for antimicrobial 
entry to the cell and is a critical mediator of antimicrobial 
resistance and pathogen survival. As such, the bacterial cell 
membrane is an attractive target for the development of new 
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antimicrobials (Moellering 2011; Hurdle et al. 2011; Min-
geot-Leclercq and Décout 2016; Mehta et al. 2021).

In this mini-review, we outline the lipid-mediated mech-
anisms by which the bacterial cell membrane causes and 
controls resistance, particularly focusing on alterations of 
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membrane lipid composition, the chemical modification of 
membrane lipids and the role of multidrug efflux systems. 
We also highlight the need to gain a comprehensive under-
standing of the interplay between lipid-mediated AMR and 
the mechanisms of antimicrobial action and efflux to guide 
the rational development of new and effective membrane-
active antimicrobials.

The bacterial cell membrane and membrane‑active 
antimicrobials

Bacterial membranes are dynamic and heterogenous assem-
blies of macromolecules that contain lipids, proteins and 
glycans, and act as the primary physical barrier for the cell 
entry of antimicrobial agents (Strahl and Errington 2017; 
May and Grabowicz 2018; Willdigg and Helmann 2021). 
Consequently, membrane-active antimicrobial agents which 
target the bacterial membrane, either by disrupting the func-
tional integrity of the bacterial membrane itself or modulat-
ing the function of essential membrane-associated proteins, 
can greatly hinder bacterial viability (Zasloff 2002; Fjell 
et al. 2012; Mingeot-Leclercq and Décout 2016). Although 
there is widespread resistance to many current classes of 
antimicrobials, the highly conserved and essential nature 
of the bacterial membrane would suggest a reduced poten-
tial for bacteria to acquire resistance to membrane-active 
antimicrobials (Hurdle et al. 2011; Fjell et al. 2012; Spohn 
et al. 2019). Furthermore, as the bacterial membrane and its 
associated components act as the primary barriers for anti-
microbial entry, targeting membrane function and integrity 
can allow for increased sensitivity to other co-administrated 
antimicrobials (Mingeot-Leclercq and Décout 2016; Piz-
zolato-Cezar et al. 2019). One such example is the synergy 
between azithromycin and the membrane-active antimicro-
bial peptides, LL-37 and colistin in the treatment of several 
MDR Gram-negative pathogenic bacteria (Lin et al. 2015).

The different cellular architectures of Gram-positive 
and Gram-negative bacteria are critical to the functional 

mechanism of membrane-active antimicrobials (Fig. 1A and 
B). Gram-negative bacteria contain two membranes; an inner 
cytoplasmic membrane and an outer membrane, separated 
by a thin peptidoglycan layer. The inner membrane of Gram-
negative bacteria is composed of lipids and integral membrane 
proteins, whilst the outer membrane also contains lipoproteins, 
porins and lipopolysaccharides (LPS), found primarily in the 
extracellular leaflet (Silhavy et al. 2010). In comparison, 
Gram-positive bacteria possess a single cytoplasmic mem-
brane and a thicker peptidoglycan cell wall. The membrane 
of Gram-positive bacteria is comprised of phospholipids, 
integral and associated membrane proteins, and lipoteichoic 
acid (LTA) components that anchor the membrane to the cell 
wall (Silhavy et al. 2010). The additional barrier presented by 
the outer membrane in Gram-negative bacteria makes them a 
particularly challenging antimicrobial target and has contrib-
uted to the rise of numerous strains of MDR Gram-negative 
pathogens (Brown and Wright 2016). Indeed, nine out of the 
twelve bacterial pathogens listed by the WHO on their AMR 
priority list are Gram-negative (WHO 2017).

Within bacterial membranes, the distribution and chemical 
composition of membrane lipids is highly varied across differ-
ent species, and even different bacterial strains (Sohlenkamp 
and Geiger 2015; López-Lara and Geiger 2017). The precise 
lipid composition of a given membrane has clear implica-
tions for the modulation of membrane biophysical properties 
and the function of membrane-embedded proteins, which in 
turn governs the activity of membrane-active antimicrobials 
(Harayama and Riezman 2018; Lee et al. 2019b). Mammalian 
cell membranes are largely composed of phosphatidylcholine 
(PC) lipids and cholesterol, whilst bacterial membranes are 
rich in zwitterionic phosphatidylethanolamine (PE) lipids, 
anionic phosphatidylglycerol (PG) lipids and poly-anionic 
cardiolipin (CL). Within these major lipid classes, there is 
considerable species- and environment-dependent diversity in 
acyl chain lengths, degree of saturation, and the incorporation 
of branched chain, cyclopropane-containing, or ω-alicyclic 
fatty acyl chains (Oshima and Ariga 1975; Sohlenkamp and 
Geiger 2015; López-Lara and Geiger 2017). Additionally, 
there are a number of other unique lipid components asso-
ciated with bacterial membranes. These include endotoxic 
LPS, composed of Lipid A and the polysaccharide O-antigen; 
Lipid II, a precursor for bacterial cell wall synthesis; and LTA, 
which anchors the cell wall of Gram-positive bacteria to the 
membrane (Epand and Epand 2009a; Silhavy et al. 2010). 
Notably, the differential distribution of lipid species between 
bacterial and mammalian membranes, as well as between bac-
terial species can be used to design membrane-active antimi-
crobials with highly specific bacterial selectivity (Dias and 
Rauter 2019).

