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Abstract

Genome-wide association studies (GWAS) comprise a powerful tool for mapping genes of complex traits. However, an
inflation of the test statistic can occur because of population substructure or cryptic relatedness, which could cause
spurious associations. If information on a large number of genetic markers is available, adjusting the analysis results by
using the method of genomic control (GC) is possible. GC was originally proposed to correct the Cochran-Armitage additive
trend test. For non-additive models, correction has been shown to depend on allele frequencies. Therefore, usage of GC is
limited to situations where allele frequencies of null markers and candidate markers are matched. In this work, we extended
the capabilities of the GC method for non-additive models, which allows us to use null markers with arbitrary allele
frequencies for GC. Analytical expressions for the inflation of a test statistic describing its dependency on allele frequency
and several population parameters were obtained for recessive, dominant, and over-dominant models of inheritance. We
proposed a method to estimate these required population parameters. Furthermore, we suggested a GC method based on
approximation of the correction coefficient by a polynomial of allele frequency and described procedures to correct the
genotypic (two degrees of freedom) test for cases when the model of inheritance is unknown. Statistical properties of the
described methods were investigated using simulated and real data. We demonstrated that all considered methods were
effective in controlling type 1 error in the presence of genetic substructure. The proposed GC methods can be applied to
statistical tests for GWAS with various models of inheritance. All methods developed and tested in this work were
implemented using R language as a part of the GenABEL package.

Citation: Tsepilov YA, Ried JS, Strauch K, Grallert H, van Duijn CM, et al. (2013) Development and Application of Genomic Control Methods for Genome-Wide
Association Studies Using Non-Additive Models. PLoS ONE 8(12): e81431. doi:10.1371/journal.pone.0081431

Editor: Lin Chen, The University of Chicago, United States of America

Received July 30, 2013; Accepted October 12, 2013; Published December 16, 2013

Copyright: � 2013 Tsepilov et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The KORA study was initiated and financed by the Helmholtz Zentrum München, German Research Center for Environmental Health, which is funded
by the German Federal Ministry of Education and Research (BMBF) and by the State of Bavaria. KORA research was supported within the Munich Center of Health
Sciences (MC-Health), Ludwig–Maximilians–Universität, as part of LMUinnovativ. Research leading to these results has received funding from a grant of the
Helmholtz Association and the RFBR (Russian Foundation for Basic Research, grants No. 11-04-00098 and 12-04-91322) in the context of a Helmholtz–Russia Joint
Research Group as well as from the European Union’s Seventh Framework Programme (FP7-Health-F5-2012) under grant agreement No. 305280 (MIMOmics).

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: yurii.aulchenko@gmail.com

Introduction

Genome-wide association studies (GWAS) are a powerful tool

for mapping genes of complex traits. Standard statistical methods

used for GWAS, such as linear regression, assume that the

correlation between a phenotype and a genotypic marker exists

because of the marker itself or a strong linkage disequilibrium with

the causative locus. This assumption holds when the sample

consists of representatives of one panmictic population. However,

other correlations caused by confounding factors that influence

both phenotypes and genotypes of various loci are possible. In

GWAS, the genetic substructure of the studied samples is among

the most important confounders. If the analysis is not accounted

for confounding by population substructure, the test statistic is

inflated [1], which makes its statistical interpretation difficult and

may lead to false-positive findings.

If information on a large number of genetic markers is available,

the analysis results can be adjusted by accounting for the influence

of non-specific effects by using the genomic control (GC) method.

Several methods have been proposed for GC adjustment [1–5].

Devlin and Roeder [1] suggested the use of a correction

coefficient, denoted as variance inflation factor (VIF), to correct

the distribution of the test statistic. In general, the VIF has been

demonstrated to be a function of marker allele frequencies and

population parameters [1]. It has also been deduced that for an

additive model, the VIF does not depend on allele frequency.

Thus, for an additive model, the ‘‘GC inflation factor’’ constant, l,

can be empirically estimated from null (not associated) loci. Note,

however, that for smaller allele frequencies and smaller samples
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asymptotic assumptions will not hold, and, consequently, the

inflation of the test statistic will depend on allele frequencies even

for additive model.

Several estimators of the Genomic Control inflation constant l
could be used. For example, the mean test statistic is an estimator

of l, which, however, suffers from being strongly affected by

outliers (e.g., from true association signals). The median estimator

(lmedian), which is defined as ratio of the median of the observed

distribution of the test statistic and 0.455 (the median of the x2
df ~1

distribution) [1], is probably the one used most. Another estimator

can be defined as regression coefficient of the observed test statistic

onto the statistic expected for the null loci (regression estimator

lregress). This estimator arises from the simple observation that the

covariance between two ordered random variables one of which is

distributed as x2
df ~1 and another as l*x2

df ~1 is equal to 2*l, while

the variance of the expected distribution is 2. All of these

estimators are constants that we can use as indicators of statistical

bias or as coefficients allowing correction of the observed test

statistic.

