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Abstract
To understand the state and trends in biodiversity beyond the scope of monitoring 
programs, biodiversity indicators must be comparable across inventories. Species 
richness (SR) is one of the most widely used biodiversity indicators. However, as SR 
increases with the size of the area sampled, inventories using different plot sizes are 
hardly comparable. This study aims at producing a methodological framework that en-
ables SR comparisons across plot-based inventories with differing plot sizes. We used 
National Forest Inventory (NFI) data from Norway, Slovakia, Spain, and Switzerland to 
build sample-based rarefaction curves by randomly incrementally aggregating plots, 
representing the relationship between SR and sampled area. As aggregated plots 
can be far apart and subject to different environmental conditions, we estimated the 
amount of environmental heterogeneity (EH) introduced in the aggregation process. 
By correcting for this EH, we produced adjusted rarefaction curves mimicking the 
sampling of environmentally homogeneous forest stands, thus reducing the effect of 
plot size and enabling reliable SR comparisons between inventories. Models were built 
using the Conway–Maxell–Poisson distribution to account for the underdispersed SR 
data. Our method successfully corrected for the EH introduced during the aggrega-
tion process in all countries, with better performances in Norway and Switzerland. 
We further found that SR comparisons across countries based on the country-specific 
NFI plot sizes are misleading, and that our approach offers an opportunity to harmo-
nize pan-European SR monitoring. Our method provides reliable and comparable SR 
estimates for inventories that use different plot sizes. Our approach can be applied to 
any plot-based inventory and count data other than SR, thus allowing a more compre-
hensive assessment of biodiversity across various scales and ecosystems.
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1  |  INTRODUC TION

As human activities continue to trigger rapid climate change as 
well as high biodiversity turnover and extinction rates, monitor-
ing biodiversity has become a high priority for the scientific com-
munity (IPBES, 2019). The many monitoring programs that were 
developed over the last decades at local-to-national scales pro-
vide valuable information on the state and trends of biodiversity. 
Merging these existing datasets and comparing outputs beyond 
the local or national scale are essential to study biodiversity in a 
more comprehensive way in order to reliably inform decision and 
policy makers (Lengyel et al., 2008; Winter et al., 2008). In fact, 
producing robust outputs from merged datasets is a key objective 
of main European policy strategies (European Commission, 2021). 
However, it is often hampered by the fact that sampling designs, 
field protocols, and estimation procedures can differ strongly from 
one inventory to another. Thus, comparability of the many existing 
datasets constitutes a major challenge. For example, sampling de-
signs do not always follow a spatially systematic (gridded) design, 
can have different inclusion probabilities, or different plot sizes. 
Tackling these differences is challenging but important because 
sampling designs can strongly affect derived biodiversity indices. 
Disregarding sampling design effects can thus lead to deceptive 
results. With an increasing demand for comparable information on 
biodiversity, the need for developing methods allowing inference 
across inventories becomes urgent.

Species richness (SR), here referring to the number of species 
occurring in a given area, is an intuitive diversity index commonly 
used as a proxy for biodiversity components. It is a highly import-
ant ecological indicator shown to be a key driver of ecosystems’ 
resilience (Oliver et al., 2015). For instance, forests with higher 
SR suffer less from the impact of disturbances and are thus bet-
ter able to retain their carbon stocks, which is a crucial mitigation 
strategy in the face of climate change (Guyot et al., 2016; Silva 
Pedro et al., 2015). It is, however, surprisingly difficult to provide 
robust estimates of SR from plot-based monitoring data (Gotelli & 
Colwell, 2011). The size of monitored plots directly affects how 
many species can be found (Hill et al., 1994) because SR increases 
non-linearly with the area of the sampling units (Dengler, 2009; 
Gotelli & Colwell, 2001). For this reason, SR estimates should al-
ways be provided along with the corresponding plot size. Problems 
arise when, for instance, one wishes to compare the tree SR of 
two different countries, but one country uses 250 m² forest plots 
as sampling units while the other relies on 500 m² plots. A lower 
reported mean SR across all plots in the first country may be an 
ecological fact, or it may instead be rooted in the smaller plot size. 
Avoiding such uncertainties is utterly important because political 
decisions regarding biodiversity are based on indices such as the 

mean SR, although they are often not directly comparable across 
inventories. A simple solution to the problem exists when the lo-
cation of each sampled individual is known within the plots. In this 
case, the size of larger plots can artificially be decreased to match 
the size of the smallest plots. Following our previous example, the 
size of the second country’s plots could be artificially decreased 
from 500 to 250 m², allowing for a direct comparison of its SR to 
that of the first country. However, not only is the location of every 
individual rarely available in monitoring programs, but this process 
leads to an immense information loss: larger plots would always 
need to be downscaled to the smallest sampled plot size. In this 
context, obtaining reliable comparisons of SR between invento-
ries using different plot sizes must involve upscaling SR to larger 
areas. We suggest estimating species–area relationships from rar-
efaction curves built on aggregated plots as a robust approach to 
do so, allowing in our previous example to compare the tree SR of 
both countries for the same given area.