Fig. 1  Lipid-mediated mechanisms of AMR. (A) Diagrammatic rep-
resentation of the Gram-negative bacterial cell envelope and (B) the 
Gram-positive bacterial cell envelope. (C) Chemical modifications 
of Lipid A and (D) lysylation of PG provide antimicrobial resistance. 
(E) Lipid acyl tail remodelling, such as increases in overall mem-
brane unsaturation levels lead to changes in membrane biophysical 
properties, and control antimicrobial susceptibility. (F) The trans-
port of lipids between membranes and across membrane leaflets by 
lipid transport systems, including the Mla and Lpt complexes, gov-
erns membrane-antimicrobial interactions. (G) Membrane-embedded 
drug efflux pumps can actively efflux a range of antimicrobials and 
are regulated by the membrane lipid environment. Figure created with 
BioRender.com

◂
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Bacterial alterations to membrane lipid 
composition—the phantom menace

Both Gram-negative and Gram-positive pathogens can 
alter their membrane composition to adapt to their bio-
logical niche (Adams et al. 2021) or evade antimicrobi-
als and host immune mechanisms (Epand and Epand 
2009b; Hewelt-Belka et al. 2016; Hines et al. 2017; Sper-
andeo et al. 2019). These changes in their membranes are 
induced via transcriptional control of lipid synthesis, or 
through alterations to the active transport of lipids between 
membrane leaflets, and also between the inner and outer 
membranes of Gram-negative bacteria. Consequently, 
resistant bacterial strains often possess functional muta-
tions in the proteins or regulatory elements controlling 
membrane composition, lipid synthesis, and lipid trans-
port systems (Hachmann et al. 2009, 2011; Olaitan et al. 
2014; May and Grabowicz 2018; Jiang et al. 2019a). As a 
result, lipid composition-dependent changes in membrane 
biophysical properties, such as surface charge, membrane 
thickness, membrane fluidity, and modulation of curvature 
are heavily implicated in antimicrobial resistance (Epand 
et al. 2016). In addition, changes in the surface display of 
signalling or structural lipids (Soto et al. 2019; Giordano 
et al. 2020), and lipid modifications that change the pro-
pensity of the membrane to form segregated domains 
(Epand and Epand 2009b) have also been highlighted as 
key determinants of AMR phenotypes.

Surface charge modification

Membrane surface charge plays a major role in control-
ling the susceptibility of bacteria to membrane-active 
antimicrobials (Table 1). As the major lipid species in 
bacterial membranes are zwitterionic PE, anionic PG and 
poly-anionic CL, the relative concentration of anionic PG 
and CL in the bacterial membrane imparts an overall nega-
tive surface charge. This provides an electrostatic basis for 
interactions with charged membrane-active antimicrobi-
als, particularly cationic antimicrobial peptides (CAMPs). 
Consequently, changes in the relative ratios of these lipid 
classes alters the overall surface charge of the membrane 
and governs the strength of membrane interactions with 
antimicrobial agents. CAMP-resistant bacterial isolates 
have been observed to carry functional mutations in the 
pgsA (PG) or cls2 (CL) lipid synthesis enzymes, result-
ing in a net reduction in the overall negative charge of the 
membrane surface (Hachmann et al. 2011; Davlieva et al. 
2013; Hines et al. 2017; Jiang et al. 2019a). This reduces 
the propensity of CAMPs to aggregate on the membrane 
surface, providing resistance against these antimicrobials.

