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Condensed-matter equation of 
states covering a wide region of 
pressure studied experimentally
Elijah E. Gordon1, Jürgen Köhler2 & Myung-Hwan Whangbo1

The relationships among the pressure P, volume V, and temperature T of solid-state materials are 
described by their equations of state (EOSs), which are often derived from the consideration of the 
finite-strain energy or the interatomic potential. These EOSs consist of typically three parameters to 
determine from experimental P-V-T data by fitting analyses. In the empirical approach to EOSs, one 
either refines such fitting parameters or improves the mathematical functions to better simulate the 
experimental data. Despite over seven decades of studies on EOSs, none has been found to be accurate 
for all types of solids over the whole temperature and pressure ranges studied experimentally. Here we 
show that the simple empirical EOS, P = α1(PV) + α2(PV)2 + α3(PV)3, in which the pressure P is indirectly 
related to the volume V through a cubic polynomial of the energy term PV with three fitting parameters 
α1–α3, provides accurate descriptions for the P-vs-V data of condensed matter in a wide region of 
pressure studied experimentally even in the presence of phase transitions.

One of the most important issues in condensed matter sciences, particularly, in geology and geophysics, is to 
accurately predict the structural and physical properties of solids under high pressure and temperature1–7. In 
general, a solid-state material under high pressure and temperature can exhibit properties quite different from 
those found at ambient conditions. At a given temperature T, a solid under external pressure P decreases its vol-
ume V with increasing P, but V changes a lot more slowly than does P. The pressure-induced volume decrease 
may require a change in the structure type (i.e., the pattern of the relative atom arrangements in a repeat unit cell) 
thereby causing a structural phase transition and an associated physical property change. For example, when P is 
increased at room temperature, elemental chalcogen Te8–14, Se15–20, or S15,21–25 undergoes a number of structural 
phase transitions while its electrical property changes from insulating at ambient pressure to metallic and super-
conducting at high pressure26,27. Hydrogen sulfide H2S is a diamagnetic molecular species at ambient conditions, 
but is converted, under the pressure of over ∼ 110 GPa, to a condensed phase that becomes superconducting at ∼ 
200 K25,28, the highest among all superconductors known so far. An isothermal EOS relates P and V at a certain 
temperature T. Over the past 70 years the P-vs-V data have been studied for a variety of solids in various pressure 
ranges (e.g., see Table 1), and their EOSs have been examined. So far, however, no isothermal EOS is applicable 
to all types of solids and is accurate over the whole range of pressure studied especially when a solid undergoes 
several structural phase transitions in the pressure region studied.

With increasing pressure P, the volume V of a solid under pressure changes very slowly compared with the 
pressure change. The shortcomings of the known EOSs originate essentially from the attempts to relate the fast 
changing variable P to a very slowly changing variable V. These problems can be circumvented if the pressure 
change is related to a pressure-induced energy change that is associated with the volume V and also varies nearly 
at the same rate as does P. The energy term PV satisfies these two requirements because, while increasing P, the 
volume V of a solid under pressure P decreases very slowly so that the term PV changes nearly as fast as P in the 
entire range of P. Furthermore, at a given P, the term PV is determined by the value of V, not by how the atoms are 
arranged within the volume so that the term PV cannot be overly sensitive to phase transitions. With increasing 
P, the term PV should increase slightly more slowly than does P because V decreases slightly under pressure. 
Therefore, it should be possible to accurately describe the P-vs-V data of any solid over the entire pressure range 
studied experimentally by the simple EOS,
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which expands P as a polynomial of PV, where the constants α i (i =  1, 2, 3, etc.) are the fitting parameters. For 
those familiar with the traditional EOSs, use of Eq. 1 is quite unconventional because P is expanded in terms of 
the variable PV that contains itself. However, our goal is to find an accurate, though indirect, relationship between 
P and V valid for the entire pressure region studied experimentally by way of determining an accurate relation-
ship between P and PV. From the resulting P-vs-V relationship, one can derive an accurate description of other 
thermodynamic quantity such as bulk modulus, as we demonstrated in our work. When this expression is trun-
cated to P =  α 1(PV) +  α 2(PV)2, P =  α 1(PV) +  α 2(PV)2 +  α 3(PV)3, and P =  α 1(PV) +  α 2(PV)2 +  α 3(PV)3 +  α 4(PV)4, 
we obtain the quadratic, cubic and quartic approximations for Eq. 1. Here we establish that the cubic approxima-
tion with three fitting parameters α 1–α 3 is accurate enough in describing the P-vs-V data for condensed matter 
in a wide region of pressure experimentally probed even in the presence of several structural phase transitions.