Species–area relationships are a well-established concept in 
ecology and biodiversity science (e.g., Dengler, 2009; Gotelli & 
Colwell, 2001; Stein et al., 2014; Tittensor et al., 2007). They are 
commonly built from a nested design, where the area of a plot is 
gradually increased in a continuous manner and SR is calculated ac-
cordingly (Dengler et al., 2020; Gotelli & Colwell, 2001). In invento-
ries relying on a network of independent sample plots, increasing 
area is achieved by aggregating non-contiguous plots. The relation-
ship between the area of aggregated plots and their corresponding 
SR is referred to as sample-based rarefaction curves (Crist & Veech, 
2006; Gotelli & Colwell, 2001; Steinmann et al., 2011). Plot size de-
termines how many plots must be aggregated to reach a given area. 
In our previous example, the mean SR of the second country for an 
area of 500 m² simply corresponds to the mean SR across all indi-
vidual sampled plots. However, it corresponds in the first country 
to the mean SR of many combinations of two randomly aggregated 
plots. It is crucial to note that any two plots of the first country that 
together make up the 500 m2 can potentially be located in very dif-
ferent habitats and subject to different environmental conditions. 
This makes it likely to find different sets of species, generally leading 
to a higher combined SR in two different plots of smaller size than 
in one homogeneous plot of larger size. In other words, the smaller 
single plots are, the more different environments are likely to be 
sampled for a given aggregated area, and the faster SR accumulates 
with area in rarefaction curves (Gotelli & Colwell, 2001; Steinmann 
et al., 2011). As a consequence, this prevents direct comparisons of 
rarefaction curves across inventories that use different plot sizes. 
Here, we hypothesize that we can produce comparable, adjusted 
rarefaction curves by controling for what drives the difference in 
species found in aggregated plots: environmental heterogeneity and 
spatial configuration.
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Environmental heterogeneity (EH) is a key determinant of the 
shape of sample-based rarefaction curves. Simply because it is 
likely that a wide range of environmental conditions is encoun-
tered when aggregating independent plots, the probability for ad-
ditional species to occur rises (Drakare et al., 2006; Stein et al., 
2014; Steinmann et al., 2011). Plots located in regions that differ in 
terms of climate, topography, soil conditions, or vegetation struc-
ture are likely to also differ in terms of species. While there is a 
growing consensus that EH across aggregated plots increases SR 
(Stein et al., 2014), disentangling this effect from the effect of plot 
size remains challenging (Steinmann et al., 2011). The second im-
portant aspect that affects the shape of rarefaction curves is the 
spatial configuration of aggregated plots, i.e., the geographic dis-
tance between plots that have been aggregated and the resulting 
spatial extent of the total area that has been sampled (Güler et al., 
2016). This can represent legacy effects such as demographic 
processes, dispersal limitation, colonization probabilities or spe-
ciation, and extinction processes that all affect the capacity of a 
given species to occur at a given location (Drakare et al., 2006). 
In order to compare SR across inventories that use different plot 
sizes, the key challenge is therefore to develop a method account-
ing for EH and the spatial configuration of aggregated plots when 
building rarefaction curves.

In this study, we propose a methodological framework for mod-
eling SR as a function of area, EH, and spatial configuration, thus ac-
counting for a variety of ecological factors known to affect SR 
(Figure 1). Our approach artificially removes the plot size-dependent 
effects of EH and spatial configuration that are introduced when ag-
gregating plots. The resulting adjusted rarefaction curves are then 
independent of plot size and represent the relationship between 
SR and area as if the aggregated plots were subject to similar envi-
ronmental conditions. In other words, the proposed methodological 
framework mimics a situation where species were recorded from a 
single, large, environmentally homogeneous plot. Although investi-
gating the effect of EH on rarefaction curves would be another inter-
esting avenue itself, here we focus on developing a method to obtain 
reliable comparisons of SR estimates between inventories with dif-
ferent plot sizes. The wealth of data collected within National Forest 
Inventories (NFIs) and the growing relevance of the NFI community 
for large-scale biodiversity reporting provide a valuable opportunity 
to develop and test this approach (Corona et al., 2011; Vidal, Alberdi, 
Redmond, et al., 2016). NFIs are conducted in most European coun-
tries (Tomppo et al., 2010; Vidal, Alberdi, Redmond, et al., 2016), but 
each differs with respect to sampling design settings such as plot 
size, field protocols, or estimation procedures (Chirici et al., 2011; 
Winter et al., 2008). We gathered NFI tree species occurrence data 
from Norway, Slovakia, Spain, and Switzerland, covering a wide 
ecological and bioclimatic gradient extending over seven of the ten 
European biogeographical regions (European Environment Agency, 
2016). NFI data are also a rare case where the location of individuals 
within plots is known, bringing a unique opportunity to validate our 
approach, which is essential to demonstrate its general applicability 
for other monitoring programs and their data.

