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Abstract

Background: Norwogonin is a natural flavone with three phenolic hydroxyl groups in skeletal structure and has
excellent antioxidant activity. However, the neuroprotective effect of norwogonin remains unclear. Here, we
investigated the protective capacity of norwogonin against oxidative damage elicited by hypoxia in PC12 cells.

Methods: The cell viability and apoptosis were examined by MTT assay and Annexin V-FITC/PI staining, respectively.
Reactive oxygen species (ROS) content was measured using DCFH-DA assay. Lactate dehydrogenase (LDH),
malondialdehyde (MDA) and antioxidant enzyme levels were determined using commercial kits. The expression of
related genes and proteins was measured by real-time quantitative PCR and Western blotting, respectively.

Results: We found that norwogonin alleviated hypoxia-induced injury in PC12 cells by increasing the cell viability,
reducing LDH release, and ameliorating the changes of cell morphology. Norwogonin also acted as an antioxidant
by scavenging ROS, reducing MDA production, maintaining the activities of superoxide dismutase (SOD), catalase
(CAT) and glutathione peroxidase (GPx), and decreasing the expression levels of HIF-1a and VEGF. In addition,
norwogonin prevented cell apoptosis via inhibiting the expression levels of caspase-3, cytochrome ¢ and Bax, while
increasing the expression levels of Bcl-2 and the ratio of Bcl-2/Bax.

Conclusions: Norwogonin attenuates hypoxia-induced injury in PC12 cells by quenching ROS, maintaining the
activities of antioxidant enzymes, and inhibiting mitochondrial apoptosis pathway.
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Background

Aerobic organisms need oxygen (O,) for producing en-
ergy. Hypoxia is defined as insufficient O, supply to
maintain cellular function in tissue and often occurs in
some physiological situations such as high altitude [1],
and in many pathological situations such as stroke [2].
The brain is particularly sensitive to hypoxia-induced in-
jury due to its high oxygen consumption, rich in unsat-
urated fatty acids and low antioxidant capacity [3].
Increasing evidences have indicated that hypoxia can in-
duce adverse effects on brain [4—6].
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Oxidative stress and apoptosis are considered as two
contributing factors in hypoxia-induced injury [7, 8]. Hyp-
oxia exposure has been reported to increase the produc-
tion of intracellular reactive oxygen species (ROS), which
facilitates oxidative stress. Excessive ROS, such as super-
oxide anion (O, ), hydrogen peroxide (H,O,) and hy-
droxyl radical (HOe), leads to structural and functional
cellular changes by attacking lipids, membranes, proteins
and DNA, and subsequently causes cell damage [9]. Sim-
ultaneously, overproduced ROS also facilitates opening of
mitochondrial permeability transition pore (mPTP) [10]
and transferring pro-apoptosis proteins to the outer mito-
chondrial membrane, which induces depolarization of
mitochondrial membranes and releases of cytochrome ¢
[11]. These changes ultimately cause mitochondrial-
dependent apoptosis [12]. So, it is believed that
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antioxidant with the ability of inhibiting or eliminating ex-
cessive ROS may exert its protective effect via attenuating
oxidative stress and apoptosis induced by hypoxia. Lots of
studies have proved that antioxidant supplement like vita-
min C [13], isoflavone [8] and nitroxide radicals [14], can
limit hypoxia-induced injury in vitro and in vivo.

Flavonoids are large and diverse class of ubiquitous
plant secondary metabolites. They are always considered
as excellent natural antioxidant with the ability of scav-
enging free radical and inhibiting lipid peroxidation.
Currently, more and more attentions have been paid on
this class of compounds due to their benefit effects on
human health. Flavonoids have been shown to own a
wide range of pharmacological actions, such as antiin-
flammatory, antinociceptive and neuroprotective activity,
etc., all which may be attribute to their antioxidant activ-
ities [15]. Many studies have indicated that flavonoids
exhibit excellent protective effects on hypoxia-induced
failure. For example, rutin has a strong neuroprotective
effect against retinal ganglion cell death induced by hyp-
oxia [16]. A recent study also demonstrates that rutin
can alleviate cobalt chloride-induced hypoxia damage by
inhibiting oxidative stress and apoptosis in H9c2 cell
[17]. Moreover, Liu et al suggest that nobiletin (3',4",5,6,
7,8-hexamethoxyflavone) attenuates myocardial I/R in-
jury via activating of Akt/GSK-3p pathway in H9c2 cell
[18]. In addition, acacetin can protect rat cardiomyocytes
and H9C2 cardiomyoblasts against hypoxia/reoxygena-
tion induced injury via AMPK-mediated activation of
Nrf2 signaling pathway [19].