Lipid chemical modifications

Another mechanism bacteria employ to reduce membrane 
surface charge is the chemical modification of constituent 
lipids (Fig. 1C and D, Table 1). Gram-negative pathogens 
readily modify Lipid A through a wide variety of enzymatic 
mechanisms, including dephosphorylation (Ingram et al. 
2010; Cullen et al. 2015; Zhao et al. 2019), acylation (Guo 
et al. 1998), diacylation (Kawasaki et al. 2004), addition of 
various sugars and decoration with PE (Liu et al. 2017), gly-
cine (Henderson et al. 2017), or aminoarabinose (Zhou et al. 
2001; Raetz et al. 2007; Olaitan et al. 2014; Sperandeo et al. 
2019). These Lipid A modifications also affect other mem-
brane biophysical properties, altering LPS fluidity, packing, 
and interactions with divalent cations (Wu et al. 2013; Rice 
and Wereszczynski 2018). These properties are key in modu-
lating interactions with antimicrobial agents, enabling AMR 
acquisition against outer membrane antimicrobials, such as 
the CAMP polymyxin (Olaitan et al. 2014). Gram-positive 
bacteria also possess methods for enzymatic modification of 
lipids to modulate membrane surface charge. For example, 
they can reduce CAMP susceptibility by increasing produc-
tion of cationic lysyl-PG, which lessens interactions with 
cationic antimicrobials by increasing electrostatic repul-
sion (Willdigg and Helmann 2021). In particular, the MprF 
system, which catalyses the aminoacyl-tRNA-dependent 
lysylation of PG to lysyl-PG, also acts as a flippase (Ernst 
and Peschel 2011), translocating lysl-PG from the inner to 
the outer leaflet, which reduces the overall negative mem-
brane surface charge and provides protection against CAMPs 
(Andrä et al. 2011; Mishra et al. 2011; Kumariya et al. 2015; 
Ernst et al. 2018; Sabat et al. 2018; Ernst and Peschel 2019). 
In addition to lysl-PG formation, resistance phenotypes can 
also exhibit the aminoacyl-tRNA dependent formation of 
cationic arginyl-PG or zwitterionic alanyl-PG, highlight-
ing the range of chemical modification of membrane lipids 
(Sohlenkamp et al. 2007; Klein et al. 2009; Roy and Ibba 
2009). Gram-positive bacteria also possess a range of other 
charge modification systems, including the Dlt system which 
modifies poly-anionic lipoteichoic acids (LTAs) through the 
transfer a D-alanine moiety, reducing the overall membrane 
surface charge and providing protection against CAMPs 
(McBride and Sonenshein 2011; Sabat et al. 2018).

Acyl tail remodelling

Lipid acyl tail remodelling (Fig.  1E, Table  1) impacts 
membrane thickness and membrane fluidity and has been 
implicated in resistance to antimicrobials (Aricha et al. 
2004; Maria-Neto et al. 2015; Kumariya et al. 2015). Col-
lectively, bacterial acyl tail remodelling includes changes in 
unsaturated fatty acid content and speciation, acyl tail length 
and the relative proportions of acyl tails that incorporate 
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cyclopropane or branched lipid tails (Sohlenkamp and 
Geiger 2015; López-Lara and Geiger 2017). Experimen-
tal studies of lipid bilayers indicate longer, more saturated, 
and minimally branched lipid tails promote thick, ordered, 
compact membranes with slowly diffusing lipids (Filippov 
et al. 2007; Kučerka et al. 2011; Poger et al. 2014; Leven-
tal et al. 2016; Marquardt et al. 2016). This is important to 
consider as acyl tail induced changes to membrane fluidity 
and ordering have been implicated in resistance to AMPs. 
For example, increased unsaturation can inhibit the assem-
bly of daptomycin oligomers, modulating daptomycin pore 
formation (Taylor et al. 2017; Beriashvili et al. 2018). Con-
sequently, increased unsaturated fatty acid content has been 
observed in resistance to daptomycin and other lipophilic 
peptide antimicrobials, including colistin (Saito et al. 2014; 
Harp et al. 2016; Tao et al. 2021). Increases in unsaturation 
and concomitant decreases in cyclopropane containing lipids 
that provide resistance to apidaecin 1b or naringenin have 
been shown to alter membrane fluidity (Wang et al. 2018; 
Schmidt et al. 2018). In addition to changing membrane 
biophysical properties, acyl tail remodelling can occur as a 
secondary effect from changes to enzymatic pathways that 
provide resistance. For example, mutations in pgsA, result-
ing in decreased PG content, can also result in upstream 
accumulation of fatty acids and subsequent remodelling of 
bacterial lipid fatty acid profiles (Hines et al. 2017). The acyl 
tail profile of some pathogens is also influenced by the avail-
ability of exogenous fatty acids, such as host-derived long-
chain polyunsaturated fatty acids which have antimicrobial 
properties (Yao and Rock 2015; Churchward et al. 2018; 
Adams et al. 2021; Kengmo Tchoupa et al. 2021). Acyl-
tail remodelling induced by exogenous fatty acids has been 
associated with reduced fitness and increased antimicrobial 
susceptibility in several pathogens (Kengmo Tchoupa et al. 
2021), raising the possibility of combining membrane-
active antimicrobial therapy with exogenous fatty acids for 
increased efficacy.

