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Background: Ovarian cancer (OC) is a highly heterogeneous disease, of which

the mesenchymal subtype has the worst prognosis, is the most aggressive, and

has the highest drug resistance. The cell cycle pathway plays a vital role in

ovarian cancer development and progression. We aimed to screen the key cell

cycle genes that regulated the mesenchymal subtype and construct a robust

signature for ovarian cancer risk stratification.

Methods: Network inference was conducted by integrating the differentially

expressed cell cycle signature genes and target genes between the

mesenchymal and non-mesenchymal subtypes of ovarian cancer and

identifying the dominant cell cycle signature genes.

Results: Network analysis revealed that two cell cycle signature genes (POLA2

and KIF20B) predominantly regulated the mesenchymal modalities of OC and

used to construct a prognostic model, termed the Cell Cycle Prognostic

Signature of Ovarian Cancer (CCPOC). The CCPOC-high patients showed

an unfavorable prognosis in the GSE26712 cohort, consistent with the

results in the seven public validation cohorts and one independent internal

cohort (BL-OC cohort, qRT-PCR, n = 51). Functional analysis, drug-sensitive

analysis, and survival analysis showed that CCPOC-low patients were related to

strengthened tumor immunogenicity and sensitive to the anti-PD-1/PD-

L1 response rate in pan-cancer (r = −0.47, OC excluded), which indicated

that CCPOC-low patients may be more sensitive to anti-PD-1/PD-L1.

Conclusion:We constructed and validated a subtype-specific, cell cycle-based

prognostic signature for ovarian cancer, which has great potential for predicting

the response of anti-PD-1/PD-L1.
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Introduction

Ovarian cancer (OC) is the leading cause of cancer death in

women (Siegel et al., 2019). Due to lack of effective early

screening methods and lack of obvious symptoms, most of the

patients were diagnosed at an advanced stage, resulting in an

overall 5-year survival rate of less than 50% (Lheureux et al.,

2019). Clinical risk assessment factors include tumor stage,

tumor grade, histopathological classification, de-bulking status,

etc. Despite the good initial treatment effect, most ovarian cancer

patients still suffer from tumor recurrence and eventually

develop drug resistance to chemotherapy (Coleman et al.,

2013). Currently, serum CA-125 level is a clinical biomarker

for risk assessment of ovarian cancer. Due to its low specificity,

the overall assessment effect is not as expected (Bottoni and

Scatena, 2015). The high degree of heterogeneity and

aggressiveness of OC often leads to treatment failure (Cancer

Genome Atlas Research Network, 2011; Konecny et al., 2014).

Therefore, there is a need to integrate tumor heterogeneity to

identify novel prognostic predictors for OC.

Gene expression-based biomarkers for cancer risk

assessment have been extensively explored (Mo et al., 2020).

Several studies have established OC prognostic biomarkers based

on gene expression (Pan and Ma, 2020; Yang et al., 2021).

However, due to the heterogeneity of OC, most of the

biomarkers have low prognostic efficacy and cannot be

directly used in clinical practice. Recently, four ovarian cancer

molecular subtypes with distinct molecular and clinical

characteristics were found (Cancer Genome Atlas Research

Network, 2011), among which, the mesenchymal subtype had

the poorest prognosis. Afterward, the mesenchymal subtype is

consistent in several other subtyping systems (Konecny et al.,

2014; Chen et al., 2018). Importantly, the mesenchymal subtype

of OC shows poor clinical outcomes, indicating the need to

integrate the intrinsic modalities of this malignant subtype for

risk management in OC.

Cancer manifests itself as an infinite proliferation of cells,

the main reason for which is related to improper cell cycle

regulation (Williams and Stoeber, 2012). The cell cycle is

precisely regulated by cyclin-dependent kinases (CDKs)

(Bertoli et al., 2013). However, relevant cell cycle-based

biomarkers are rare and still lacking in ovarian cancer.