2  |  MATERIAL S AND METHODS

2.1  |  National Forest Inventory data

Most NFIs consist of country-specific networks of independent, sys-
tematically distributed sample plots and are representative of the 
forested area of each country (Tomppo et al., 2010; Vidal, Alberdi, 
Hernández Mateo, 2016). As our approach, based on NFI data from 
Norway, Slovakia, Spain, and Switzerland, relies on sample plot size, 
we excluded all NFI plots for which size was reduced by a road, a river, 
or any other natural or anthropogenic barrier. In Spain, only plots lo-
cated in the Peninsula were used. The total number of selected plots 
and species in each country is presented in Table 1. We defined SR at 
the plot level as the number of tree species recorded in a plot.

We performed further data harmonization steps to control for 
the main sampling design differences between countries. Some NFI 
plot configurations are based on concentric circles associated with 
different diameter at breast height (DBH) thresholds (e.g., Spain, 
Slovakia, and Switzerland), on fixed-area plots (e.g., Norway) or on 
angle count sampling. To minimize the effect of DBH threshold-
ing and to base our analyses on fixed areas, we selected only one 
circle in the NFIs that use concentric circles. In Switzerland and 
Slovakia, we retained the 200 and 500 m² circles, respectively, in 
both cases associated with a DBH threshold of 12 cm. In Spain, we 
used the 10-m-radius circle (314 m², DBH threshold = 12.5 cm) that 
we cropped at 300 m² to facilitate subsequent analyses requiring 
50 m² increments. In Norway (plot size = 250 m²), we removed trees 
with a DBH <12 cm to harmonize the DBH threshold throughout the 
countries. Note that NFI data used in this study are not necessar-
ily the ones used for international reporting, such as in the State of 
Europe’s Forests report (FOREST EUROPE, 2020). All analyses were 
performed in R.3.6.3 (R Core Team, 2020).

2.2  |  Building sample-based rarefaction curves 
(Figure 1a,b)

We used these NFI data to build sample-based rarefaction curves 
(Gotelli & Colwell, 2001, 2011), representing the relationship be-
tween SR of aggregated plots and area. To this end, we randomly 
sampled and aggregated independent NFI plots within each country 
(Figure 1a) to incrementally increase area from that of a single plot 
to a maximum of 10,000 m² (1 ha). We did not limit the spatial extent 
of the aggregated plots to smaller regions within countries as the 
goal was to compare the SR of whole countries, as per the State of 
Europe’s Forest report (FOREST EUROPE, 2020). As plot size dif-
fered between countries, the number of plots required to reach 1 ha 
varied between countries (from 20 in Slovakia to 50 in Switzerland). 
Aggregated plots are hereafter referred to as “mega-plots.”

Contrary to Slovakia and Switzerland where NFI plots are evenly 
distributed on an equidistant grid, the grid resolution of Norway 
(Breidenbach et al., 2020) and Spain (Alberdi et al., 2017) differs be-
tween regions (i.e., sampling strata). In these countries, the random 
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Methodological framework
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sampling for generating mega-plots was adjusted to account for 
region-specific sampling intensity, such that the chances of a plot to 
be drawn in the aggregation process were reciprocally proportional 
to the grid density. That means, plots in a stratum with a wider sam-
pling grid had a larger chance to be drawn than plots in a stratum 
with a denser sampling grid. The random sampling was repeated 500 
times, resulting for each country in 500 mega-plots per aggregation 
step (Figure 1a). We calculated the SR of mega-plots at each step. 
Mega-plots were used to build country-specific sample-based rar-
efaction curves (Figure 1b), representing the relation between the 
average SR over the 500  equal-sized mega-plots, and the size of 
these mega-plots (Crist & Veech, 2006; Gotelli & Colwell, 2001).