Lipid domains and curvature

Some membrane-active antimicrobials target or have their 
activity modulated by segregated membrane lipid domains 
(Table 1). The formation of segregated lipid domains is 
influenced by bacterial membrane composition and biophys-
ical properties, showing dependencies on headgroup con-
tent, intrinsic lipid curvature and relative tail order (Epand 
and Epand 2009b). In bacteria, curvature driven segrega-
tion of CL and PE domains at the cell poles is thought to 
play key roles in polar protein localisation (Matsumoto et al. 
2006; Mileykovskaya and Dowhan 2009; Renner and Wei-
bel 2011; Beltrán-Heredia et al. 2019). Some amphiphilic 
aminoglycosides target CL rich domains, including those at 
the poles, resulting in domain disassembly and disrupting 

overall cellular function (El Khoury et al. 2017; Swain et al. 
2018). Interactions of antimicrobials with CL rich domains 
are proposed to be driven by a combination of high nega-
tive charge density, high intrinsic curvature and the unique 
domain segregation preferences of CL (El Khoury et al. 
2017; Swain et al. 2018). Increases in glycolipid content are 
also observed in some antimicrobial resistant strains (Hines 
et al. 2017). In experimental studies of model lipid bilay-
ers, increases in glycolipid content results in the formation 
of ordered domains with high structural integrity (Levental 
et al. 2020) which may play a role in modulating antimicro-
bial mediated membrane disruption. In addition to targeting 
pre-existing membrane domains, the mechanism of action of 
several antimicrobials involves either the induction of altered 
lateral lipid domains to destabilise the membrane, or the 
formation of domains that disrupt protein localisation and 
function (Epand and Epand 2009a; Scheinpflug et al. 2017; 
Su et al. 2020).

Lipid transport systems—a further menace

The transport of lipids between membranes or across mem-
brane leaflets can mediate changes in membrane structure 
and biophysical properties that limit the interaction of anti-
microbials with the membrane, affecting antimicrobial sus-
ceptibility (Fig. 1F) (May and Grabowicz 2018; Bogdanov 
et al. 2020; Paulowski et al. 2020). In the outer membrane 
of Gram-negative bacteria, a number of regulatory systems 
help maintain the highly asymmetric distribution of lipopol-
ysaccharides between the inner and outer leaflet, required 
for both membrane integrity and resistance to antimicrobi-
als (May and Grabowicz 2018). In the Gram-negative outer 
membrane, the phospholipase PldA plays an integral role 
in membrane homeostasis and membrane asymmetry, by 
directly degrading phospholipids mis-localised to the outer 
leaflet of the outer membrane (May and Silhavy 2018). 
Between the Gram-negative inner and outer membranes, the 
Mla and Lpt transport systems are integral to the transport 
of lipids and lipopolysaccharides, respectively (Malinverni 
and Silhavy 2009; Sperandeo et al. 2017). These systems 
are critical for bacterial fitness and antimicrobial resistance, 
and mutations in these systems are present in AMP resistant 
strains (Lewis et al. 2009; Spohn et al. 2019). Other mem-
brane homeostasis pathways involve the Lipid A palmitoyl-
transferase, PagP, which transfers a palmitoyl chain from 
mis-localised lipids to Lipid A (Guo et al. 1998; Bishop 
2005; Boll et al. 2015). As previously noted, the MprF sys-
tem is key in regulating lysyl-PG translocation between the 
inner and outer leaflets of the Gram-positive membrane 
(Ernst and Peschel 2011). All of these mechanisms func-
tion to preserve the lipid-dependent biophysical properties 
of bacterial membranes that allow them to function as a key 
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protective barrier. As such, these protein systems are pos-
sible targets for future antimicrobial development.

Membrane efflux pumps—the bacterial 
empire strikes back

Another pertinent mechanism of membrane-mediated AMR 
is the active efflux of compounds from the bacterial cell 
membrane by membrane-embedded transport proteins that 
act as drug efflux pumps (Fig. 1G) (Henderson et al. 2021). 
Bacteria can upregulate the expression of drug efflux pumps 
to efflux a range of substrates, including antimicrobial pep-
tides, lipids, and other antimicrobials (Du et al. 2018). Drug 
efflux pumps are not only involved in the active extrusion of 
lipid substrates, but their functioning is also linked to their 
membrane lipid microenvironment (Fig. 1G inset) (Corradi 
et al. 2019; Stieger et al. 2021). There are seven key drug 
efflux superfamilies present in bacteria: the ABC (ATP bind-
ing cassette), RND (resistance-nodulation-cell-division), 
MFS (major facilitator superfamily), MATE (multidrug and 
toxic compound extrusion), DMT (drug/metabolite trans-
porter), PACE (proteobacterial antimicrobial compound 
efflux), and AbgT (p-aminobenzoyl-glutamate transporter) 
families (Henderson et al. 2021). While many of these trans-
porters are found in both Gram-positive and Gram-negative 
bacteria, Gram-negative bacteria also contain tripartite efflux 
systems, in which a RND, ABC or MFS inner membrane 
transporter is coupled to an outer membrane porin or chan-
nel via a periplasmic coupling protein. These tripartite efflux 
systems are a powerful first-defence mechanism for efficient 
antimicrobial efflux across both the inner and outer mem-
brane of Gram-negative bacteria (Henderson et al. 2021).