Considering the highly heterogeneous nature of OC, by

integrating mesenchymal modalities and the cell cycle

signature underlying the mesenchymal subtype, a network-

based approach was adopted to identify the dominant cell

cycle signature, which regulates the most aggressive OC

subtype. Subsequently, we established a prognostic model,

termed Cell Cycle Prognostic Signature of Ovarian Cancer

(CCPOC), and exploration of the prognosis capacity of

CCPOC in OC. Our signature incorporates cell cycle system

and tumor heterogeneity and would be used to screen OC

patients who may benefit from a more precise treatment.

Materials and methods

Public dataset preparation and
preprocessing

We obtained 1,798 OC samples from eight publicly available

datasets. The training dataset was the GSE26712 (Bonome et al.,

2008) cohort (n = 182). Validation cohorts were the TCGA(Cancer

Genome Atlas Research Network, 2011) (n = 578), GSE9891

(Tothill et al., 2008) (n = 285), ICGC-AU (Patch et al., 2015)

(n = 111), GSE138866 (Hu et al., 2020) (n = 130), GSE32062

(Yoshihara et al., 2012) (n = 260), GSE14764 (Denkert et al., 2009)

(n = 80), and GSE51088 (Karlan et al., 2014) (n = 172) datasets.

Together with the corresponding clinical information, the

normalized expression datasets sourced from the GEO database

were downloaded via the GEOquery package (version 2.58.0). The

transcription data (Affymetrix U133A) and relevant clinical

information on TCGA were retrieved from the Firebrowse

(http://firebrowse.org/) database. The standardized expression

profile and clinical information of ICGC-AU were downloaded

from the International Cancer Genome Consortium (ICGC,

https://icgc.org) OV-AU (Ovarian cancer-Australia) database.

For the microarray data, the gene expression data probe IDs

were transformed into gene symbols; if multiple probe IDs were

mapped to the same gene symbol, the one with the highest average

value was selected. The molecular subtyping information was

retrieved from Verhaak’s study (Verhaak et al., 2010). The

detailed clinical parameters of all cohorts are listed in Table 1.

Clinical samples

For the independent internal validation cohort (BL-OC

cohort), we retrospectively collected 51 formalin-fixed

paraffin-embedded (FFPE) blocks from patients who

underwent surgery in Beilun People’s Hospital (from 1st

January, 2015 to 1st January, 2021), Ningbo, China. Criteria

for patient sample selection: longer follow-up (> 5 years) and had

evaluation of adjuvant chemotherapy efficacy and no history of

cancer other than ovarian cancer. This study was approved by the

Ethics Committee of the Beilun People’s Hospital.

Network analysis screening key regulated
cell cycle genes for the mesenchymal
subtype

We obtained 313 cell cycle-related genes (CRGs) through the

concatenation of the cycle-related genes from the MSigDB database

(Version 7.2; KEGG cell cycle pathway, HALLMARK G2M

pathway) and Cuzick’s study (Cuzick et al., 2011). CRGs with

expression in all datasets were retained for subsequent analysis.

We integrated differentially expressed target genes and cell cycle
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genes between the mesenchymal subtype and other subtypes and

performed a network analysis by using the RTN package (version

2.10.0) to infer and investigate the relationship between cell cycle

genes and potential target genes. Specifically, the network analysis

consists of three parts: first, the mutual information (MI) between a

cell cycle signature gene and all potential target genes is calculated,

and insignificant associations are removed by permutation analysis;

second, unstable interactions are removed by bootstrapping; and

finally, the ARACNe algorithm is applied to reduce redundant

indirect regulations. Together, the GSE26712 dataset was used as

the training cohort. Univariate Cox regression analysis screened

34 cell cycle genes (p <0.1) for a subsequent analysis. Subsequently,
12 cell cycle genes (|log2 FC| > 0.25, BH-adjusted p < 0.05) and

1,704 target genes (log2 FC > 0.25, BH-adjusted p < 0.05) were

determined differentially expressed in the mesenchymal subtype

compared with non-mesenchymal subtypes. Then, a master

regulator analysis (Fletcher et al., 2013) (MRA) was performed to

examine the overrepresentation of themesenchymal signature in the

regulation of each cell cycle gene by a hypergeometric test. After the

hypergeometric test results for all cell cycle signature genes, adjusted

p-values were calculated using the Benjamini–Hochberg procedure.