2.3  |  Quantifying the EH contained in mega-plots 
(Figure 1c)

We used a broad set of environmental variables representing cli-
mate, topography, soil, and stand structure to cover the main fac-
tors shaping spatial patterns of SR (Field et al., 2009). Climate data 
were downloaded from Karger et al. (2017). We included mean 
annual precipitation and mean growing season temperature based 
on monthly data for the years 1979–2013. Topography variables 
were derived from a pan-European digital elevation model (DEM) 
with a spatial resolution of 25 m (EU-DEM, 2018). We considered 
slope inclination and Beers aspect, the latter being an ecologically 
meaningful index ranging from 0 (southwestern slopes, warm) to 2 
(northeastern slopes, cold). Beers aspect was calculated from aspect 
shifted by a 45 degrees angle (Beers et al., 1966):

Soil properties were represented by topsoil pH. For Spain and 
Slovakia, we downloaded topsoil pH data from the European Soil 
Database, containing maps of topsoil properties based on the Land Use 
and Cover Area frame Survey (LUCAS) (Ballabio et al., 2019). This data-
base does not provide data for Norway and Switzerland, for which we 
downloaded topsoil pH from SoilGrids, a global grid of soil information 
(Hengl et al., 2017). We further used basal area per hectare (BA) as an 

indicator of forest stand structure, representative of attributes such as 
stand density, light conditions, and competition at the local scale.

EH measures were derived from these variables for each mega-
plot to depict the differences in environmental conditions represen-
tative of climate (Hclim, described by annual precipitation and mean 
growing season temperature), topography (Htopo, described by slope 
and Beers aspect), soil (Hsoil, described by pH), and BA (HBA) across 
the aggregated plots. EH measures were calculated in three steps. 
First, the scaled value of each environmental variable was extracted 
for each plot. Second, within each mega-plot and independently for 
each EH measure (i.e., Hclim, Htopo, Hsoil, and HBA), we calculated the 
pairwise Euclidean distances between the values of the environ-
mental variables of each pair of aggregated plots (Figure 1c). The 
number of pairwise distances for a mega-plot made of n aggregated 
plots is (n∗(n − 1))/2. Pairwise distances were calculated as:

where disti,j represents the Euclidean distance between the scaled 
values of environmental variables 1 and 2 (e.g., precipitation and tem-
perature for Hclim) of plot i and plot j. For Hsoil and HBA that both only 
contain one variable (soil pH and BA, respectively), the same formula 
using only Variable1 was applied. Third, the final EH measures of each 
mega-plot k were calculated as the mean of all pairwise Euclidean dis-
tances between the n plots aggregated:

The larger an EH measure of a given mega-plot is, the more envi-
ronmentally different the aggregated plots composing this mega-plot 
are. An additional EH measure representing the spatial configuration 
of aggregated plots was calculated to reflect that species composition 
does not depend solely on climate, topography, soil, and BA conditions. 
First, we calculated Hgeo using latitude and longitude as input variables 
in Equation (2), representing the geographic distance between aggre-
gated plots. This geographic distance, in addition to controling for spa-
tial autocorrelation in species composition, is considered a proxy for 
legacy effects and other environmental factors that can affect species 

(1)Beersaspect = 1 + cos(45 − aspect)

(2)disti,j =

√

(

Variable1i−Variable1j
)2

+
(

Variable2i−Variable2j
)2

(3)EHk =

∑n

1
(dist1,2 +⋯ + distn−1,n)

(n ⋅ (n − 1))∕2

F I G U R E  1 Conceptual figure describing the methodological steps taken to remove the effect of EH introduced in the aggregation of 
plots. These steps were applied independently to each country, but are shown in this figure for Switzerland as an example. Each step is 
further described in the Materials and Methods section

TA B L E  1 Characteristics of the NFI data used in the analyses for Norway, Slovakia, Spain, and Switzerland. These characteristics do not 
correspond to the full original NFI dataset of each country, but to the NFI plots used in our analyses after we performed data harmonization 
steps

Country Plot size (m²) Number of plots Stratification Total number of species Inventory cycle

Norway 250 9844 Yes 29 2014–2018

Slovakia 500 1277 No 56 2015–2016 (NFI2)

Spain 300 65,236 Yes 126 1997–2006 (NFI3)

Switzerland 200 5361 No 56 2009–2013 (NFI4)
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composition. Consequently, the information contained in Hclim, Htopo, 
Hsoil, and HBA is likely to be related to Hgeo. To guarantee the indepen-
dence of predictor variables, we quantified this repeated information 
by fitting a linear regression performed with the lm function:

where k stands for mega-plots. Although in reality, geographic dis-
tance is not a result of environmental conditions, this model was built 
to calculate Hres, which was then defined as the residuals of the above-
described regression (Hresk

= Hgeok
− Ĥgeok

). Hres represents the resid-
ual EH captured by Hgeo once the effect of climate, topography, soil, 
and BA were accounted for. All EH variables were then standardized to 
allow comparisons of effect sizes.