Results
Formulation of the EOS. In testing whether an isothermal EOS is accurate over the entire range of pressure 
studied experimentally, the ideal systems to analyze would be elemental chalcogens Te, Se and S because they 
have been studied at room temperature over wide pressure ranges (i.e., 0–330 GPa for Te, 0–150 GPa for Se, and 
0–213 GPa for S) (see Table 1), because each chalcogen undergoes a number of phase transitions with increas-
ing P, and because their room-temperature atomic structures are known under widely different pressures. For 
each chalcogen, we begin our analysis by first determining the relative energies of its known atomic structures 
at various P on the basis of density functional theory (DFT) calculations, the details of which are described in 
Methods. We summarize the space groups of the known atomic structures at various pressures P (mostly around 
the room temperature), the volumes V per atom, the energies PV per atom, and the calculated electronic energies 
E per atom in Section 1(a)–(c) of the supporting information (SI). The calculated electronic structures are also 
presented in terms of density of states (DOS) plots in Section 1(d)–(f) of the SI. As anticipated, with increasing 
pressure, the DOS plot for each chalcogen is shifted toward the higher energy while the band gap present at low 
pressure disappears at high pressure.

The calculated energy E for Te is plotted as a function of P in Fig. 1a (those for Se and S in Section 2(a,b) of 
the SI), which shows a reasonable linear relationship, E≈ a1P + a0, with slope a1 and intercept a0. Fig. 1a also plots 

System Pressure range (GPa) Temperature (K)

Te 011, 0–410, 4.512, 813, 4–369, 3314, 
30–3308 298

Se 017, 0–1015, 4.618, 2319, 28,19, 
87.920, 14019, 5–15016 293–298

S
022, 0–3015, 35–8715, 89.423, 
14521, 16024, 17325, 206.521, 

88–21321
293–298

Sn 0–120a–c 298

Au 4–70d 298

Cu 7–95e 293

LiF 0–4h, 1–9f, 0–30g 298

NaF 1–9f, 0–38g 298

NaCl 0–4i 298

CsCl 0–5k, 1–9f, 0–45j 298, 293

Ice VII 3–19l, 4–128m 300

MgO 0–833, 0–1130, 0–2032, 0–2431, 
0–5229, 4–12035, 10–14034 298

MgSiO3
0–1040, 0–2036, 0–5537, 36–8338, 

29–9139, 100–30041 298

Ar 0–26,n 40

Kr 0–26,n 60

Xe 0–26,n 60

H2 0–2.647 4.2

D2 0–2.647 4.2

PCL 0–0.245 373.6

Liquid H2O 0–0.146 288

Liquid H2O 0–0.146 298

Liquid H2O 0–0.146 308

Table 1.  The pressure ranges (in GPa) and temperature (K) employed to examine the isothermal P-vs-V 
relationships for various condensed matter†,‡. †In our analysis for Sn, the α -Sn phase was excluded because 
it exists below 286 K, but all other phases of Sn that exist at room temperature are included. ‡For the references 
a–p, see Section 3 of the SI.
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the enthalpy H =  E +  PV per atom as a function of P using a0 as the intercept. This plot also exhibits a reasonable 
linear relationship, H≈ b1P + a0, with the slope b1 >  >  a1 for all chalcogens. At a given temperature, therefore, the 
energy term PV =  H–E varies almost linearly with P, i.e., P≈ PV/(b1–a1). Unlike the case of gaseous substances 
for which the PV term is a constant independent of P at a given T, the PV term for each condensed-phase chal-
cogen increases almost linearly with P because, compared with the rate of change in P, that in V is very small. 
Nevertheless, the H-vs-P plot for each chalcogen is slightly concave down with respect to the base line, b1P. As 
already pointed out, this reflects that, with increasing P, the rate of change in P is slightly greater than that in PV 
due to a pressure-induced decrease in V. The latter allows one to expand P as a power series of PV as expressed in 
Eq. 1. Indeed, the P-vs-V data points used for constructing the H-vs-P plots are very well described, for example, 
by the quadratic approximation of Eq. 1 (see Section 2(c) of the SI). As will be discussed below, the nonlinear 
terms of Eq. 1, e.g., α 2(PV)2 and α 3(PV)3, are related to how the volume V of a solid decreases under pressure P.