Two cell cycle signature genes of top significance

(Benjamini–Hochberg-adjusted p-value < 0.05) were selected as

master regulators. For detailed calculation steps and calculation

code, please refer to the Vignettes of the RTN package

(bioconductor.org/packages/release/bioc/vignettes/RTN/inst/doc/

RTN.html).

Development and evaluation of the risk
model for ovarian cancer in public cohorts

Network analysis revealed that two cell cycle genes (POLA2

and KIF20B) were the key regulators of the mesenchymal

TABLE 1 Overview of the clinical and pathologic characteristics of all the datasets.

Training
cohort

Public validation cohorts Internal
validation

GSE26712 TCGA GSE9891 ICGC-
AU

GSE138866 GSE32062 GSE14764 GSE51088 BL-OC

Number of patients 182 578 285 111 130 260 80 172 51

Age (years)

Mean, years (STD) 62 (11.9) 60 (11.6) 60 (10.6) 59 (8.7) 62 (11.9) 58 (12.6) 58 (11.2)

Histopathology

Serous 182 (100%) 568 (98%) 264 (93%) 111 (100%) 130 (100%) 260 (100%) 68 (85%) 122 (71%) 58 (100%)

Others 10 (2%) 21 (7%) 12 (15%) 50 (29%)

Stage

I 16 (3%) 24 (8%) 8 (10%) 22 (13%)

II 27 (5%) 18 (6%) 2 (2%) 1 (1%) 9 (5%)

III 144 (79%) 436 (75) 218 (76%) 96 (86%) 106 (82%) 204 (78%) 69 (86%) 103 (60%)

IV 36 (20%) 84 (15%) 22 (8%) 15 (14%) 22 (17%) 56 (22%) 2 (3%) 17 (10%)

Unknown 2 (1%) 15 (3%) 3 (1%)

Grade

Well 6 (1%) 19 (7%) 3 (4%) 16 (9%)

Moderately 69 (12%) 97 (34%) 15 (14%) 131 (50%) 23 (29%) 14 (8%)

Poorly 479 (83%) 163 (57%) 66 (59%) 130 (100%) 129 (50%) 54 (68%) 119 (69%)

Unknown 23 (4%) 6 (2%) 30 (27%) 23 (13%)

Debulking

Optimal 88 (48%) 367 (63%) 160 (56%) 107 (82%) 103 (40%) 39 (49%)

Suboptimal 94 (52%) 140 (24%) 88 (31%) 15 (12%) 157 (60%) 23 (29%)

Unknown 71 (12%) 37 (13%) 8 (6%) 18 (22%)

Vital status

Alive 55 (30%) 270 (47%) 169 (59%) 23 (21%) 31 (24%) 139 (53%) 59 (74%) 40 (23%) 16 (31%)

Dead 127 (70%) 290 (50%) 113 (40%) 88 (79%) 99 (76%) 121 (47%) 21 (26%) 112 (65%) 35 (69%)

NA 18 (3%) 3 (1%) 20 (12%)

Median OS,
months (±SE)

38.2 (2.6) 29.4 (1.1) 28.5 (1.4) 32.4 (3.0) 33.7 (4.6) 41.5 (1.5) 35.0 (1.7) 49.7 (4.0) 37.5 (4.6)
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subtype, which is the most aggressive subtype of ovarian cancer.