The general formulation of the VIF [2], in principle, allows for

extension of GC to dominant and recessive models. However, for

the non-additive model, the VIF depends on allele frequency and a

number of parameters that describe the genetic structure of the

sample. Thereby, it is possible to estimate the VIF empirically (as

for additive model) if the allele frequency of null loci is the same as

for the test locus (specific VIF for each allele group), but in this

case the number of available null markers is limited and thus limits

the applicability of the GC method. An alternative way requires

estimation of the population structure parameters. The methods,

which infer population structure and assign individuals to

populations [6] are computationally extensive.

Another method for empirical VIF estimation was suggested by

Zheng et al. [3] for .a two degrees of freedom (2df) model, which

does not constrain the relation of phenotypes and genotypes and

does not impose severe restrictions on the weight of the

heterozygous genotype. This ‘‘robust GC’’ method was based on

combining the corrected test statistics from dominant and recessive

models [3]. Yet another method of correction – delta decentral-

ization (based on centralization of the non-central chi-square) –

was proposed by Gorroochurn et al [7], but was later invalidated

by Dadd et. al. [8].

In this work, we aimed to develop and evaluate existing

methods for GC correction of results of GWAS using non-additive

(recessive, dominant, over-dominant, and 2df genotypic) models.

Therefore, we concentrate on several points: formulation of VIF

expressions for various models with one degree of freedom (1df)

and development of VIF-based procedures for GC correction of

the results of these models; estimation of model parameters

describing the population substructure for VIF estimation;

development of a new ‘‘polynomial’’ GC (PGC) method based

on a polynomial approximation of the correction coefficient that

can be applied for both one- and two-degree tests. All methods

were tested using simulated and real data.

Results

VIF for non-additive models
We derived the VIF as function of allele frequency (p), model of

inheritance (x indicates the effect of the heterozygous genotype; for

recessive, additive, and dominant model, x is equal to 0, 0.5, and 1,

respectively), sample size (N), and population parameters. The

over-dominant model (effect of genotype is equal to 0 for

homozygotes and to 1 for heterozygotes) is described separately.

Population parameters include the Wright’s coefficient of

inbreeding F (ranging from 0 to 1) [9] and a coefficient that

describes the population substructure, K~
P

ak{bkð Þ2 (K§0),

where ak and bk are numbers of representatives of each of the

subpopulations in case and control samples, respectively. In

reality, the mean inbreeding F takes a values of ,0.01 for most

populations, but can reach values of 0.04 for highly consanguin-

eous populations [10]. The value of K/N2 approaches zero when

the design is balanced (e.g. case:control ratio is 1:1 in each

subpopulation) and approaches its maximum of 1/2 when either

cases or controls only are sampled from each subpopulation.

The VIF is obtained as

l~
N Var Gið Þ{cov Gi,Gj

� �� �
zK � cov Gi,Gj

� �
NVar(Gj)

, where Gi is the

marker genotype of the i-th case (GiM {0,1,2}). Var(Gj) and

cov(Gi,Gj) is defined as:

Var(Gj)~ 2p(1{p)(1{F)x2zFpz(1{F )p2
� �

{

½2p(1{p)(1{F )xzFpz(1{F )p2�2

and

cov Gi,Gj

� �
~{

2F(p{1)p(F3(p{1)p 1{2xð Þ2zF 2(p(8x{4){4xz3)

(Fz1)(2Fz1)
{

{
F ({3p2 1{2xð Þ2zp(2x{1)(6x{5){2(x{2)x)z2 {2pxzpzxð Þ2)

Fz1ð Þ 2Fz1ð Þ

respectively. The derivations and detailed formulas for the VIF are

provided in the Supplementary Note S1.

Figure 1 presents the VIF function for a set of population

parameters (F = 0.05; N = 1,000; K = 11,000). This figure shows

that the VIF is independent of allele frequency only for the

additive model (x = K), which has been demonstrated previously

[2]. The function is point symmetric at x = K - recessive model is

mirror image of dominant. Also for x tending to infinity, it

approaches – as expected – the function for the over-dominant

model of inheritance.

Several conclusions could be drawn from the analysis of the VIF

function (Figure 1). First, the VIF of an additive model is always

greater than the one of non-additive models, which we also

observed in the analysis of simulated data for uncorrected tests

(Table 1). Second, the application of a naive correction by a

constant to the results obtained from the non-additive model

GWAS can fix the ‘‘average’’ type 1 error to the nominal level;

however, for several markers, the test will be conservative and for

others, it will be liberal. For example, for the dominant model,

such a ’’correction’’ will lead to a liberal test for low frequency

SNPs (single nucleotide polymorphisms) and to a conservative test

for common SNPs. These results are confirmed by our simulations

for constant correction tests (Table 1). Although the correction by

a constant generally keeps the type 1 error rate to a pre-defined

threshold, this is not true for SNPs in a particular frequency group.