To test the applicability of the isothermal EOS, Eq. 1, in a wide region of pressure studied experimentally, we 
first analyze the experimental P-vs-V data available in the literature for each chalcogen. The P-vs-PV plot for 
Te, presented in Fig. 1b, reveals that the experimental points in the 0–330 GPa region8–14 are very well described 
by the cubic approximation. The fitting curves from the quadratic and quartic approximations are not shown 
because they are practically impossible to distinguish, with naked eye alone, from that of the cubic approxima-
tion. The same conclusion is reached for Se15–20 and S15,21–25 (see Section 2(a,b) of the SI for Se and S, respectively). 
The fitting coefficients α 1–α 3 obtained for Te, Se and S resulting from the cubic approximation are summarized 
in Table 2, and those from the quadratic, cubic and quartic approximations are compared in Section 2(d) of the 
SI. The coefficients α 1 and α 2 are always positive, and α 1 >  >  α 2 >  >  |α 3| with α 2/α 1 ≈  10−3 and |α 3|/|α 2| ≈  10−4.

Error analysis. To assess the accuracies of the quadratic, cubic and quartic approximations for Eq. 1, we 
analyze the pressure-dependence of the absolute errors, Δ P =  Pcalc–Pexpt, as well as that of the % errors, 100 ×  Δ 
P/Pexpt, where Pexpt is the pressure observed experimentally, and Pcalc the one calculated from the fitting equations. 
The pressure-dependence of the % errors for Te is shown in Fig. 1c, and those for Se and S in Section 2(a,b) of the 
SI. The maximum % error is smaller than 5.5% in the 10.9–330 GPa region for the cubic and quartic approxima-
tions, but smaller than 5.4 % in the 38–330 GPa region for the quadratic approximation. The % errors are large in 
the low P region, but it should be pointed out that the associated absolute errors are rather small (for example, for 
Pexpt =  0.98 GPa, the corresponding Pcalc values are 1.44, 1.22 and 1.22 GPa from the quadratic, cubic and quartic 

Figure 1. (a) The E-vs- P and H-vs-P plots calculated for Te, where E, H and PV are in eV units. The fitting 
coefficients a1, a0 and b1 for the linear plots E =  a1P + a0 and H =  b1P +  a0 are respectively − 3.0238, 0.0246 and 
0.1589. (b) The P-vs-PV plot constructed from the experimental P-vs-V data for Te, where the solid line is the 
fitting curve obtained by using the cubic approximation for the EOS, Eq. 1. (c) The pressure-dependence of the 
% error, 100 ×  (Pcalc–Pexpt)/Pexpt, of the P-vs-PV plot obtained for Te by using the cubic approximation of the 
EOS, Eq. 1. (d) The pressure dependence of the bulk modulus B(P) calculated for Te.
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approximations, respectively) (see Section 2(e) of the SI). In general, the cubic and quartic approximations are 
similar in accuracy, and are more accurate than the quadratic approximation especially in the low P region. A 
similar conclusion is reached from the % error and absolute error plots calculated for Se in the 0–140 GPa range 
and for S in the 0–213 GPa range (see Section 2(a,b) of the SI).

Applicability to other condensed matter. The above analyses of the experimental P-vs-V data for ele-
mental chalcogens suggest strongly that the cubic approximation of the isothermal EOS, Eq. 1, can accurately 
describe the experimental P-vs-V data for various solids in the whole pressure range studied experimentally. To 
establish this point, we examine the experimental P-vs-V data for various solid-state condensed matter listed in 
Table 1, which include the elemental Sn, the transition-metals Au and Cu, the alkali halides LiF, NaF, NaCl and 
CsCl, ice VII, the oxides MgO and MgSiO3, the noble gases Ar, Kr and Xe, as well as molecular hydrogen H2D2. As 
representative examples of these analyses, we discuss the oxides MgO29–35 and MgSiO3