Subsequently, the multivariable Cox regression model was used

to construct a prognostic signature, termed Cell Cycle

Prognostic Signature of Ovarian Cancer (CCPOC), in the

GSE26172 cohort with these two signature genes. The risk

score formula was constructed based on a linear

combination of the expression levels weighted with the

regression coefficients: CCPOC = (−0.6527 × POLA2) +

(0.4975 × KIF20B). Based on the upper quantile score of

each cohort calculated by the risk score formula, patients

were divided into CCPOC-high and CCPOC-low subgroups.

The prognostic relevance of CCPOC was evaluated in seven

public independent validation datasets (TCGA, GSE9891,

ICGC-AU, GSE138866, GSE32062, GSE14764, and

GSE51088) with the Kaplan–Meier analysis. Univariate and

multivariate analyses were performed with other clinical factors

to test whether the CCPOC can be considered an independent

prognostic predictor.

Validation of the signature genes in the
internal ovarian cancer cohort by
quantitative reverse transcription PCR
(qRT-PCR)

Fifty-one OC tissues were obtained from Beilun People’s

Hospital. This study was approved by the Ethics Committee

of Beilun People’s Hospital. Total RNA was extracted by

using the High Pure RNA paraffin kit (Roche Applied

Science, Indianapolis, IN) from FFPE tissues of the BL-OC

cohort. Reverse transcription was performed with High

Capacity cDNA (Thermo Scientific). qRT-PCR was

performed with the QuantStudio™ 12 K Flex Real-Time

PCR System (Thermo Scientific) according to the

manufacturer’s recommended operating conditions. β-
Actin was tested for data normalization. The primers of

each gene are listed as follows: POLA2: F CACCACATC

TGACAGCATCACG, R CCACCTGTTCATGCTTAGCAT

CC; KIF20B: F GCTGACTTTAAGGAGACTCTGCT, R

GTGGCACAAATGTCTTTCGCTGC; and β-Actin: F CAC

CATTGGCAATGAGCGGTTC, R AGGTCTTTGCGGATG

TCCACGT. The expression of each gene was calculated

using the log2 (2–ΔΔCT) method.

Functional analysis

Gene Set Enrichment Analysis (GSEA) was carried out to test

the dysregulated pathways in different CCPOC risk groups by

using the HTSanalyzeR package (Wang et al., 2011) (version

2.3.5) with 1,000 permutations. Hallmark

(h.all.v7.2.symbols.gmt) and KEGG

(c2.cp.kegg.v7.2.symbols.gmt) gene sets were downloaded from

MSigDB (https://www.gsea-msigdb.org/gsea/msigdb/). Only

gene sets with >five genes were included in the analyses. To

evaluate the immunobiological difference between different

CCPOC risk groups, CIBERSORT (Newman et al., 2015), a

de-convolution algorithm, was used to characterize 22 types of

immune cell abundance for each sample. For the TCGA-OV

mutation, data were downloaded from the cBioPortal database

(https://www.cbioportal.org/).

Data sources for chemotherapy,
immunotherapeutic, and pan-cancer
analysis

GSE146965 (Jiménez-Sánchez et al., 2020) and

PMID17290060 (Dressman et al., 2007) containing

chemotherapy response information were used for

chemotherapy sensitivity analysis. Two immunotherapeutic

cohorts: the IMvigor210 cohort (Mariathasan et al., 2018)

was an advanced urothelial cancer with the intervention of

atezolizumab, an anti-PD-L1 antibody; the GSE78220 cohort

(Hugo et al., 2016) was metastatic melanoma treated with

pembrolizumab, an anti-PD-1 antibody. For the

IMvigor210 cohort, expression data and clinical data were

downloaded from https://github.com/SiYangming/

IMvigor210CoreBiologies. The TCGA PanCancer Atlas gene

expression profiles and clinical information were downloaded

by the TCGAbiolinks package (version 2.18.0). The infiltration

status of different immune cell populations in the TCGA

PanCancer Atlas was downloaded from Tamborero’s study

(Tamborero et al., 2018). The marker genes of MHC,

immunoinhibitory, and immunostimulatory molecules were

reported by Charoentong et al. (2017). DNA damage

response (DDR) signature genes were extracted from the

study of Theo et al. (Knijnenburg et al., 2018). The

expression of the proteins encoded by the signature genes

was validated in the Human Protein Profiles (http://www.

proteinatlas.org) database. The objective response rate (ORR)

was obtained from public research (listed in Supplementary

Table S6).