Estimation of VIF parameters
Methods for VIF estimation require knowledge about param-

eters that describe the population substructure. If these parame-

ters, such as F and K, are not known, estimates can be utilized.

Estimation is based on the idea that the distribution of the analysis

test statistic should follow x2
df ~1 after correction. Thereby,

estimating unknown function parameters is possible by minimizing

a chosen error function that indicates the deviation of the observed

Genomic Control for Non-Additive Models
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distribution from the expected one. We used a sum of squared

deviations of the ordered corrected statistics (Z2) and the

theoretically expected distribution as an error function:

ferr~
XM
i~1

Z2
i xð Þ

VIFi p,x,N,F ,Kð Þ{x2
1

� �2

Note that only the population parameters F and K should be

estimated, whereas N (sample size), M (number of SNPs), and p

and x are defined by the data and the analysis model. This method

was denoted as VIFGC.

Polynomial GC
We also propose a polynomial GC for non-additive models,

which approximates the correction function via an l-degree

polynomial of allele frequency p:

l(p)~
Xl

i~0

ai � pi

For estimation of the coefficients ai, we used the same idea as

with the estimation of parameters F and K in method VIFGC, that

is that the corrected statistic Z2�~Z2�
l(p) should be distributed as

Figure 1. Dependence of VIF function on allele frequency p and model parameter x (F = 0.05; N = 1,000; K = 11,000). (A) p: {0,1}, x:
{21,2}; (B) p: {0,1}, x = 0 (R, recessive), x = 1 (D, dominant), x = 1/2 (A, additive), x = 100 (O, over-dominant).
doi:10.1371/journal.pone.0081431.g001
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x2. We denote this method as PGC. Empirically, we decided to use

third degree polynomials during the optimization.

These two refined strategies, VIFGC and PGC, were compared

with the standard GC method of dividing test statistics by a

constant l. We used simulated and real data to evaluate the type 1

error and power of the methods. Type 1 error was characterized in

three ways: lmedian, which is the ratio of the observed distribution’s

median and the expected median (0.455); lregress, which is the

regression coefficient between the observed statistic’s distribution

and the theoretically expected x2 statistic; and E, which is the

proportion of tests with p-value # nominal level. We also

characterized the type 1 error in five specific marker allele

frequency groups: [0.05,0.25), [0.25,0.4), [0.4,0.6), [0.6,0.75), and

[0.75,0.95].

Simulation results
Simulation details could be found in the ‘‘Materials and

methods section’’. Simulation results for type 1 error for 1df tests

are presented in Table 1. As discussed above, constant corrected

tests have significant deviations from expected values of type 1

error for several allele frequency groups for non-additive models.

Unlike the constant correction method, the PGC and VIFGC

methods have a type 1 error close to expected values both for all

SNPs together and for specific frequency groups.

Simulation results for type 1 error for 2df tests are presented in

Table 2. This table shows that constant corrected tests have

slightly liberal type 1 error with a behavior similar to the additive

model, and the inflation does not depend on allele frequencies.

The method based on 1df VIFGC-corrected tests is strongly

conservative (the type 1 error is lower than the nominal level).

PGC corrected tests have type 1 error levels close to the nominal

level.

The power of different methods is shown in Table 3. It showed

that all methods for correction including VIFGC and PGC have

optimal power when the correct model (the one used in the

simulations) is also used for analysis. As expected, the 2df

genotypic test has less power but is robust compared with the

model used for simulation.

Application to real data
Real data application on two independent cohorts, namely,

Cooperative Health Research in the region of Augsburg (KORA)

and Erasmus Rucphen Family (ERF), provided the opportunity to

test our methods in situations that are not reflected in our

simulation study. In both studies, we analyzed imputed genotypes

(expressed as estimated probabilities) and quantitative traits using

linear regression methods. While our previous derivations and

results concern binary traits, an important previous observation for

Table 1. Type 1 error for one degree of freedom tests.

Not corrected Constant corrected VIFGC corrected PGC corrected

Model Frequency lmedian lregress E lmedian lregress E lmedian lregress E lmedian lregress E

Reccessive all 1.301 1.305 0.086 1.000 1.003 0.051 1.000 1.000 0.050 0.999 0.999 0.050

[0.05,0.25) 1.175 1.170 0.069 0.905 0.900 0.038 0.990 0.983 0.048 1.004 0.998 0.049

[0.25,0.4) 1.245 1.245 0.079 0.957 0.957 0.045 0.995 0.995 0.049 1.000 1.000 0.050

[0.4,0.6) 1.320 1.322 0.088 1.014 1.015 0.052 1.002 1.004 0.051 0.998 0.999 0.050

[0.6,0.75) 1.377 1.381 0.095 1.057 1.060 0.057 1.006 1.009 0.051 0.996 0.999 0.050

[0.75,0.95] 1.412 1.416 0.100 1.084 1.087 0.060 1.007 1.010 0.051 0.997 1.000 0.050