2.4  |  Modeling SR as a function of area and EH 
(Figure 1d)

The SR distribution of each country was underdispered (i.e., less var-
iation in the data than expected under a Poisson distribution - Figure 
A1). We therefore assumed that SR followed a Conway–Maxwell–
Poisson (CMP) distribution, which is a two-parameter extension of 
the Poisson distribution that is able to model underdispersed count 
data (Sellers & Shmueli, 2010; Shmueli et al., 2005). The CMP distri-
bution relies on a parameter �CMP > 0 and on a dispersion parameter 
� ≥ 0. When � = 1, the CMP distribution is equivalent to a Poisson 
distribution. Values of � < 1 correspond to overdispersion, and val-
ues of �  >  1 to underdispersion (Shmueli et al., 2005). The SR of 
mega-plots k was thus specified as:

Independently for each country, we performed a CMP regression 
on the whole set of mega-plots based on maximum-likelihood esti-
mation using the glm.cmp function of the “COMPoissonReg” package 
(Sellers & Raim, 2016). This implementation allows a simultaneous es-
timation of �̂k and �̂ , which later on can be used to estimate the mean 
predicted SR (see below). Rather than directly on SRk, the glm.cmp 
function performs the regression on �̂k. We assumed � to be constant, 
i.e., � was not made dependent on the variables used in the model.

Explanatory variables included area of mega-plots, Hclim, Htopo, 
Hsoil, HBA, and Hres. The power law function has been shown to be well 
suited to describe the relationship between SR and area (Dengler, 2009; 
Dengler et al., 2020). Therefore, we formulated the CMP model as:

where Ak represents the area of mega-plot k, and β0 to β6 are the param-
eters to be estimated. ŜRk was then approximated using the following 
equation (Sellers & Shmueli, 2010; Shmueli et al., 2005):

We used the country-specific models to predict SR along the 
area gradient while setting all EH measures (Hclim, Htopo, Hsoil, HBA, 
and Hres) in Equation (6) to the value corresponding to no EH and no 
geographic distance, i.e., to the EH value of mega-plots made of one 
plot (Figure 1d). As we standardized the EH measures, the absence 
of EH corresponds to the standardized equivalent of zero for Hclim, 
Htopo, Hsoil, and HBA, and no geographic distance corresponds to the 
standardized equivalent of − �0 following Equation (4) for Hres. For 
simplicity, this set of values—including that of Hres—will be hereaf-
ter referred to as “no EH.” With this step, we aimed at artificially 
reproducing the aggregation of plots located in an environmentally 
homogenous forest stand. We refer to these predicted curves as 
EH-adjusted rarefaction curves. In each country, observed and EH-
adjusted rarefaction curves were then compared (Figure 1d).

2.5  |  Validation with downscaled datasets (Figure 
1e-g)

As the investigated NFIs record the distance of each sampled tree to 
the plot center, we could artificially reduce the size of plots by remov-
ing outermost trees to fit any desired new radius. Downscaled data-
sets with reduced radii were created independently in each country 
using plot sizes ranging from 100m² to the original plot size (Figure 1e). 
Different datasets sampling the exact same locations but with differ-
ent plot sizes can show how plot size affects the shape of rarefac-
tion curves. Additionally, they provide an opportunity to validate our 
method. As the goal is to obtain reliable SR comparisons between in-
ventories using different plot sizes, applying our method to the down-
scaled and original datasets within a country should deliver the same 
EH-adjusted rarefaction curves for the method to be successful. The 
same previously described methodological steps – generating mega-
plots and modeling SR (Figure 1a-d) – were therefore applied inde-
pendently to each downscaled dataset (Figure 1e). For each dataset 
of each country, 95% bootstrap prediction intervals were calculated 
on the predicted SR by re-fitting models over 5000 iterations where 
datasets were randomly re-sampled with replacement. In each coun-
try, EH-adjusted rarefaction curves extracted from the downscaled 
and full datasets were compared (Figure 1f,g). The removal of the ef-
fect of EH was considered successful when, contrary to the observed 
rarefaction curves, the EH-adjusted rarefaction curves from the dif-
ferent downscaled and full datasets did not significantly differ.

3  |  RESULTS

3.1  |  From observed to EH-adjusted rarefaction 
curves

In all countries, we observed steeper sample-based rarefaction curves 
(SR increased faster along the area gradient) when plot size was smaller 
(dotted lines Figure 2). Estimates of the CMP models are presented in 
Table S1 in the Appendix. In all countries, the EH-adjusted rarefaction 

(4)Hgeok
= �0 + �1 ⋅ Hclimk

+ �2 ⋅ Htopok
+ �3 ⋅ Hsoilk

+ �4 ⋅ HBAk

(5)SRk ∼ CMP
(

�k , �
)

(6)�k = A
�1
k

⋅ e

(

�0+�2 ⋅Hclimk
+�3 ⋅Htopok

+�4 ⋅Hsoilk
+�5 ⋅HBAk

+�6 ⋅Hresk

)

(7)
ŜRk ≈ �̂

1∕�̂

k
−

�̂ − 1

2�̂
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curves were less steep than the observed rarefaction curves (solid 
lines Figure 2). The difference between the curves of the downscaled 
and full datasets was markedly reduced in the EH-adjusted rarefaction 
curves compared to the original ones. In all countries, the EH-adjusted 
rarefaction curves from the various downscaled and full datasets did 
not significantly differ (Figure 3). However, the EH-adjusted rarefac-
tion curves of the different datasets of Switzerland and Norway were 
closer than the ones of Spain and Slovakia.