Statistical analysis

The immune genes and potential target genes between the

mesenchymal and non-mesenchymal subtypes underwent

differential analysis with the R limma package (version

3.42.2). Kaplan–Meier analysis was performed to test

survival differences between different groups with the log-

rank test using the R survival package (version 2.41.3). The

prognostic value of the selected cell cycle signature was shown

using the univariate Cox regression analysis. The independent

prognostic effect of CCPOC was tested using univariate and
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multivariate Cox regression analyses. The survival prediction

was assessed by the concordance indices (C-index) and the

robust hazard ratio (D-index), which were calculated using

the survcomp package. Student’s t-tests and Kruskal–Wallis

tests were used to conduct difference comparisons of three or

more groups. The correlations between the CCPOC scores and

the ORR were evaluated using Pearson’s correlation. p <
0.05 was considered significant. All statistical analyses were

performed in R (version 3.6.1, *p < 0.05, **p < 0.01, ***p <
0.001).

Results

The integrative analysis identifies two cell
cycle genes as key regulators in the
mesenchymal subtype

The mesenchymal subtype has the worst prognosis and shortest

overall survival (Supplementary Figure S1). We intended to integrate

the molecular modalities under this subtype to improve the OC risk

assessment thereafter. Focusing on the mesenchymal subtype, we

FIGURE 1
Network inference identified two cycle signature genes (POLA2 and KIF20B) as the key regulators in the mesenchymal subtype of OC. (A) Study
design of the present work. (B) Volcano plot of the differentially expressed target genes and cell cycle signature genes in the mesenchymal subtype.
(C) Integrated network showing the relationships between the expression data of the cell cycle signature genes and target genes. (D) Master
regulator analysis results.
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applied a network-based approach to investigate the regulatory role of

the cell cycle, which is important in the progression of OC. Eight

public datasets and one independent internal cohort with a total

sample of 1,849 OC cases were included in this study (Table 1).

313 cell cycle-related genes (CRGs) (Supplementary Table S1) were

downloaded from the MSigDB database and Cuzick’s study (Cuzick

et al., 2011). Based on the GSE26712 cohort, we performed an initial

screening of the cell cycle genes by the univariate Cox regression

analysis, and a total of 34 cell cycle genes (p <0.1) were screened for

subsequent analysis. Subsequently, we conducted a differential

analysis of the selected cell cycle genes and potential target genes

between the mesenchymal and non-mesenchymal subtypes

(Figure 1A). Twelve cell cycle genes (|log2 FC| > 0.25, BH-

adjusted p < 0.05) and 1,704 target genes (log2 FC > 0.25, BH-

adjusted p < 0.05) were determined to be differentially expressed in

the mesenchymal subtype (Figure 1B). Based on the expression

profiles of these prioritized cell cycle genes and target genes, we

constructed a regulatory network by calculating the mutual

information between a cell cycle gene signature and its potential

targets (Figure 1C). Based on hypergeometric tests, amaster regulator

analysis (MRA) was performed to screen core regulators for the

mesenchymal subtype (Supplementary Table S2). We identified

19 and 22 EMT genes enriched in the regulons of POLA2 (BH-

adjusted p = 0.013) and KIF20B (BH-adjusted p = 0.045) (Figure 1D),

respectively. Compared to the non-mesenchymal subtypes

(immunoreactive, proliferative, and differentiated), the two

candidate genes were significantly lower expressed in the

mesenchymal subtype (Supplementary Figures S2A, B).