Additive all 1.453 1.458 0.104 1.000 1.003 0.051 0.997 1.000 0.050 0.991 1.034 0.050

[0.05,0.25) 1.451 1.455 0.104 0.998 1.001 0.050 0.995 0.998 0.050 0.991 1.033 0.050

[0.25,0.4) 1.455 1.460 0.105 1.001 1.005 0.051 0.998 1.002 0.050 0.991 1.035 0.050

[0.4,0.6) 1.456 1.461 0.105 1.002 1.006 0.051 0.999 1.002 0.051 0.990 1.035 0.050

[0.6,0.75) 1.454 1.458 0.104 1.000 1.003 0.051 0.997 1.000 0.050 0.990 1.034 0.050

[0.75,0.95] 1.452 1.456 0.104 0.999 1.002 0.051 0.996 0.998 0.050 0.992 1.036 0.050

Dominant all 1.302 1.306 0.086 1.000 1.003 0.051 0.999 1.000 0.050 0.999 1.000 0.050

[0.05,0.25) 1.413 1.416 0.099 1.084 1.086 0.060 1.007 1.009 0.051 0.997 0.999 0.050

[0.25,0.4) 1.379 1.383 0.095 1.058 1.061 0.057 1.007 1.010 0.051 0.997 1.000 0.050

[0.4,0.6) 1.320 1.323 0.088 1.013 1.016 0.052 1.002 1.004 0.051 0.998 1.001 0.050

[0.6,0.75) 1.244 1.245 0.079 0.956 0.956 0.045 0.993 0.993 0.049 1.000 1.000 0.050

[0.75,0.95] 1.174 1.171 0.070 0.903 0.900 0.039 0.988 0.984 0.048 1.003 0.999 0.050

Over-dominant all 1.176 1.181 0.072 1.000 1.004 0.051 0.999 1.000 0.050 0.999 1.000 0.050

[0.05,0.25) 1.281 1.282 0.083 1.088 1.089 0.061 1.007 1.008 0.051 0.996 0.997 0.050

[0.25,0.4) 1.143 1.146 0.067 0.972 0.974 0.047 0.998 1.000 0.050 1.006 1.008 0.051

[0.4,0.6) 1.060 1.058 0.057 0.902 0.901 0.039 0.987 0.985 0.048 0.991 0.990 0.049

[0.6,0.75) 1.142 1.143 0.067 0.971 0.972 0.047 0.998 0.999 0.050 1.006 1.007 0.051

[0.75,0.95] 1.279 1.282 0.083 1.086 1.089 0.060 1.007 1.008 0.051 0.996 0.997 0.050

Type 1 error was estimated in three ways: lmedian, which is the ratio of observed distribution’s median and expected median; lregress, which is the regression coefficient
between observed statistic’s distribution and theoretically expected Chi-square statistic; and E, which is the proportion of the tests with p-value#0.05. The values are
given for all SNPs as well as for stratified frequency groups.
doi:10.1371/journal.pone.0081431.t001
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the GC was that the method can be applied in the framework of

quantitative trait regression analysis models as well [11].

It should be noted, that for genome-wide analyses in ERF,

mixed model based methods are used [12]; here, however, we use

ERF as an example of highly genetically structured population,

and analyze it using fixed effects-only model. In KORA, we

analyzed uric acid levels, and in ERF, levels of high-density

lipoprotein (HDL) (see ‘‘Materials and Methods’’ section for more

details).

Table 4 shows the results of type 1 error analysis in ERF, a

family-based study where the association is strongly confounded by

the genetic structure if naı̈ve analysis is applied. When an additive

model is used without correcting for genetic structure via mixed

models, l for HDL is 1.2. For non-additive models, we reproduced

the same principal findings that we obtained from simulated data

by using these real data. Correction by a constant factor results in

a conservative test for some frequency groups and in a liberal test

for other frequency groups, whereas VIFGC and PGC corrections

yield accurate levels independent of the marker allele frequency.

Type 1 error results in KORA, a population-based study where

stratification is minimal, are presented in Table 5. When an

additive model is used, we observe that l is only 1.03 for the

quantitative trait uric acid. For non-additive models, where the

genetic structure is close to absent in this data set, we still

reproduced the same principal findings as observed in our

simulations and analysis of ERF data.