Norwogonin (5,7,8-trihydroxyflavone, Fig. 1) is a
pharmacologically active flavone separated from the root
of Scutellaria baicalensis Georgi (“Huang Qin” in Chin-
ese), a traditional Chinese herb used to treat fluenza and
cancer [20, 21]. However, limited studies have been re-
ported on the biological activities of norwogonin due to
its low levels in natural plants. In order to address this
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problem, several synthesis methods of norwogonin are
reported [22, 23]. Our previous study also established a
simple method for obtaining norwogonin from chrysin
in four steps [24]. These researches have positively influ-
enced the further evaluation of norwogonin’s biological
activities.

Studies have revealed that norwogonin owns antioxi-
dant [25], anticancer [26, 27], antiviral [28] and anti-
microbial activities [29] as well as inhibits the cyanide-
stimulated production of ROS [30]. However, whether
norwogonin has protective capacities against hypoxia-
induced injury remains unknown. The aim of present
study was to investigate the protective effects of norwo-
gonin against hypoxia-induced oxidative stress and
apoptosis in PC12 cells.

Methods

Materials and reagents

Norwogonin (purity>98%) was synthesized according to
our previous reported method [24]. Rutin (purity>96%)
was purchased from Ci Yuan Biotechology Co., Ltd.
(Xian, Shannxi, China). Norwogonin and rutin was dis-
solved in sterile dimethyl sulfoxide (DMSO), stored at —
20°C, and diluted in the cell culture medium immedi-
ately before using.

Dulbecco’s modified Eagle’s medium (DMEM), fetal
bovine serum (FBS), streptomycin and penicillin were
purchased from Solarbio co., Ltd. (Beijing, China).

The kits of malondialdehyde (MDA), lactate dehydro-
genase (LDH), superoxide dismutase (SOD), catalase
(CAT) and glutathione peroxidase (GPx) were obtained
from Nanjing Jiancheng Bioengineering Institute
(Jiangsu, China). 2',7'-dichlorodi-hydrofluorescein dia-
cetate (DCFH-DA) and (3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide) tetrazolium (MTT) was
obtained from Sigma-Aldrich Co (St. Louis, MO, USA).
Primary antibodies for hypoxia inducible factor-la (HIF-

OH

Fig. 1 Chemical structure of norwogonin
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la), vascular endothelial growth factor (VEGF), B cell
lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax),
Caspase-3, Cytochrome C and f-actin were all pur-
chased from Abcam (Cambridge, UK). Secondary anti-
bodies were obtained from ZsBio Company (Beijing,
China). Apoptosis analysis kit was obtained from Beyo-
time Institute of Biotechnology (Jiangsu, China). All che-
micals and solvents were of analytical grade and were
obtained from commercial supplier in China.

Cell culture

The PC12 cells were purchased from Cell Bank of the
Chinese Academy of Sciences (TCR 9, Shanghai, China)
and maintained in DMEM with 10% (v/v) FBS, 100 U/
mL penicillin, and 100 U/mL streptomycin at 37 °C in a
humidified incubator containing 5% COs,.

To evaluate the cytotoxicity of norwogonin, PC12 cells
(passage 4 ~6) were pre-incubated with different con-
centrations (108, 1077, 107%, 107>, 10" *mol/L) of nor-
wogonin for 1 h and then cultured for 24 h.