3.2  |  Comparison of SR between countries

The observed sample-based rarefaction curve of Switzerland was 
the steepest of all countries, followed by Slovakia. That would in-
dicate, without any consideration for differences in plot sizes, that 
Switzerland has the highest SR of all four countries for any given 
area (Figure 4a). However, the EH-adjusted rarefaction curves of 
Switzerland and Slovakia were closely matching (Figure 4b). The ob-
served rarefaction curve of Norway was steeper than that of Spain 
for small areas, but leveled off earlier so that both countries reached 
a similar SR around 2000 m² (Figure 4a). This pattern persisted in 
the EH-adjusted rarefaction curves (Figure 4b). At 500 m², observed 

rarefaction curves indicated similar SR in Slovakia and Norway, while 
the EH-adjusted rarefaction curves showed a higher SR in Slovakia 
than in Norway.

4  |  DISCUSSION

Getting a comprehensive picture of biodiversity –  more particu-
larly SR – across different ecosystems, regions, or countries often 
implies combining multiple inventory datasets. However, as SR is 
strongly related to the area that is sampled, comparisons between 
inventories are hampered by differences in plot size. This aspect is 
not always acknowledged, which can result in misleading patterns 
of SR persisting in politically relevant reports such as “The State 
of Europe’s Forests” (FOREST EUROPE, 2020). Indeed, this report 
compares the SR of forests in European countries without controling 
for how these measures of SR are obtained in each of these coun-
tries. Our study takes the example of NFIs from Norway, Slovakia, 
Spain, and Switzerland to present and test a methodological frame-
work accounting for the plot size-dependent EH introduced when 
building rarefaction curves, thus enabling direct SR comparisons be-
tween inventories even when plot sizes differ.

F I G U R E  2 Observed (a) and EH-
adjusted (b) sample-based rarefaction 
curves of each country. Different colors 
represent different datasets (downscaled 
and full plot size). However, colors are 
not representative of the same plot 
sizes across countries as their original plot 
size differs. Each point in (a) represents 
the mean SR of the 500 mega-plots of a 
given size for a given dataset. EH-adjusted 
rarefaction curves in (b) represent model 
predictions along the area gradient with 
no EH
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4.1  |  Accounting for EH to enable SR comparisons 
between inventories using different plot sizes

As expected, we found that EH-adjusted rarefaction curves were 
less steep than their corresponding observed rarefaction curves. 
The EH-adjusted curves represent the relationship between SR 

and area assuming the sampled area is essentially environmentally 
homogeneous. The validation process showed that our method 
was successful in all countries, but performed best in Norway and 
Switzerland. This could indicate that the EH of Spain and Slovakia 
was not as well captured by the environmental variables we used 
as in the other countries. Additionally, species composition and 

F I G U R E  3 Validation: for each country, 
EH-adjusted rarefaction curves, along 
with the corresponding 95% bootstrap 
prediction intervals. This figure represents 
a zoomed-in version of the EH-adjusted 
rarefaction curves represented in Figure 
2b. The SR axis varies between countries. 
Different colors represent different 
datasets (downscaled and full plot size). 
Colors are not representative of the same 
plot sizes across countries as their original 
plot sizes differ. Note that the step-like 
appearance of the prediction intervals 
relates to the fact that SR by definition is 
an integer as it represents count data

F I G U R E  4 (a) Observed and (b) EH-
adjusted rarefaction curves of Norway, 
Slovakia, Spain, and Switzerland. The 
spacing between the points of each curve 
differs from one country to another as 
their plot sizes differ. EH-adjusted curves 
represent predictions from the models 
with no EH
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diversity in Slovakia strongly differ between regions, mainly as a 
result of management legacies. For instance, the natural beech–
fir forests in the Orava and Kysuce regions have been widely re-
placed by spruce monocultures. Species composition is therefore 
more homogeneous than in other regions, regardless of the envi-
ronmental conditions these forests are subject to. In the moun-
tainous Slovakian regions, however, species composition and 
environmental conditions are very diverse due to a highly complex 
orography. The relationship between SR and EH thus likely varies 
between regions, and the global databases used to extract envi-
ronmental variables might not be able to capture this small-scale 
variability. This could explain why our method did not perform as 
well in Slovakia as in the other countries.