Discussion

We demonstrated by simulations and the analysis of real data

that the proposed GC methods (VIFGC and PGC) could be used

for the correction of non-additive test statistics in the context of

GWAS assuming different models of inheritance. For additive

models, widely used in GWAS, there are two applications of GC

methods. Firstly, the inflation coefficient l can be used to correct

the test statistic, thereby making an interpretation of p-values

statistically valid. Secondly, l serves as an important indicator of

goodness of the model used for association analysis. Although no

specific threshold is available, as a rule, if the inflation of the test

statistics is relatively large, this reflects the fact that the model

chosen for analysis poorly accounts for the genetic structure

present in the sample. In that case, the analysis model should be

revised, e.g., instead of standard linear regression, the use of a such

methods as structured association, EIGENSTRAT [13] or mixed

models [14–16] should be considered. Note that even after the

most advanced analysis model is used, some residual inflation may

be expected. This residual inflation is usually corrected by the GC,

because even minor inflation still can lead to much increased false

positive rate in GWAS. For example, at l= 1.05, when the test

statistic is not corrected, the x2 threshold of 29.72 (p-val-

ue = 5*1028 in case the statistic is not inflated) corresponds to p-

value = 1*1027, that is the false positive rate is increased by more

than two times. This correction is also very important when meta-

analysis of multiple GWAS is performed [17] because a small

residual inflation, when not corrected, can lead to very large

inflation in the final meta-analysis test statistic.

In our examples involving analysis of real phenotypes, the main

use of GC in ERF is the use as indicator. Although nominal type I

error can be achieved with the GC, GWAS should be performed

with mixed models in this population, and GC should be used only

to correct residual inflation. Analysis of KORA, which is a

carefully designed population-based study with little stratification,

Table 2. Type 1 error for two degrees of freedom tests.

Not corrected Constant corrected df1 based (VIFGC corrected)* PGC corrected

Frequency lmedian lregress E lmedian lregress E lmedian lregress E lmedian lregress E

all 1.239 1.250 0.092 1.000 1.009 0.053 0.951 0.957 0.045 0.991 1.000 0.051

[0.05,0.25) 1.239 1.248 0.091 1.000 1.007 0.052 0.959 0.962 0.045 0.992 1.000 0.051

[0.25,0.4) 1.241 1.252 0.092 1.001 1.010 0.053 0.948 0.955 0.045 0.991 1.000 0.051

[0.4,0.6) 1.240 1.252 0.092 1.001 1.010 0.053 0.942 0.951 0.044 0.990 1.000 0.051

[0.6,0.75) 1.239 1.251 0.092 1.000 1.009 0.053 0.946 0.955 0.045 0.990 1.000 0.052

[0.75,0.95] 1.239 1.249 0.092 1.000 1.008 0.053 0.959 0.963 0.045 0.992 1.000 0.051

The abbreviations are as in Table 1. The values are given for all SNPs as well as for stratified frequency groups.
*2df test based on 1df corrected tests (here, 1df tests were corrected by VIFGC) [3].
doi:10.1371/journal.pone.0081431.t002

Table 3. Power (% of test with p-value#0.05) for different tests.

Simulated model Recessive Additive Dominant Over-dominant

Analised model r a d o g r a d o g r a d o g r a d o g

Not corrected 0.87 0.71 0.26 0.44 0.78 0.60 0.78 0.64 0.42 0.67 0.20 0.74 0.84 0.39 0.78 0.37 0.32 0.40 0.83 0.76

Constant corrected 0.79 0.59 0.15 0.43 0.64 0.48 0.67 0.58 0.38 0.62 0.15 0.63 0.80 0.35 0.72 0.31 0.26 0.33 0.78 0.60

VIF corrected* 0.80 0.59 0.16 0.41 0.62 0.50 0.66 0.55 0.38 0.58 0.15 0.63 0.80 0.35 0.68 0.30 0.26 0.32 0.77 0.57

PGC corrected 0.81 0.58 0.16 0.41 0.63 0.50 0.67 0.56 0.38 0.62 0.15 0.64 0.80 0.36 0.72 0.30 0.26 0.32 0.77 0.59

*genotypic model for VIFGC corrected tests is a two degrees of freedom test based on recessive and dominant tests corrected by VIFGC [3].
r, a, d, o, and g are recessive, additive, dominant, over-dominant, and genotypic models, respectively.
doi:10.1371/journal.pone.0081431.t003
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provides a more realistic example of a case when the GC method

should be used ‘‘directly’’.

Most GWAS performed up-to-date have used an additive

model, and GC is an essential part of the analysis procedure.

Methods for GC for non-additive models are much less developed.

This obstructs correct analysis, meta-analysis, and interpretation of

the results of such GWAS. Despite weaker development of the

methodological base, some works reported interesting findings

based on the analysis of non-additive models [18–21].

In this work, we proposed new and study existing methods of

GC for non-additive models. We demonstrated that the VIFGC

and the PGC method can be used to correct the results of GWAS

obtained by using dominant, recessive, over-dominant (one degree

of freedom), and genotypic (two degrees of freedom) models. We

show that in general, for 1df models, both VIFGC and PGC

perform equally well, whereas for the 2df model, the test based on

a 1df VIFGC-corrected statistic results in a conservative test.

Thus, for the genotypic model, the PGC correction may be

preferred. These methods have a variance of the type 1 error in all

frequency groups that is significantly less than that observed when

constant correction GC is applied (p,10220, see Table S4). It

should be noted that for the PGC method we could in principle

use an exponential function instead of a polynomial, but using of

exponential function restricts the available models to the recessive

and dominant only. Using polynomial functions eliminates

restrictions for using PGC for other models, such as overdominant

and the 2df genotypic ones.