Although antimicrobials have only been in widespread 
use since the 1940s, the ubiquitous distribution of drug 
efflux pumps across bacterial species indicates they have 
underlying physiological roles in addition to antimicrobial 
efflux. Many of these efflux pumps are also associated with 
membrane homeostasis, or act as virulence factors by facili-
tating bacterial colonization through the efflux of xenobiot-
ics such as host-derived hormones, signaling molecules or 
fatty acids (Henderson et al. 2021) (Table 2). In Escherichia 
coli, the ABC multidrug efflux pump MsbA plays a critical 
role in the transport of Lipid A and LPS for assembly in the 
cell envelope (Mi et al. 2017; Voss and Stephen Trent 2018). 
MsbA also effluxes the antimicrobial ethidium (Singh et al. 
2016), and the drug daunorubicin (Siarheyeva and Sharom 
2009). Investigations into MsbA-substrate interactions show 
daunorubicin binding decreases the binding affinity of Lipid 
A to MsbA (Siarheyeva and Sharom 2009). This suggests 
that in the presence of drugs and antimicrobials, the affinity 
of MsbA for its natural lipid substrates is decreased, instead 
facilitating the preferential efflux of antimicrobials.

ABC efflux pumps

There is mounting evidence that the function and modulation 
of many membrane proteins, including drug efflux pumps, 
is influenced by the local membrane environment and its 
biophysical properties (Corradi et al. 2019) (Table 2). A 
key example of this is the archetypal eukaryotic multidrug 
efflux pump, P-glycoprotein (P-gp, ABCB1), a member of 
the ABC transporter superfamily. P-gp function is increased 
in the presence of membrane cholesterol and modulated by 
the overall ordering and phase of the membrane (Rothnie 
et al. 2001; Sharom 2014). This previous work on eukary-
otic drug transporters has provided evidence for a conserved 
functional mechanism of lipid modulation of bacterial ABC 
multidrug efflux pumps (Neumann et al. 2017). For exam-
ple, mass spectrometry analysis of the ABC multidrug efflux 
pump TmrAB, from Thermus thermophilus, has shown that 
the integrity of the lipid annulus and the high-affinity bind-
ing of annular PG lipids to TmrAB is essential for both the 
structural integrity of the transporter and its ability to hydro-
lyse ATP to power antimicrobial efflux (Bechara et al. 2015).

RND efflux pumps

Bacterial RND multidrug efflux pumps actively efflux a 
range of membrane associated substrates (Table 2). For 
example, in the human pathogens Neisseria gonorrhoeae 
and Neisseria meningitidis, the RND efflux pump, MtrD, 
is essential for both bacterial virulence and the efflux of a 
range of host-derived, lipid-based antimicrobials including 
bile salts, progesterone and fatty acids, as well as other phar-
maceutical antimicrobials (Shafer et al. 1998; Warner et al. 
2008), and the structurally diverse antimicrobial peptides 
LL-37, protegrin-1 and polymyxin B (Tzeng et al. 2005). 
Recent simulation studies of MtrD have demonstrated that 
the binding of the antimicrobial hormone progesterone to 
MtrD induces allosteric couplings that govern efflux (Fair-
weather et al. 2021), and that these allosteric couplings can 
be deregulated by mutations that impact substrate uptake 
and the orientation of MtrD within the membrane (Chitsaz 
et al. 2021). Additionally, the Klebsiella pneumoniae AcrAB 
RND multidrug efflux pump is implicated in resistance to 
a number of antimicrobial peptides, including polymyxin B 
(Padilla et al. 2010).

The function of RND efflux pumps is also modulated by 
their membrane lipid environment. Recent studies linking 
the membrane composition and AMR in Acinetobacter bau-
mannii have revealed an important link between membrane 
homeostasis, antimicrobial susceptibility and RND efflux 
pump function (Jiang et al. 2019b; Zang et al. 2021). Modifi-
cations of the membrane lipid composition due to incorpora-
tion of host-derived polyunsaturated fatty acids in bacterial 
lipid synthesis gave decreased resistance to antimicrobials. 
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Analysis of A. baumannii efflux systems indicated that Ade-
ABC-mediated efflux was impacted by this change in mem-
brane lipid composition, due to a reduction in membrane 
ordering that abrogated the integrity of the protein–protein 
interface between AdeB subunits, disrupting AdeB function-
ing (Zang et al. 2021). Lipid modulation of RND transporter 
functioning has also been demonstrated for the E. coli AcrB 
RND transporter, whose interaction with a small regulatory 
protein AcrZ was modulated by the presence of CL, thus 
resulting in increased sensitivity to chloramphenicol in the 
absence of CL (Du et al. 2020).