For any specific area, forests in Spain had a rather low SR com-
pared to the other countries. This could be because most of the for-
est ecosystems are located in the Mediterranean biogeographical 
region that dominates the Iberian Peninsula, characterized by a low 
crown cover, high shrub, and herbaceous plant diversity, and where 
only few tree species are adapted to the harsh conditions prevalent 
in some forest types (such as junipers forests, palm stands, carob 
tree forests, or strawberry tree forests). Dehesas (agrosilvopastoral 
systems), relatively frequent in the Mediterranean area, are also as-
sociated with reduced SR (Martín-Queller et al., 2011). Furthermore, 
part of the country was reforested with monocultures over the last 
decades, artificially decreasing the SR of these planted forests. In 
Mediterranean areas, there are also numerous companion tree spe-
cies that cannot reach large diameters. This causes an underestima-
tion of SR when using small area plots or concentric plot designs that 
apply a caliper threshold. Therefore, the Spanish NFI also measures 
total tree richness in 25-m-radius plots that in addition to sample 
trees also includes regeneration and trees below the caliper thresh-
old. The resulting total SR is on average four species, indicating that 
reliable SR estimations in Mediterranean forests should not solely 
rely on SR of sample trees.

Slovakia and Switzerland are both on average subject to less ex-
treme climates than Norway and Spain that are located at the ex-
tremes of the European climate range. Less extreme conditions are 
often better suited to the local cohabitation of more species, which 
could explain why the EH-adjusted rarefaction curves of Slovakia and 
Switzerland indicated a higher SR for any given area. Additionally, 
Switzerland and Slovakia might be more environmentally heteroge-
neous than Spain and Norway for similar areas, which could further 
explain the faster accumulation of SR over area. Contrary to Norway 
where EH-adjusted rarefaction curves leveled off rapidly, SR kept 
increasing further along the area gradient in Spain, suggesting that 
higher SR values could potentially be attained if area was further 
increased. This could result from the lower total number of species 
(gamma diversity) in Norway than in Spain (29 and 126, respectively), 
most likely due to the larger area that has been sampled (number 
of plots multiplied by plot size) in Spain than in Norway. The few 
Norwegian species are more equally spread over the entire country 
and consequently, the total species pool is quickly reached. In Spain, 
the variety of ecosystems is much larger, although the number of 

species able to reach the DBH threshold is low. Consequently, many 
different ecosystems must be sampled (and aggregated) to reach 
the entire species pool, making both the observed and EH-adjusted 
curves less steep and more gradual than in Norway.

Comparing rarefaction curves of countries before or after ad-
justing for differences in plot size led to different conclusions. For 
instance, the observed curve of Switzerland was steeper than that 
of Slovakia, which uses larger plots. However, once the plot size 
difference was accounted for by removing the EH between ag-
gregated plots, the EH-adjusted rarefaction curves of Switzerland 
and Slovakia were similar, suggesting that both countries had, for 
any specific area, similar levels of SR. However, this could also be 
affected by the difference in the performance of the method in 
Switzerland and Slovakia. Similarly, without accounting for plot size 
differences, the Slovakian observed rarefaction curve had SR val-
ues higher but relatively close to those of both Spain and Norway. 
After removing the effect of EH, this difference was much larger. 
These results showed that accounting for plot size differences is 
crucial when comparing SR between inventories. Our methodologi-
cal framework could enable more reliable comparisons between SR 
of inventories using different plot sizes. For instance, the State of 
Europe’s Forests (FOREST EUROPE, 2020) that reports on the share 
of European countries presenting a given SR does so without con-
sideration of plot size differences. Instead, our method would allow, 
for example, the reporting of comparable estimates of mean SR ob-
served per hectare. Furthermore, our method is not bound to NFIs 
or to the diversity of tree species, but is applicable to other count 
data such as functional or phylogenetic diversity, thus adding value 
to already existing datasets.

4.2  |  Limitations

Our method relies on several assumptions. First, we built rarefaction 
curves such that each aggregation step was independent of the pre-
vious ones. Plots were randomly selected from the entire plot pool, 
thus not building on previously aggregated plots. Traditionally, rar-
efaction curves are based on trajectories, where at each step a plot 
is randomly selected and added to the already aggregated ones from 
the previous step (Gotelli & Colwell, 2001). The intention for building 
such trajectories has often been to approximate the species–area 
relationship in one homogeneous ecosystem or area such as an ag-
ricultural field or a lake. Since plots in such well-defined and spa-
tially constrained ecosystems are not independent, a trajectory-wise 
aggregation is appropriate. In our case, where even the closest NFI 
plots are located in different forest stands, we deemed the random 
aggregation more appropriate to reflect the independence of the ag-
gregated plots.