However, the quality of approximation comes at the costs of

time whereas the correction of the additive model’s results is

computationally very simple, the VIFGC and PGC corrections

include parameter optimization steps. Still, even PGC that

requires optimization of four parameters and uses the data from

2.5 million tests finishes within minutes on a standard PC.

In our methods, we estimated the parameters by using the

regression loss function. This loss function is sensitive to possible

heavy tails of the distribution (these may reflect real strong

association signals). Therefore, we decided to use the lower 95%

of the distribution, which is similar to the method suggested in [22].

Other solutions are possible by using different loss functions, which

are less sensitive to outliers. Examples include loss functions defined

by the sum of absolute deviations or the square root thereof and the

difference between obtained and expected medians.

For additive models, the GC inflation factor l is an important

indicator of goodness of the model used for association analysis.

For recessive, dominant, and over-dominant models, we have

demonstrated that the test inflation is always smaller than the

inflation for the additive model (Figure 1). Therefore, we suggest

that the use of analytical method that appropriately reflects the

Table 4. Type 1 error in ERF data analysis.

Not corrected Constant corrected VIFGC corrected* PGC corrected

Model Frequency lmedian lregress E lmedian lregress E lmedian lregress E lmedian lregress E

Recessive all 1.201 1.200 0.074 1.000 1.000 0.050 1.001 1.000 0.050 1.000 1.000 0.050

[0.05,0.25) 1.105 1.109 0.063 0.921 0.924 0.042 0.993 0.997 0.050 0.998 1.002 0.051

[0.25,0.5) 1.188 1.180 0.072 0.989 0.983 0.048 1.005 0.999 0.050 0.998 0.992 0.050

[0.5,0.75) 1.240 1.252 0.079 1.033 1.043 0.055 1.004 1.013 0.051 0.996 1.006 0.051

[0.75,0.95] 1.273 1.261 0.081 1.061 1.051 0.056 1.001 0.991 0.049 1.008 0.999 0.050

Additive all 1.298 1.302 0.086 1.000 1.003 0.051 0.997 1.000 0.050 0.996 1.000 0.050

[0.05,0.25) 1.299 1.290 0.085 1.001 0.994 0.050 0.998 0.991 0.049 1.008 1.000 0.050

[0.25,0.5) 1.298 1.313 0.088 1.001 1.012 0.052 0.997 1.008 0.052 0.986 0.997 0.050

[0.5,0.75) 1.301 1.320 0.088 1.003 1.017 0.053 1.000 1.014 0.052 0.989 1.003 0.051

[0.75,0.95] 1.292 1.286 0.084 0.995 0.991 0.049 0.992 0.988 0.049 1.003 0.999 0.050

Dominant all 1.202 1.203 0.074 1.000 1.001 0.050 1.000 1.000 0.050 1.000 1.000 0.050

[0.05,0.25) 1.277 1.265 0.081 1.063 1.053 0.056 1.001 0.991 0.049 1.008 0.999 0.050

[0.25,0.5) 1.243 1.252 0.079 1.035 1.042 0.054 1.003 1.011 0.051 0.997 1.005 0.051

[0.5,0.75) 1.190 1.183 0.072 0.990 0.985 0.049 1.005 1.000 0.050 0.999 0.994 0.050

[0.75,0.95] 1.104 1.112 0.064 0.919 0.925 0.042 0.991 0.998 0.050 0.995 1.002 0.051

Over-dominant all 1.133 1.123 0.064 1.000 0.991 0.049 1.011 1.000 0.050 1.011 1.000 0.050

[0.05,0.25) 1.203 1.193 0.072 1.061 1.053 0.056 1.017 1.010 0.051 1.011 1.003 0.050

[0.25,0.5) 1.076 1.060 0.057 0.950 0.935 0.043 1.011 0.995 0.049 1.013 0.998 0.049

[0.5,0.75) 1.064 1.053 0.056 0.939 0.929 0.042 1.000 0.989 0.049 1.004 0.993 0.049

[0.75,0.95] 1.204 1.190 0.072 1.062 1.050 0.056 1.017 1.007 0.051 1.014 1.004 0.051

Genotypic (df = 2) all 1.157 1.162 0.077 1.000 1.004 0.052 0.964 0.966 0.046 0.996 1.000 0.051

[0.05,0.25) 1.163 1.159 0.077 1.005 1.002 0.052 0.973 0.969 0.047 1.004 1.001 0.051

[0.25,0.5) 1.152 1.165 0.077 0.996 1.006 0.052 0.954 0.964 0.045 0.988 0.999 0.051

[0.5,0.75) 1.151 1.164 0.077 0.995 1.006 0.052 0.953 0.963 0.046 0.989 1.000 0.051

[0.75,0.95] 1.163 1.159 0.077 1.005 1.001 0.052 0.973 0.970 0.047 1.004 1.000 0.052

*for VIFGC corrected genotypic (2df) tests, we used the 1df based test by performing VIFGC-corrected tests for recessive and dominant models [3].
The abbreviations are as in Table 1. The values are given for all SNPs as well as for stratified frequency groups.
doi:10.1371/journal.pone.0081431.t004
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genetic structure of the underlying data should be decided based

on l for an additive model or based on the maximal value of the

VIF function from the non-additive model.