Other efflux pump families

Lipid modulation of other efflux pump families has also been 
noted (Table 2). The MFS efflux pump LmrP from Lacto-
coccus lactis undergoes proton-dependent conformational 
transitions during antimicrobial efflux. These conforma-
tional changes are sensitive to the presence of PE lipids and 
CL; however, differences in acyl chain length do not impact 
conformational switching (Martens et al. 2016). Likewise, 
the Pyrococcus furiosus ion-coupled MATE antimicrobial 
antiporter, pfMATE, is also strictly lipid dependent: the pro-
tein is only functional when reconstituted in a lipid environ-
ment (not in detergent), highlighting functional dependence 
on the presence of lipids (Zakrzewska et al. 2019; Jages-
sar et al. 2020). Additionally, the assembly of an E. coli 
ion-coupled small multidrug resistance (SMR) transporter 
EmrE, responsible for resistance to aromatic cationic com-
pounds, is dependent on its lipid environment (Schuldiner 
2009; Nathoo et al. 2013; Dutta et al. 2014).

Collectively, these examples highlight the growing body 
of evidence demonstrating that the lipid environment is 
integral to the function and modulation of many multidrug 
efflux pumps that are critical to the development of AMR. 
The importance of this must be considered to gain a holistic 
understanding of the impact of the membrane in modulating 
multidrug resistance.

Understanding the role of lipid‑mediated 
resistance for antimicrobial development—a 
new hope

The development of membrane-active antimicrobials is a 
multi-faceted area of research. Extensive links between the 
efficacy of membrane-active antimicrobials and lipid-medi-
ated AMR means that successful antimicrobial development 
must be founded on a detailed understanding of membrane 
dynamics, membrane biophysical properties and the func-
tional mechanisms of transporters involved in AMR. This 
is best achieved using a combination of experimental tech-
niques and computational approaches (Fig. 2A) (Fjell et al. 
2012; Lopes et al. 2017; Li et al. 2017). Although, experi-
mental methods, such as nuclear magnetic resonance, X-ray 
crystallography, circular dichroism and cryo-EM provide 
valuable structural information about bacterial cell mem-
branes and membrane proteins, they are often limited by 
either temporal or spatial resolution. In silico approaches, 
such as molecular dynamics simulations, allow for high 
resolution characterisation of the functional dynamics and 
interactions between antimicrobials and their membrane tar-
gets (Berglund et al. 2015; Ulmschneider and Ulmschneider 

Table 2  Summary of efflux pump lipid interactions

a Key references from this review are presented, and entries are ordered as they appear in text

Efflux pump Bacterial species Lipid interactions References

MsbA Escherichia coli Lipopolysaccharide and Lipid A transport (Siarheyeva and Sharom 2009; Singh et al. 2016; 
Mi et al. 2017)

TmrAB Thermus thermophilus Modulation by phosphatidylglycerol (Bechara et al. 2015)
MtrD Neisseria gonorrhoeae, 

Neisseria meningitidis
Membrane-active antimicrobial, bile salt, steroid, 

and fatty acid efflux
(Shafer et al. 1998; Tzeng et al. 2005; Warner et al. 

2008)
AcrB Klebsiella pneumoniae Membrane-active antimicrobial, bile salt, steroid, 

and fatty acid efflux
(Padilla et al. 2010)

AdeB Acinetobacter baumannii Modulation by host-derived polyunsaturated 
lipids

(Zang et al. 2021)

AcrB Escherichia coli Modulation by cardiolipin (Du et al. 2020)
LmrP Lactococcus lactis Modulation by phosphatidylethanolamine and 

cardiolipin
(Martens et al. 2016)

pfMATE Pyrococcus furiosus Modulation of protein conformation by lipid 
environment

(Zakrzewska et al. 2019; Jagessar et al. 2020)

EmrE Escherichia coli Modulation of protein assembly by lipid environ-
ment

(Nathoo et al. 2013; Dutta et al. 2014)
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2018; Palmer et al. 2021). Thus, iterative combinations of 
molecular simulations and experimental methodologies will 
allow for the streamlined, innovative, and rational design of 
novel antimicrobials (Li et al. 2015; Chen et al. 2019).