36–41. The isothermal P-vs-V 
relationships of these oxides have been extensively studied because they are the end members of (Mg,Fe)O42,43 
and (Mg,Fe)SiO3 perovskite42,44, which are the important components of the Earth’s lower mantle. The P-vs-V 
relationships for MgO29–35 were examined at room temperature in the 0–140 GPa range, and those for MgSiO3

36–41 
at room temperature in the 0–300 GPa range. The P-vs-PV plots and the % error vs. P plots for MgO and MgSiO3 
are presented in Fig. 2. The maximum % error is smaller than ∼ 0.6% for MgO, and smaller than ∼ 1% for MgSiO3, 
in the entire pressure ranges studied experimentally. For the remainder of the solids listed in Table 1, our results 
are summarized in Section 3(a)–(k) of the SI. The fitting coefficients α 1–α 3 obtained for the solid-state condensed 
matter of Table 1 from the cubic approximation are listed in Table 2 together with the maximum % errors. It is 
clear that the cubic approximation of the isothermal EOS, Eq. 1, provides an accurate description in the entire 
pressure regions examined experimentally. (Hereafter, the cubic approximation of Eq. 1 will be used without 
further mentioning).

The isothermal EOS, Eq. 1, is also applicable to non-solid-state condensed matter. As examples, we analyze the 
experimental P-vs-V data for the polymer, poly(ε -caprolactone) (PCL)45, determined at 100.6 °C in the 0–0.2 GPa 
region as well as those for liquid H2O46 determined at 15 °C, 25 °C and 35 °C in the 0–0.1 GPa region. Our results 

102 × α1 105 × α2 109 × α3 P range Max. % errorb

(a) Solid-state condensed matter (P in GPa, and V in Å3)

Te 3.785 1.501 − 1.130 0–330 5.5 (P >  10.9)  
29 (P <  10.9)

Se 4.782 2.421 + 1.325 0–150 3.6 (P >  23)  
44 (P <  23)

Sa 3.587 7.987 − 16.20 0–213 4.6 (P >  36)  
13 (P <  36)

Sn 3.978 1.897 − 2.039 0–120 2.2 (P >  10.3)  
8.0 (P <  10.3)

Au 5.839 2.079 − 4.474 4–70 1.9

Cu 8.543 4.582 − 10.02 7–95 1.0 (P >  56)  
6.5 (P <  56)

LiF 6.064 6.646 − 59.75 0–30 0.98

NaF 4.068 2.922 − 13.88 0–38 1.5

NaCl 2.232 2.006 − 11.35 0–4 0.1

CsCl 1.518 0.6655 − 0.8938 0–45 6.4

Ice VII 4.898 8.732 − 24.99 3–128 3.0

MgO 5.379 1.666 − 1.192 0–142 0.6

MgSiO3 2.437 0.2434 − 0.04751 0–265 1.2

Ar 2.682 18.55 − 876.3 0–2 2.5

Kr 2.198 12.04 − 459.7 0–2 2.2

Xe 1.728 6.493 − 175.2 0–2 1.6

H2 3.323 104.0 − 7594 0–2.6 3.0 (P >  0.34)  
26 (P <  0.34)

D2 3.552 99.32 − 7221 0–2.6 2.0 (P >  0.15) 
18(P <  0.15)

(b) Non-solid-state condensed matter (P in bar, and V in Å3)

PCL 1.03976 6.290 − 7.651 0–2000 0.3

H2O, 15 °C 0.03343 5.222 ×  10−3 − 1.073 ×  10−4 0–1000 0

H2O, 25 °C 0.03336 5.026 ×  10−3 − 9.835 ×  10−5 0–1000 0

H2O, 35 °C 0.03326 4.901 ×  10−3 − 9.451 ×  10−5 0–1000 0

Table 2.  The coefficients α1–α3 of the isothermal EOS, P = α1(PV) + α2(PV)2 + α3(PV)3, obtained for 
various condensed matter. The range of the pressure P used for each fitting analysis and the maximum 
% error found in the pressure range are also givena,b. aThe P-vs-V data points of the metastable S-III phase 
between 3–58 GPa (obtained by quenching) reported in ref. 15 were not included in the P-vs-PV plot. However, 
including them does not change the quality of the fitting analysis. bUnless mentioned otherwise, the maximum 
% error refers to the entire pressure region studied.
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summarized in Section 3(m)–(p) of the SI show that the maximum % error for the polymer is smaller than 0.3%, 
and that for liquid water is practically zero, in the entire pressure region studied. Clearly, Eq. 1, provides an accu-
rate description of the P-vs-V relationship for these materials. It should be pointed out that the ideal gas law is a 
special case of Eq. 1, when the PV term is a constant independent of P.