For the GC method, an important previous observation was

that the method is not specific for the Cochran-Armitage test.

Bacanu et. al. [11] have demonstrated earlier that the GC method

can be applied in the framework of quantitative trait regression

analysis models as well, including models with gene-gene

interaction. We confirmed this principle by analyzing real

quantitative trait in two different populations.

All methods developed and tested in this work were implemented

in R language in the GenABEL-package [23], part of the GenABEL

project for statistical genomics (http://www.genabel.org).

In summary, we proposed and tested several methods for GC for

various models of inheritance and compared these methods by using

real and simulated data. We demonstrated that the VIFGC and the

PGC method can be successfully used in adjusting the test statistic

for different non-additive models in the framework of GWAS.

Materials and Methods

ERF study
Simulations were based on real genetic data collected in the

framework of the Erasmus Rucphen Family (ERF) study. All study

protocols were approved by the Medical Ethics Committee of

Erasmus University, and all participants gave written informed

consent in accordance with the Declaration of Helsinki. The ERF

study is a cross-sectional study embedded in genetically isolated

population located in southwest Netherlands. The study partici-

pants are members of a single large pedigree that can be traced in

23 generations and contains thousands of cycles [24]. The sample

used for simulations included 3,235 people, for whom the

genotypes of 54,000 SNP markers were available. All SNPs

included had a coding allele frequency (CAF) 0.05#CAF (coded

allele frequency) #0.95 and a call rate $0.95.

In the example where real phenotypic data was used, we

analyzed levels of high-density lipoprotein (HDL) on imputed

genotypic data. This data set included 2,699 people, who were

genotyped and imputed (using HapMap2 as reference panel) at

2,093,818 SNP markers. All SNPs in the subset had

0.05#CAF#0.95 and a call rate $0.95. More detailed description

of phenotyping and sample can be found in [25].

KORA study
As an example of a carefully designed population-based

study, we used KORA (Cooperative Health Research in the

region of Augsburg) F4, which is a study from the KORA cohorts

[26]. KORA F4 is a follow-up (from 2006 to 2008) of the

Table 5. Type 1 error of KORA data tests.

Not corrected Constant corrected VIFGC corrected* PGC corrected

Model Frequency lmedian lregress E lmedian lregress E lmedian lregress E lmedian lregress E

Recessive all 1.016 1.020 0.053 1.000 1.004 0.051 0.996 1.000 0.050 0.996 1.000 0.050

[0.05,0.25) 1.015 1.016 0.052 0.998 1.000 0.050 1.004 1.005 0.051 1.000 1.001 0.050

[0.25,0.5) 1.014 1.023 0.053 0.998 1.006 0.051 0.996 1.005 0.051 0.992 1.001 0.050

[0.5,0.75) 1.017 1.021 0.053 1.001 1.005 0.051 0.993 0.997 0.050 0.993 0.997 0.050

[0.75,0.95] 1.020 1.020 0.053 1.004 1.004 0.051 0.993 0.993 0.050 1.000 1.001 0.051

Additive all 1.019 1.024 0.053 1.000 1.005 0.051 0.995 1.000 0.050 0.995 1.000 0.050

[0.05,0.25) 1.024 1.030 0.053 1.005 1.011 0.051 1.000 1.006 0.051 0.997 1.003 0.050

[0.25,0.5) 1.020 1.024 0.053 1.001 1.004 0.051 0.996 0.999 0.050 0.994 0.998 0.050

[0.5,0.75) 1.017 1.019 0.052 0.998 1.000 0.050 0.993 0.995 0.050 0.994 0.996 0.050

[0.75,0.95] 1.016 1.024 0.053 0.997 1.005 0.051 0.992 1.000 0.050 0.995 1.003 0.051

Dominant all 1.021 1.025 0.053 1.000 1.004 0.051 0.996 1.000 0.050 0.996 1.000 0.050

[0.05,0.25) 1.024 1.026 0.053 1.002 1.005 0.051 0.989 0.992 0.049 0.999 1.002 0.050

[0.25,0.5) 1.025 1.028 0.054 1.004 1.007 0.051 0.995 0.999 0.050 0.994 0.998 0.050

[0.5,0.75) 1.015 1.026 0.053 0.994 1.005 0.051 0.992 1.003 0.050 0.987 0.997 0.050

[0.75,0.95] 1.022 1.021 0.053 1.000 1.000 0.050 1.007 1.007 0.051 1.003 1.002 0.050

Over-dominant all 1.027 1.027 0.053 1.000 1.000 0.050 1.000 1.000 0.050 1.000 1.000 0.050