Antimicrobial peptides

The continued exploration into naturally occurring antimicro-
bial peptides (AMPs) from the innate host immune response 
has created a vast natural library of membrane-active com-
pounds (Ashby et al. 2017). Whilst AMPs generally carry a 
net positive charge, their large variations in size (between ~ 9 
and 100 amino acids) and structural diversity (they can be 
linear or cyclical and adopt α-helical, β-sheet or mixed struc-
tures) (Shai 2002) makes AMPs and AMP-based structural 
modifications a promising future direction for expanding the 
current range of antimicrobials. Additionally, AMPs can act 
as conjunct therapeutics to restore antimicrobial sensitivity 
in resistant bacteria (Lin et al. 2015; Pizzolato-Cezar et al. 
2019). Growing computational and experimental insight 
into the interactions between AMPs and the membrane has 
already allowed for the development of modified AMPs with 
improved action (Fig. 2B). For example, lipoglycopeptides 
such as telavancin, oritavancin and dalbavancin are derivatives 
of earlier generation glycopeptides, with the addition of lipo-
philic alkyl and aryl groups to the sugar subunit. These lipo-
philic moieties act as membrane anchoring groups, enhanc-
ing interactions with the hydrophobic lipid tails, resulting in 
membrane permeabilization and the loss of membrane integ-
rity (Blaskovich et al. 2018).

Efflux pump inhibitors

Membrane-active peptides are also inhibitors of some mul-
tidrug efflux pumps, opening avenues for the inhibition of 
efflux pump systems via the co-administration of known 
or engineered peptides (Fig. 2C). This strategy has been 
effective against the RND efflux pump AcrB in E. coli 
(Jesin et al. 2020), and against an SMR efflux protein of 

Pseudomonas aeruginosa, PAsmr, inhibiting antimicro-
bial efflux (Mitchell et al. 2019). These and other efflux 
pump inhibitors (EPIs), including PAβN, pyridopyrimi-
dines, quinoline derivatives, arylpiperidines and arylpip-
erazines have been identified as having the potential to 
abrogate resistance in a number of problematic pathogens 
(Kabra et al. 2019). Continued exploration of the peptide 
EPI sequence space, coupled with improved knowledge of 
the functional mechanisms of drug efflux pumps, and their 
relationship with membrane composition and membrane 
biophysical properties will better enable the development 
of highly efficacious and specific membrane-active AMPs 
for resistant bacterial pathogens.

Targeting lipid synthesis and transport

Another area for the development of membrane-active 
agents includes the targeting of proteins involved in lipid 
synthesis and membrane homeostasis (Fig. 2D). Potential 
protein targets include the condensing enzymes of the fatty 
acid biosynthesis cycle (FabH, FabB, FabF); the sn-glycerol-
3-phosphate acyltransferase (PlsB) involved in linking fatty 
acids to the phospholipid glycerol-3-phosphate backbone; or 
members of the Lpt complex involved in transport of LPS to 
the extracellular leaflet of the membrane (Heath et al. 2001; 
Heath and Rock 2004; Choi and Lee 2019; Walker and Black 
2021). For example, the outer membrane assembly inhibitor, 
murepavadin, which is based on the protegrin-1 AMP, is a 
likely inhibitor of members of the Lpt complex (Lehman 
and Grabowicz 2019). Further exploration of lipid synthe-
sis and transport inhibitors is needed to better target this 
under-exploited avenue for membrane-active antimicrobial 
development.

Host‑derived fatty acids

Host-derived fatty-acids, including lauric and sapienic acid, 
can also act as membrane-active antimicrobials (Fig. 2E) 
(Thormar and Hilmarsson 2007; Fischer 2020). However, 
the mechanism of action of these fatty acids is highly var-
ied, and includes the disruption of oxidative phosphoryla-
tion via binding to membrane embedded proteins, alteration 
of membrane biophysical properties and permeability, and 
the inhibition of enzymes involved in fatty acid synthesis 
pathways (Desbois and Smith 2010). Detailed computational 
and experimental investigation of the mechanisms by which 
host-derived antimicrobial fatty-acids disrupt the bacterial 
membrane may enable the renewal of existing therapeutics 
through co-administration of host-derived membrane-active 
fatty acids.

Fig. 2  Guiding the development of novel membrane-active antimicro-
bials. (A) Iterative cycles of in vivo and in vitro experiments, com-
bined with experimental biophysical techniques, such as NMR and 
X-ray crystallography, and computational approaches allows for the 
streamlined and rational design of novel antimicrobials. (B) Modi-
fied AMPs, such as lipoglycopeptides with added lipophilic groups 
allow for enhanced membrane interactions. (C) The inhibition of drug 
efflux systems and (D) lipid transport systems are emerging mem-
brane-associated drug targets. (E) Host-derived fatty acids can have 
antimicrobial activity against membranes via changes to membrane 
biophysical properties. (F) Non-peptide cationic antimicrobials, such 
as metal nanoparticles and steroid-based antimicrobials can interact 
with negatively charged bacterial membranes to exert their antimicro-
bial properties. Figure created with BioRender.com