Hypoxia exposure
To induce cell hypoxia injury model, PC12 cells were
subjected to hypoxia environment (1% O,, 5% CO,, and
94% N,) at 37 °C for 24 h in a humidified chamber. Nor-
moxic control cells were cultured at 37 °C in a 5% CO,
incubator for 24 h.

To evaluate the protective effect of norwogonin
against hypoxia-induced injury, PC12 cells were pre-
incubated with different concentrations (10~%, 1077,
107°, 10”° mol/L) of norwogonin for 1h before hypoxia
treatment.

Cell viability

The cells viability was measured by MTT assay as previ-
ously described [31]. In brief, PC12 cells (1 x 10° cells/
mL) were seeded in 96 well culture plates. Then differ-
ent concentrations of norwogonin were added to the
wells. Equal volume of DMSO was added to control
wells. The final concentration of DMSO in the cell cul-
ture medium is 0.1%. After incubation at normoxic or
hypoxia condition, 10uL of MTT (5.0 mg/mL) was
added to each well, followed by incubation at 37 °C for
4 h. Then, the supernatant with MTT was removed and
the formazan product was dissolved in 100 uL. DMSO.
The absorbance was measured on a SpectraMax i3 mi-
croplate reader (Molecular Devices, Sunnyvale, CA,
USA) at 570 nm. The results were expressed as the rela-
tive percentage of control group.

Hematoxylin and eosin (HE) staining

PC12 cells seeded on glass coverslips were incubated for
24'h before they were treated with norwogonin in the
same way as described above. The medium was removed
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and the glass coverslips were washed with cold PBS,
followed by fixation with methanol for 10 min at room
temperature and then washed with cold PBS three times
for 5 min. Finally the cells were stained according to the
HE staining protocol [32]. The analyses of the cell were
performed using an OLYMPUS IX73 microscope (100x)
in order to verify cell morphological changes. Digital im-
ages were obtained using the DXM 1200 C digital cam-
era (Nikon) associated to the microscope.

ROS content

Intracellular ROS level in PC12 cells was determined
using DCFH-DA assay [33]. Briefly, PC12 cells (1 x 10°
cells/mL) were seeded in 6-well plates. After hypoxia
treatment, PC12 cells were washed with PBS, and then
were incubated in the culture medium containing 10 uM
DCFH-DA for 30 min in the dark at 37°C. The cells
were observed with Olympus inverted fluorescence
microscope (Tokyo, Japan) and were analyzed by a Bec-
ton Dickinson FACScan flow cytometer (BD Biosciences,
CA, USA) with excitation wavelength of 488 nm and
emission wavelength of 525nm. The ROS level was
expressed as relative percentage of control.

LDH leakage, MDA content and antioxidant enzyme
activity

PC12 cells (1 x 10° cells/mL) were seeded in 90 mm dish.
After hypoxia treatment as described above, 50 uL cul-
ture supernatant from each dish were collected, and
LDH activity in medium was detected using commercial
assay kits (Jiancheng Institute of Biotechnology, Nanjing,
China) and was expressed as U/mL. The PC12 cells were
harvested and homogenized after washing two times
with cold PBS. The concentration of total protein was
measured by BCA protein assay kit. The MDA content
and antioxidant enzyme activity were determined using
commercial assay kits (Jiancheng Institute of Biotechnol-
ogy, Nanjing, China). The content of MDA was pre-
sented as nmol/mg protein. The activities of SOD, CAT
and GPx were presented as U/mg protein.

Cell apoptosis(Annexin-V/PI staining)

After hypoxia treatment, PC12 cells were harvested,
washed two times with cold PBS, and then suspended
with binding buffer. The cells were treated with the
Annexin V-FITC and PI solution following the protocol
of the manufacturer (Beyotime, Shanghai, China). Data
collections were performed using Becton Dickinson
FACScan flow cytometer (BD Biosciences, CA, USA).