[0.05,0.25) 1.027 1.027 0.054 1.000 1.001 0.051 0.987 0.988 0.049 0.999 1.000 0.050

[0.25,0.5) 1.029 1.027 0.053 1.003 1.000 0.050 1.016 1.013 0.051 1.003 1.001 0.050

[0.5,0.75) 1.028 1.025 0.053 1.002 0.998 0.050 1.014 1.011 0.051 1.002 0.999 0.050

[0.75,0.95] 1.021 1.028 0.054 0.995 1.001 0.051 0.982 0.988 0.049 0.994 1.000 0.051

Genotypic (df = 2) all 1.021 1.024 0.054 1.000 1.003 0.051 0.999 1.002 0.051 0.997 1.000 0.051

[0.05,0.25) 1.021 1.022 0.054 1.000 1.001 0.051 0.997 0.998 0.050 1.000 1.001 0.051

[0.25,0.5) 1.022 1.026 0.055 1.001 1.005 0.051 0.997 1.001 0.051 0.996 1.000 0.051

[0.5,0.75) 1.020 1.024 0.054 0.999 1.003 0.051 0.996 0.999 0.050 0.994 0.998 0.050

[0.75,0.95] 1.021 1.025 0.055 1.000 1.004 0.052 1.006 1.009 0.052 0.997 1.001 0.051

*for VIFGC corrected genotypic (2df) tests, we used the 1df based test by performing VIFGC-corrected tests for recessive and dominant models [3].
The abbreviations are as in Table 1. The values are given for all SNPs as well as for stratified frequency groups.
doi:10.1371/journal.pone.0081431.t005
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population-based KORA S4 study that was conducted in the

region of Augsburg in Southern Germany from 1999 to 2001. All

study protocols were approved by the ethics committee of the

Bavarian Medical Chamber (Bayerische Landesärztekammer),

and all participants gave written informed consent. In our

application, we analyzed levels of uric acids in a data set including

1,788 people who were genotyped with the Affymetrix 6.0 SNP

array (730,525 SNP markers after quality control) with further

imputation using HapMap2 (release 22) as reference panel

resulting in a total of 2,210,193 SNPs. All SNPs in the study

had 0.05#CAF#0.95 and a call rate $0.95. A more detailed

description of study design, genotyping, and phenotyping is

reported in [27].

Simulations
The phenotypes for analysis of type 1 error and the power were

simulated based on real genetic data from the ERF study by using

the scheme described below. We used binary traits for simulations

because in our own derivation of VIF as well as in previous

derivations, binary traits were used in the same way as

demonstrated in [2]. Results can be generalized to quantitative

traits as well [11].

Liability values were simulated as a sum of independent

quantitative trait loci (QTLs) and polygenic effects. The heritabil-

ity coefficient was set to be equal to a random number coming

from a uniform distribution bounded by 0.5 and 0.8. To model the

QTL effect, an SNP was randomly chosen. Based on its minor

allele frequency (MAF), the effect was assigned in a way that the

SNP was accounted for 0% of total liability variance for type 1

error and 0.35% for power simulations. To model the polygenic

effect, 500 markers were randomly chosen (excluding the

chromosome harboring the QTL), and based on their allele

frequencies, effects were assigned in such way that each of the

SNPs explained the same fraction of non-QTL heritability. The

quantitative phenotype was transformed into a binary trait

following a threshold model (the ‘‘case’’ phenotype was assigned

if liability was below the threshold corresponding to 1/3 of the

distribution). To study type 1 error, 1,000 simulation cycles were

performed. To study the power, 100 simulation cycles were

performed.

Association analysis
For the analysis of simulated and real data, we used standard

tests implemented in the GWFGLS (genome-wide feasible

generalized least squares) function of the MixABEL package,

which is a part of the GenABEL suite of programs [23] for

statistical genomics (option ‘‘score,’’ so the output from GWFGLS

for binary traits was completely the same as for Cochran-Armitage

trend test of chi-square for binary traits). GWAS were calculated

for five different (additive, dominant, recessive, over-dominant,

and genotypic) models of SNP effect.

For quantitative trait analysis, we used regression and score test

as implemented in MixABEL. For the analysis of imputed data,

the regression was performed onto probabilities.

GWAS results were corrected using different methods for GC.

The standard method, which corrects test statistic by dividing it by

the estimated l, was applied as well as two refined methods. The

qualities of the GC correction methods were compared with one

another in terms of type 1 error with three characteristics:

lmedian: ratio of distribution’s median and expected median

(0.455)

lregress: regression coefficient between statistic’s distribution and

theoretically expected Chi-square statistic

E: proportion of the tests with p-value less then declared level

(0.05).

In addition to the comparison of the performance for all SNPs,

five allele frequency groups were compared separately: [0.05,0.25),

[0.25,0.4), [0.4,0.6), [0.6,0.75), and [0.75,0.95].
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