Second, our approach relies on the assumption that EH is a key 
factor driving differences in species composition between plots (also 
termed species turnover or beta diversity). However, different envi-
ronmental conditions between plots might not always translate into 
different species compositions. This needs to be considered when 
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interpreting the country-specific degree to which our method ad-
justs rarefaction curves, and may explain why the proposed method 
works better in some countries than in others, for instance, as a re-
sult of forest management. Furthermore, our method assumes that 
the environmental variables used are indeed related to differences 
in SR between aggregated plots. The quality and resolution of the 
environmental data might not be sufficient to describe ecologi-
cally meaningful differences across plots. Additionally, other vari-
ables such as maximum temperature or summer precipitation could 
be better suited for certain regions or species groups. This aspect 
should be further investigated to better understand which variables 
best capture EH in each country, and how much each EH measure 
contributes to SR.

Third, in regions where the tree species composition has strongly 
been modified by forest management, e.g., by creating monospecific 
plantations, environmental variables might be meaningless in ex-
plaining differences in SR between aggregated plots. In other words, 
our method is expected to perform best in forests with native spe-
cies mixes. Unfortunately, the forest naturalness level could hardly 
be accounted for by using variables related to forest management. 
Indeed, management practices often target certain species and can 
both increase and decrease SR depending on the treatments applied.

4.3  |  Additional confounding factors resulting from 
sampling design differences

Sampling design characteristics other than plot size might affect 
how many species are recorded in a plot. In NFIs, the DBH threshold 
from which trees are measured varies across countries. We artifi-
cially harmonized this threshold to match the highest one (12 cm). 
This might have affected SR differently in each country, as grow-
ing conditions can greatly vary between regions and along envi-
ronmental gradients. Consequently, our rather high DBH threshold 
may hardly be reached even by mature trees where environmental 
conditions are limiting tree growth. This certainly occurs in Spain, 
and possibly in Northern Norway or in the Swiss and Slovak moun-
tainous areas where the climate is cold and growing seasons are 
short. Additionally, slowly growing species –  even when able to 
grow beyond that threshold – are less likely to be detected. Instead 
of using the same DBH threshold across inventories, our approach 
could be tested with country-  or region-specific DBH thresholds 
adapted to the prevalent growing conditions and species composi-
tion. Furthermore, our approach is applicable to inventories based 
on both fixed-area and concentric circles plots, but not to invento-
ries using angle count sampling such as in Germany, as this design is 
not area-based.

4.4  |  Broader implications

By allowing reliable SR comparisons between inventories using dif-
ferent plot sizes, our method could be used to compile data from 

several monitoring programs to report on large-scale biodiversity 
patterns. Such comparisons are relevant both within countries when 
several inventories using different plot sizes are in place, e.g., for 
different regions or ecosystems, as well as internationally, where 
differences in plot sizes are the rule rather than the exception. Our 
approach could enable data-driven, large-scale comparisons of SR, 
for example, across Europe. Such attempts would involve the fol-
lowing steps: (1) build rarefaction curves by aggregating plots for 
each inventory of interest, (2) perform inventory-specific CMP re-
gressions to quantify EH effects, (3) predict SR with no EH along the 
area gradient, and (4) use these predictions to translate to a common 
plot size. Furthermore, our method could be used to provide private 
owners or land managers with a tool informing them on the number 
of species they can expect to find in their land, given its area and 
location. This tool could help planning and making decisions on the 
potential necessity to take actions aiming at increasing biodiversity.

Our approach focuses on SR, but could be applicable to any 
other plot-based count data having a non-linear relationship to area, 
such as the number of veteran trees, structural elements, or micro-
habitats. Furthermore, our method is not bound to NFIs, but could 
be applied to any other plot-based inventory or monitoring program. 
Given the large amount of biodiversity datasets that have been put 
together over the last decades, our method is in line with the grow-
ing interest of the scientific community in big data.

Further steps building on our approach could involve investi-
gating beta diversity, or other related biodiversity indicators such 
as functional or phylogenetical diversity. Our models based on the 
quantification of EH and its effect on rarefaction curves could also be 
further developed to investigate the effect of other environmental 
factors, explore further to which level these EH variables are affect-
ing SR depending on the region or country, and compare their effects. 
Consequently, large compiled and plot-size corrected datasets could 
enable unseen research, e.g., on the environmental determinants of 
SR across large areas, maybe even entire continents, including their 
potential trends over time. Our approach has therefore a high appli-
cability and transferability that could be further pursued.
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