Quantitative real-time PCR analysis

The total RNA of PC12 cells was extracted using Trizol
reagent (Takara, Dalian, China) and converted to cDNA
using the PrimeScript TM RT reagent Kit (AK4301,
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Takara, Dalian, China). The c¢cDNA encoding HIF-1q,
VEGF, Bcl-2, Bax, caspase-3, cytochrome C and
glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
gene was amplified by Quantitative real-time PCR using
a 7300 real-time detection System (Applied Biosystems,
CA, USA). The primers used were shown in Table 1.
The PCR cycling conditions were 95 °C for 30s, follow
by 40cycles of 95°C for 5s and 60°C for 31s. The
mRNA levels were calculated using the 272" method
and normalized to GAPDH, which as the reference gene.

Western blot

PC12 cells were harvested and homogenized in RIPA
agents. The concentration of total proteins was quan-
tified using BCA protein assay kit. 30 pg of samples
were resolved on 12% SDS-PAGE electrophoresis and
then transferred to polyvinylidene fluoride (PVDF)
membranes (Millipore, Billerica, MA, USA). The
membranes were blocked with 5% non-fat dry milk in
TBST buffer for 1h at room temperature and incu-
bated with primary antibodies: anti-HIF-la (1:300,
ab179483, Abcam, UK), anti-VEGF (1:1000, ab46154,
Abcam, UK), anti-Bcl-2 (1:1000, ab59348, Abcam,
UK), anti-Bax (1:500, ab32503, Abcam, UK), anti-
caspase-3  (1:300, ab44976, Abcam, UK), anti-
cytochrome C (1:1000, ab13575, Abcam, UK) and
anti-B-actin (1:2000, ab8227, Abcam, UK) at 4°C
overnight. Then, the membranes were washed and in-
cubated with secondary antibodies (1:2000, ZsBio,
Beijing, China;) for 1 h at room temperature. The im-
munoreactive bands were visualized using enhanced
chemiluminescence (ECL) reagents. The relative in-
tensities of bands were normalized to the [S-actin in-
ternal control and analyzed using Image-Pro Plus 6.0
(Media Cybernetics, Inc., Bethesda, MD, USA).

Table 1 Primers used in real-time qPCR
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Statistical analysis

The results were expressed as mean + SD derived from
at least three independent experiments. Difference be-
tween groups were analyzed using one-way analysis of
variance (ANOVA) following by Student—Newman—
Keuls post hoc test. A P-value of < 0.05 was regarded as
statistically significant.

Results

Norwogonin protective PC12 cells against hypoxia-
induced injury

First, to preclude the proliferative activity of norwogo-
nin, its cytotoxicity on normal PCI12 cells was deter-
mined using MTT assay. As seen in Fig. 2a, cellular
proliferation was not significantly changed following
treatment with norwogonin at concentrations of 1 x
10781 x10"°mol/L (P>0.05). However, cell viability
significantly decreased when the concentration of nor-
wogonin was increased to 1 x 10~ * mol/L (P < 0.05). The
results indicated that norwogonin did not exhibit tox-
icity or proliferative activity on PC12 cells at the concen-
trations of 1 x 10™%-1 x 10~ > mol/L.

Then we examined the protective effect of norwogonin
against hypoxia-induced PC12 cells injury. As shown in
Fig. 2b, compared with the control group, the cell viabil-
ity in hypoxia group was decreased to 58.71% (P < 0.01).
Compared with the hypoxia treatment, pretreated with
1x107% 1x1077, and 1 x 10™° mol/L norwogonin dose-
dependently protected PC12 cells against hypoxia-
induced injury, recovering the cell viability from 58.71 to
62.79% (P <0.05), 66.68% (P <0.01) and 69.88% (P <
0.01), respectively. Pretreatment with 1 x 10~ °mol/L
rutin also exhibited protective effect, significantly in-
creasing the cell viability to 63.78% compared to hypoxia
treatment. The viability pretreated with 1 x 10™ > mol/L
norwogonin was decreased to 63.43%, which still