Compared to normal tissues, these two candidate cell cycle

genes were all significantly highly expressed in OC tissues in the

TCGA cohort (Figure 2A). Moreover, we checked the protein

levels encoded by these two genes in the Human Protein Profiles

database. POLA2 and KIF20B were moderately positive detected

in OC clinical specimens when compared to their expression

levels in normal samples (Figure 2B). Therefore, in the future, it is

possible to evaluate the prognosis of OC patients by detecting the

expression of these two genes on clinical specimens by IHC.

Furthermore, the survival analysis revealed a prognostic

association with overall survival in the public cohorts

(Figure 2C) and the BL-OC cohort (Figure 2D). Together, the

network-based approach identified two cell cycle genes, with a

prognostic value, as key regulators in the mesenchymal subtype.

Construction and evaluation of the cell
cycle prognostic signature in public
cohorts and the BL-OC cohort

Based on the GSE26172 cohort, the risk model called “Cell

Cycle Prognostic Signature of Ovarian Cancer” (CCPOC) was

FIGURE 2
Expression and survival analyses for POLA2 and KIF20B in OC. (A) Expression levels of POLA2 and KIF20B in OC and normal tissues. (B) Protein
levels encoded by POLA2 and KIF20B in normal and OC using clinical samples from the Human Protein Profiles. Survival analysis of POLA2 and
KIF20B in public cohorts (C) and the BL-OC cohort (D).
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constructed based on a linear combination of the expression

levels weighted with the regression coefficients of these two cell

cycle genes derived from the multivariate Cox regression

analysis. Risk score = (−0.6527 × POLA2) + (0.4975 ×

KIF20B). Subsequently, risk scores were calculated for all

patients in the public cohorts and our in-house validation BL-

OC cohort (Supplementary Tables S3–S4). The CCPOC score

showed prognostic efficiency with an AUC of 0.77 at 2 years and

0.79 at 5 years in the BL-OC cohort (Supplementary Figure S3).

Based on the upper quantile score of each cohort calculated by

FIGURE 3
Assessment of the prognostic value of the CCPOC. (A) Comparison of prognostic efficiencies between the CCPOC and its individual
constituents. (B) Kaplan–Meier survival analysis showing that the CCPOC-high group had an unfavorable OS in the training cohort (GSE26712). In the
seven public validation cohorts (C–I), the CCPOC-high group stably showed a significantly poor prognosis for OS. (J) Evaluation of the prognostic
value of CCPOC in the BL-OC cohort.
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the risk score formula, patients were divided into CCPOC-high

and CCPOC-low subgroups. Suboptimal samples were enriched in

the CCPOC-high group; meanwhile, KIF20B was highly expressed

in the CCPOC-high group, while POLA2 was highly expressed in

the CCPOC-low group (Supplementary Figure S4). The CCPOC

showed stronger prognostic efficiency than its individual

constituents (Figure 3A). In the GSE26172 cohort, patients in

the CCPOC-high group had significantly poorer OS than patients

(Figure 3B, Supplementary Table S5). Moreover, the CCPOC-high

group had significantly reduced OS compared to the CCPOC-low

group in the seven public validation cohorts (Figure 3C–I,

Supplementary Table S5) and our internal validation BL-OC

cohort (Figure 3J, Supplementary Table S5). In addition, the

CCPOC remains effective at discriminating survival after

adjusting for clinical factors, including sex and de-bulking

status (p < 0.05, Supplementary Figure S5). To test whether the

CCPOC was an independent prognostic predictor, univariate and

multivariate Cox regression analyses were conducted in the

GSE26172 cohort and meta-validation of public cohorts. After

adjusting for the clinicopathological parameters, the CCPOC

remained independently prognostic (Table 2). Together, these

findings indicated that the CCPOC was an independent

prognostic signature.