Discussion
Bulk modulus. Now that Eq. 1 provides an isothermal EOS accurate for the entire pressure range studied 
for a given system, we search for a simple expression for the corresponding bulk modulus B valid for the entire 
pressure region. In the cubic approximation, Eq. 1 is a quadratic equation of P, from which P is written in terms 
of V as
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This equation expresses the bulk modulus as a function of volume, namely, B(V). For each value of V, however, 
there is a unique value of P associated with it, so that the B(V) vs. V relationship can be easily converted to the 
corresponding B(P) vs. P relationship. For convenient use of this relationship, we fit the B(P)-vs.-P relationship 
by the polynomial,

= + + + .B P B B P B P B P( ) (4)0 1 2
2

3
3

Figure 2. (a,c) The P-vs-PV plots constructed from the experimental P-vs-V data for MgO and MgSiO3, 
respectively, where the solid lines are the fitting curves obtained by using the cubic approximation of the EOS, 
Eq. 1. (b,d) The plots of the % errors vs. pressure obtained for MgO and MgSiO3, respectively, by using the cubic 
approximation of the EOS, Eq. 1.
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The B(P)-vs-P plot thus-obtained for Te is presented in Fig. 1d. For other solids listed in Table 1, the B(P)-vs-P 
plots are presented in Section 3(a)–(r) of the SI. The coefficients B0, B1, B2 and B3 determined for each con-
densed matter are summarized in Table 3, which also lists the calculated bulk modulus at P =  0, referred to as 
B0,calc, for each system. The B0 deviates from the B0,calc because the polynomial fitting (Eq. 4) poorly describe the 
low-pressure region. Nevertheless, the B0 and B0,calc values are quite similar for all systems except for Te and Se.

For every system, our analysis leads to only one B0 value because the entire pressure region studied is repre-
sented by the single fitting curve, Eq. 4. In the traditional study for a system undergoing several phase transitions, 
each phase covering a certain pressure region (say, P1 to P2) is described by the EOS covering only the pressure 
region P1–P2. The resulting EOS for each different phase generates the bulk modulus, which we will refer to as 
B0,expt, and the virtual volume V0. It is the B0,expt obtained for the “first” phase (i.e., the phase stable in the lowest 
pressure region for which P1 =  0) that should be compared with the B0 or the B0,calc value obtained from our EOS. 
For systems with several phases, Table 3 lists only the B0,expt values of their first phases. Clearly, these B0,expt values 
are well described by the B0 and/or B0,calc values determined from our EOS analyses. The B0,expt values found for 
the various phases of Te, Se and S can be accounted for in terms of our EOS analyses as presented in Section 4 of 
the SI.

Qualitative meaning of the EOS. To gain insight into the meaning of the EOS, Eq. 1, we rewrite it in a 
slightly different form. In general, α 1(PV) >  >  α 2(PV)2 >  >  α 3(PV)3 so that P≈ α 1(PV). By using this approxima-
tion, Eq. 1 is rewritten as

α
α
α
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where the volume Vc is defined as Vc ≡  1/α 1, which is very close to the volume at zero-pressure, V0. Eq. 5 reveals 
that the decrease in the volume of a condensed matter under pressure is a polynomial function of P. Since  
α 2(PVc)2 >  >  |α 3|(PVc)3, the term α 2Vc

2P dominates over α 3Vc
3P2. Namely, the volume decreases with increasing 

P. The α 3Vc
3P2 term compensates the overcorrection (when α 3 <  0), or the under-correction (when α 3 >  0), given 

by the α 2Vc
2P term. In essence, the EOS, Eq. 1, reveals that the volume of a solid under pressure can be described 

as a polynomial function of pressure.