Gene Primer sequences Product (bp)
HIF-1a forward: 5-CCAGATTCAAGATCAGCCAGCA-3' 100
reverse: 5-GCTGTCCACATCAAAGCGTATA-3’
VEGF forward:5-ACATTGGCTCACTTCCAGAAACA-3' 108
reverse:5-TGGTTGGAACCGGATCTTTA-3"
Bcl-2 forward:5-GGTGGTGGAGAACTCTTCACGT-3' 253

reverse:5 -AGGATTGTGGCTGAACA-3"

Bax forward: 5 -TGGCGATGAACTGGACAACAA-3' 65
reverse: 5-GGGAGTCTGTATCCACATCAGCA-3”

Caspase-3

forward:5-AGACAGACAGTGGAACTGACGATG-3" 147

reverse:5-GGCGCAAAGTGACTGGATGA-3’

Cytochrome C

forward:5-GAAGAAGGGAGAAAGGGCAGA-3' 302

reverse:5-CGGGGGCTGTCCAACAAA-3’

GAPDH

forward: 5-GCCACAGTCAAGGCTGAGAATG-3' 143

reverse:5-ATGGTGGTGAAGACGCCAGTA-3"
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significant higher than that in hypoxia group (P < 0.05).
These results demonstrated that norwogonin showed
significant cytoprotection at the concentrations of 1 x
10731 x 10" ° mol/L. and the most effective concentra-
tion is 1 x 10~ ° mol/L. Then this dose was used as opti-
mal dose in the following experiments.

The protective capacity of norwogonin was also veri-
fied by the morphological alterations. As shown in Fig.
2¢, PC12 cells without hypoxia treatment grew well with
regular shapes (fusiform), uniform sizes. After hypoxia
exposure, PC12 cells exhibited shrinkage, rounded
shape, desquamation, and reduced cell density. The cells
pretreated with norwogonin or rutin before hypoxia ex-
posure grew better, the number of desquamation cells
decreased, and cell shape recovered normally.

Besides, the protective ability of norwogonin was con-
firmed by the LDH leakage, which is associated with the
loss of cell-membrane integrity. As shown in Fig. 2d, the
LDH activity in culture medium was notably increased
following hypoxia exposure (P < 0.01). Pretreatment with

norwogonin or rutin dramatically decreased the LDH
leakage, suggesting norwogonin and rutin restored the
cell-membrane integrity.

Norwogonin inhibits hypoxia-induced oxidant stress in
PC12 cells

ROS and MDA are two important indicators of cellular
oxidant stress induced by hypoxia. As shown in Fig. 3a
and b, a significant increased content of ROS and MDA
was observed in PC12 cells following hypoxia exposure.
Norwogonin or rutin pretreatment significantly inhibited
the production of ROS and MDA. Antioxidant enzymes,
such as SOD, CAT, and GPx, are regarded as the main
defense system against oxidative stress in cell. As shown
in Fig. 3c-e, hypoxia exposure significantly inhibited the
activities of SOD, CAT, and GPx in PC12 cells. Treat-
ment with norwogonin or rutin reversed these changes
and restored the activities of antioxidant enzymes. All
these results indicated that norwogonin protected the
PC12 cells against oxidative stress induced by hypoxia.
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Norwogonin inhibits the increased HIF-1a and VEGF
expressions in PC12 cells under hypoxia

As seen in Fig. 4a, the expressions of HIF-1a and VEGF
mRNA in PC12 cells were increased significantly follow-
ing hypoxia exposure. These changes were inhibited by
norwogonin or rutin pretreatment. Similarly, compared
to the control group, the expressions of HIF-la and
VEGF protein were significantly increased in hypoxia

group. However, pretreatment of norwogonin or rutin
significantly downregulated the protein expression levels
of HIF-1a and VEGF (Fig. 4b-d).

Norwogonin inbibits hypoxia-induced apoptosis in PC12
cells

The effects of norwogonin on hypoxia-induced apoptosis
were performed by FCM. As seen in Fig. 5a, compared
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to the normal group, the apoptosis rate of PC12 cells
was significantly increased after hypoxia exposure for 24
h. However, norwogonin and rutin significantly inhibited
hypoxia-induced apoptosis with the evidence by de-
creased apoptosis rate of PC12 cells in norwogonin and
rutin groups compared with hypoxia group.