◂
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Non‑peptide cationic antimicrobials

Due to the high concentration of negatively charged lipids 
in bacterial membranes, there is increasing interest in the 
development of non-peptide cationic antimicrobial agents 
that use a combination of electrostatics and lipophilic-
ity to bind to and disrupt bacterial membranes (Fig. 2F). 
One such application is the design of membrane-disrupting 
metal nanoparticles and metal ion clusters which increase 
membrane permeability and promote oxidation of bacterial 
membrane lipids (Godoy-Gallardo et al. 2021). Cationic 
steroid antimicrobials such as ceragenins also utilise this 
mechanism. Ceragenins are synthetic sterol-based com-
pounds decorated with amino acids or other chemical groups 
to aid lipid partitioning. These cationic compounds cause 
membrane permeabilization and depolarization. Importantly, 
the efficacy of ceragenins is impacted by membrane PE and 
anionic lipid content (Epand et al. 2007, 2010). As with 
AMPs, understanding of the biophysical mechanisms by 
which non-peptide cationic antimicrobials disrupt the bac-
terial membrane will aid in their development and enhance 
their effectiveness.

Computational approaches

Molecular dynamics simulations are poised to play an 
essential role in elucidating the membrane and transporter 
dynamics critical to lipid-based AMR. Importantly, bacterial 
lipid composition can now be examined using high resolu-
tion mass-spectrometry techniques allowing unprecedented 
insight into the lipid composition of bacterial membranes 
and responses to antimicrobials (Rustam and Reid 2018; 
Appala et al. 2020). When combined with recent advances 
in cryo-EM structural elucidation, structure-based drug 
design, as well as improved computational hardware and 
algorithms, these advances allow for the development of 
detailed molecular models that can reveal the mechanisms 
that underpin lipid-mediated AMR in bacteria. Molecular 
simulation of bacterial membranes, and biological mem-
branes in general, has advanced significantly over the past 
20 years, with larger, more complex and more realistic 
simulations becoming feasible (Marrink et al. 2019; Wilson 
et al. 2020b; Im and Khalid 2020). Advances in forcefields, 
particularly the CHARMM atomistic forcefield and MAR-
TINI coarse-grained forcefield (Marrink et al. 2004, 2007; 
Wu et al. 2014; Lee et al. 2019a), coupled with increas-
ing hardware capabilities and improvements in simulation 
tooling, has enabled simulations of membranes approaching 
realistic chemical diversity in constituent protein and lipid 
components (Ingólfsson et al. 2014, 2017; Reddy et al. 2015; 
Wilson et al. 2020a, 2021).

For example, large scale coarse-grained simulations have 
identified the preferential interaction of some AMPs with 
ordered domains in phase separated membranes (Su et al. 
2020). Molecular dynamics simulations have also been used 
to show the preference of AMPs to bind in regions of high 
membrane curvature, as well as the curvature-dependence of 
AMP secondary structure (Chen and Mark 2011). Simula-
tion work on the mechanisms governing lipid modification 
induced reduction in AMP binding has examined the role of 
lysl-PG in AMP surface binding and membrane disruption in 
a model bacterial membrane (Simcock et al. 2021). Molecu-
lar insights into transporter regulation by lipid components 
and membrane biophysical properties derived from simu-
lations is gaining momentum (Corradi et al. 2018, 2019; 
Corey et al. 2021) and has recently been applied to AdeB 
and AdeJ transporter regulation in A. baumannii (Zang et al. 
2021). Advanced simulations of Gram-negative membranes 
now contain the inner and outer membrane, LPS and pep-
tidoglycan layers, and multiple copies of inner and outer 
membrane proteins, enabling even more detailed insights 
into the molecular mechanisms of lipid-based resistance (Im 
and Khalid 2020).

Conclusion

Lipid-mediated antimicrobial resistance is a multi-faceted 
phenomenon with inter-dependencies arising not only from 
the lipid membrane composition, but also from bacterial 
metabolic pathways, sequestration of lipids from the host 
environment, enzymatic modifications of lipid targets and 
the activity of drug efflux pumps. These interact synergis-
tically to alter antimicrobial targets, decrease the specific-
ity of membrane-active antimicrobials and actively efflux 
antimicrobial agents, increasing the inherent AMR of bac-
teria. As a result of rapidly escalating rates of AMR, there 
is continued interest in the development of membrane-active 
antimicrobials that may restore efficacy of now redundant 
antimicrobials or present new avenues for antimicrobial ther-
apy. When combined with the improvements in the resolu-
tion of experimental methods to determine membrane lipid 
composition, membrane protein structural elucidation and 
advances in molecular simulation, the stage is set to develop 
more effective approaches to overcome lipid-mediated anti-
microbial resistance.
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