B0,expt B0,calc B0 B1 B2 B3

Te 24 (P =  2)14 37.68 62.48 4.135 − 7.200 ×  10−3 2.278 ×  10−5

Se 48.1 (P =  7.7)18 28.09 46.99 5.311 − 4.021 ×  10−2 1.516 ×  10−4

S 14.521 20.10 25.28 2.575 − 2.635 ×  10−4 2.837 ×  10−5

Sn 54.6°, 55.4°, 54.92p 64.31 59.58 5.262 − 4.100 ×  10−2 2.461 ×  10−4

Au 166.656,d 192.09 
(P =  4.42) 171.09 3.516 2.146 ×  10−2 − 2.613 ×  10−5

Cu 1336,q 184.48 
(P =  7.2) 156.32 4.025 − 4.760 ×  10−3 6.803 ×  10−5

LiF 66.46,q 57.94 58.06 4.136 1.520 ×  10−2 4.610 ×  10−3

NaF 46.16,q 53.20 52.44 5.685 − 0.1005 3.900 ×  10−3

NaCl 23.56 25.20 
(P =  0.106) 24.76 4.440 − 8.684 ×  10−2 2.592 ×  10−2

CsCl 16.86,q 27.57 28.79 4.896 − 7.036 ×  10−2 1.290 ×  10−3

Ice VII 23.96,q 38.71 
(P =  3.16) 30.37 2.980 − 1.950 ×  10−3 7.809 ×  10−5

MgO 153–18230 170.66 171.63 3.562 − 4.270 ×  10−3 2.269 ×  10−5

MgSiO3 200–34041 253.84 255.85 2.995 1.370 ×  10−3 2.150 ×  10−6

Ar 2.356,n 3.49 3.482 6.053 − 1.732 0.9499

Kr 2.496 3.66 3.658 5.909 − 1.514 0.8780

Xe 3.026 4.52 (P =  0.05) 4.218 5.942 − 1.373 0.7384

H2 0.17051, 0.17452 0.44 0.5707 5.002 − 1.521 0.5286

D2 0.31551, 0.33752 0.70 0.7980 4.979 − 1.427 0.4953

PCL 3.0145 1.683 1.679 8.491 − 7.773 86.34

H2O (15 °C) 2.14046 2.138 2.138 5.627 2.734 4.710

H2O (25 °C) 2.21046 2.213 2.213 5.605 2.388 5.164

H2O (35 °C) 2.25046 2.256 2.256 5.632 2.277 5.649

Table 3.  The coefficients of the bulk modulus formulas, B(P) = B0 + B1P + B2P2 + B3P3, obtained for 
various condensed matter using P and B(P) in GPa units. For comparison, the B0,expt and B0,calc values are 
also listed (see the text for the definition)a,b. aFor the references d, l, and n–q, see Section 3 of the SI. bUnless 
otherwise stated, the B0,expt and B0,calc refer to the values at P =  0. When these values are obtained at a nonzero P, 
the value of P is specified in the parenthesis.
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Summary. We presented the empirical equation of state that accurately describes the pressure-versus-volume 
data for various types of condensed matter in a wide region of pressure studied experimentally. This is also true 
for systems undergoing several phase transitions in the pressure region studied. This equation of states results 
from the fact that the pressure change of a condensed matter is accurately described by a cubic polynomial of the 
pressure times the volume.

Methods
Our non-spin-polarized DFT calculations employed the frozen-core projector augmented wave method47,48 
encoded in the Vienna ab initio simulation package49, and the generalized-gradient approximation of Perdew, 
Burke and Ernzerhof 50 for the exchange-correlation functional. To ensure the accuracies of the calculations, a 
high plane-wave cut-off energy of 1000 eV was used, and the Brillouin zone associated with each repeat unit cell 
was sampled by a large number of k-points. For example, the R m3  structure of S at 206 GPa was calculated by 
using a set of 24 ×  24 ×  24 k-points. Our calculations for Te, Se and S employed their reported crystal structures 
under various pressures, except for the 160 and 173 GPa structures of S as described in Section 1(c). The threshold 
for the self-consistent-field energy convergence was set at 10−8 eV for all structures of Se, Te and S. For the opti-
mization of the structures of S at 160 and 173 GPa, the threshold for the force convergence at each atom was set at 
0.005 eV/Å.
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