To further confirm the anti-apoptotic effect and mech-
anisms of norwogonin against hypoxia-induced injury,
the expressions of apoptosis-related genes and proteins,
such as Bcl-2, Bax, cytochrome c and caspase-3, were
detected using RT-PCR and western blot analysis. As
shown in Fig. 5b, compared with control group, hypoxia
exposure significantly increased the level of Bax mRNA
and the ratio of Bax/Bcl-2, and significantly decreased
the level of Bcl-2 mRNA in PC12 cells. In contrast, pre-
treatment with norwogonin or rutin could reverse these
effects. Additionally, hypoxia exposure greatly increased
the level of cytochrome ¢ mRNA, which was related to
mitochondrial dysfunction, while norwogonin and rutin
abolished the increased expression level of cytochrome c
mRNA induced by hypoxia. Furthermore, hypoxia ex-
posure up-regulated the level of caspase-3 mRNA in

PC12 cells, which was also blocked by norwogonin or
rutin pretreatment. Consistently, changes of Bcl-2, Bax,
cytochrome ¢ and caspase-3 protein expression levels
were similar to the trend of mRNA changes (Fig. 6 and
Fig. 7).

Discussion

Recently, much attention has been paid on looking for
novel neuroprotective agents with excellent activity and
low adverse effects from naturally occurring products
[34]. Flavones are one of the largest and widely natural
products distributed in plant kingdom [35] and have
been extensively used in the pharmaceutical, chemical
and nutraceutical industry. It is well known that the free
radical scavenging activity of flavones contribute mainly
to the presence of hydroxyl groups [36]. Norwogonin
owns three phenolic hydroxyl groups (two of them are
consecutive hydrogen group) in structure and may have
excellent antioxidant activity. Previous study found that
norwogonin had weak effect on inhibiting lipopolysac-
charide (LPS)- or lipoteichoic acid (LTA) -induced nitric
oxide synthase (INOS) protein expression and nitric
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\

oxide (NO) production [37], but it exhibited better anti-
oxidative activity than acacetin and icariin in protecting
human erythrocytes against free-radical-induced haem-
olysis [25]. Our recent study also demonstrated that nor-
wogonin displayed excellent scavenging activity on 2, 2'-
diphenyl-2-picrylhydrazyl (DPPH), O, and NO in vitro
[38]. But the protective effect of norwogonin on
hypoxia-induced neurotoxicity remains unclear. PC12
cells, a rat pheochromocytoma cell line, have been ex-
tensively considered as a cell line model for screening
neuroprotective drugs. In the current study, we used a

hypoxia-induced PC12 cells injury model to evaluate the
protective effect of norwogonin.

Increasing evidences have indicated that hypoxia ex-
posure results in cytotoxicity in many different cell
types, such as hippocampal cells [39] and cardiomyocyte
[40]. Hypoxia-induced injury model of PC12 cells has
been established in many studies [41, 42]. In line with
previous reports, our present result found that the viabil-
ity of PC12 cells was significantly decreased following
hypoxia exposure for 24 h. However, pretreatment with
norwogonin prevented the loss of cell viability. In
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J

addition, hypoxia exposure caused obvious morpho-
logical changes of the cells, while norwogonin reduced
these changes and maintained regular shapes of PC12
cells. Furthermore, norwogonin decreased the LDH leak-
age, suggesting that norwogonin mitigated the cell mem-
brane damage induced by hypoxia.

It has proved that oxidant stress plays a vital role in
hypoxia-induced injury. In present study, ROS and
MDA content and antioxidant enzymes activities were
used to assess the protective effects of norwogonin on
hypoxia-induced oxidative stress in PC12 cells. ROS,
generated via the mitochondrial electron transport chain,
involves physiological roles in cellular signaling pathways
at low concentrations, while excessive ROS levels are
known to be harmful to major biomolecules such as
DNA, lipids, and proteins in cells. In addition, ROS can
interact with polyunsaturated lipids in cell membrane,
forming MDA, which is widely accepted as a marker of
lipid peroxidation. Normally, endogenous antioxidant
enzyme, including SOD, CAT and GPx, can effectively
remove ROS. However, during hypoxic exposure, exces-
sive ROS directly damage antioxidant enzymes and re-
duce their activities, resulting in further aggravating
oxidative stress in cell [43]. In line with findings from

previous reports, our present study also found that hyp-
oxia exposure caused oxidative stress in PC12 cells as
evidenced by enhancing the ROS and MDA level, and by
decreasing SOD, CAT and GPx activities. Norwogonin
pretreatment significantly inhibited intracellular ROS
production, decreased MDA levels, and restored the
antioxidant enzymes activity, suggesting that norwogo-
nin could ameliorate oxidative stress induced by hyp-
oxia, which was partly due to its up-regulation of
antioxidant enzymes.

HIF-1a is one of the essential transcription factors
responding to hypoxia in cell [44]. It is well known that
HIF-1a will be stabilized and increased the expression in
hypoxia condition. Some studies have demonstrated that
overexpression of HIF-la is protective against hypoxic
induced injuries [45, 46]. While other studies indicate
that upregulation of HIF-1a is also considered as a sign
of tissue hypoxia [47]. Abundant evidence has corrobo-
rated that ROS produced in the mitochondria are re-
sponsible for stabilizing HIF-la during hypoxia [48].
Therefore, easing the formation ROS, either genetically
or pharmacologically, cause downregulation of HIF-a in
hypoxia. As expected, our present results showed that
hypoxia upregulated the expression of HIF-la and
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VEGF, which was a downstream target gene of HIF-1.
However, pretreatment with norwogonin could reverse
these changes by scavenging ROS.

It is well known that apoptosis is closely related to
hypoxia-induced damage [49]. Consistent with previ-
ous reports, the present study also found that hypoxia
exposure for 24h significantly induced PC12 cells
apoptosis. Correspondingly, pretreatment with norwo-
gonin reduced cell apoptosis induced by hypoxia.
However, our results were inconsistent with another
findings that norwogonin effectively induced apoptosis
in human leukemia HL-60 cells [26] and in triple-
negative breast cancer (TNBC) cells [27]. These
contradictory results may be due to the different cell
lines and concentration of norwogonin used in the
experiments.

Many studies have indicated that hypoxia can induce cell
apoptotic via increasing the generation of ROS [50], elevating
the expression of HIF1-a [51, 52], activating mitochondrial
pathway [53, 54], and so on. To further determine whether
norwogonin demoted apoptosis via mitochondrial pathway
in PC12 cell exposure to hypoxia, the relative levels of
apoptosis-related genes and proteins were determined. The
bcl-2 family proteins, such as the pro-apoptotic protein Bax
and anti-apoptosis protein Bcl-2, play a vital role in the
mitochondria-dependent apoptotic pathway [55]. Increasing

Bcl-2/Bax ratio leads the release of cytochrome c, which fur-
ther promotes the activation of caspase-3 and leads to apop-
totic cell death [56]. Our data revealed that hypoxia exposure
for 24 h activated the mitochondrial apoptosis pathway by
upregulating Bax, cytochrome ¢ and cleaved caspase-3 ex-
pression and downregulating Bcl-2 expression. However,
norwogonin treatment remarkably increased Bcl-2 level and
decreased the Bax level in PC12 cells exposed to hypoxia.
Furthermore, the increased expressions of cytochrome c and
cleaved caspase-3 were also reversed by norwogonin. These
results suggested that norwogonin could protect PC12 cells
from hypoxia-induced injury via mitochondrial-dependent
apoptosis pathway.

Conclusion

In conclusion, our results firstly suggested that norwogonin
exhibited excellent protective effects on hypoxia-induced oxi-
dative stress and apoptosis in PC12 cells by scavenging ROS,
maintaining the activity of antioxidant enzymes and inhibit-
ing mitochondrial apoptosis pathway.
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