Comparison with existing prognostic
models

Next, in order to compare the prognostic value of the

CCPOC with published OC prognostic models, referred to as

Bao et al. (2020), Hu et al. (2021), Zhang et al. (2021), Pan’s (Pan

andMa, 2020), Qi’s (Ye et al., 2021),Wang et al. (2022), and Yang

et al. (2021) prognostic system, based on the OS data of the

GSE138866, GSE32062, GSE51088, GSE9891, and ICGC-AU

cohorts, the C-index and D-index were calculated. As

presented in Figure 4, the C-index was significantly higher in

CCPOC than existing Bao and Wang models (Figures 4A, C).

Like the C-index, the D-index was significantly higher in CCPOC

than in most of the existing prognostic systems (Figures 4B, D).

Illustrating the immune
microenvironment composition,
dysregulated pathways, and drug
sensitivity in CCPOC-low and CCPOC-
high groups

Earlier, we showed that the CCPOC could help risk stratification

of OC patients. Next, we explored the immune microenvironment

composition in CCPOC-low and CCPOC-high groups.

Immunomodulators have been classified into three types of

molecules which include immune-inhibitors, immuno-

stimulators, and major histocompatibility complex (MHC)

molecules. The DNA damage response (DDR) refers to the

process by which the cell maintains integrity of the genome after

insult. The CCPOC-high group presented lower expression ofMHC

I/II molecular, immuno-inhibitor markers, immuno-stimulator

markers (Figure 5A), and DDR markers (Figure 5B). The

immune cell infiltration results showed that the CCPOC-high

group was enriched with T cell CD4 memory resting cells

(Figure 5C). Then, we conducted GSEA between the CCPOC-

high and CCPOC-low groups (Supplementary Table S6). The

EMT, TGF-β, and Wnt pathways were upregulated in the

CCPOC-high group (Figure 6A). When analyzing CCPOC to

predict chemotherapy sensitivity in the GSE146965 and

PMID17290060 cohorts, chemotherapy effectiveness was lower in

the CCPOC-high group than in the CCPOC-low group (Figure 6B).

Immunotherapy, represented by a PD-L1/L1 blockade, has become

a new breakthrough in cancer treatment. We analyzed the

association between CCPOC and the response to immune

checkpoint blockade therapy in two immunotherapy cohorts. In

both the anti-PD-L1 cohort (IMvigor210) and the anti-PD-1 cohort

(GSE78220), patients within the CCPOC-low group showed

prolonged survival (Figures 6D,F). Treatment results showed that

patients within the CCPOC-low group showedmore efficacy against

anti-PD-1/L1 immunotherapy than CCPOC-high group patients

(Figure 6E and 6G-H). The aforementioned data indicate that the

CCPOC-high group had lower tumor immunogenicity and lower

efficacy of chemotherapy and anti-PD-1/L1 immunotherapy

treatment response.

TABLE 2 Univariate and multivariate prognostic analyses of the cell cycle signature and clinicopathological factors in the training cohort and meta-
validation of public cohorts.

GSE26712 Meta-validation of public cohorts

Univariate Multivariate Univariate Multivariate

HR (95% CI) p HR (95% CI) p HR (95% CI) p HR (95% CI) p

Grade* (3 vs. 1&2) 1.75 (0.44–7.07) 0.43 1.63 (0.40–6.58) 0.49 2.63 (1.52–4.55) 5.0E-04 2.09 (0.87–5.05) 0.10

Debulking (optimal vs. suboptimal) 1.32 (1.02–1.71) 0.03 1.29 (0.99–1.68) 0.05 1.31 (1.10–1.54) 2.0E-03 1.27 (1.08–1.51) 4.0E-03

CCPOC (high vs. low risk) 1.40 (1.08–1.81) 0.01 1.29 (1.00–1.69) 0.04 1.61 (1.39–1.88) 3.4E-10 1.55 (1.30–1.85) 1.2E-06

*One well-differentiated; two moderately differentiated; three poorly differentiated.

Numbers in bold indicate significance of 0.05 or less.
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Exploring the prognostic significance and
the immune therapy response in pan-
cancer

Next, we explored the CCPOC signature in pan-cancer. As

shown in Figure 7A, the CCPOC scores of OC were medium in

the 33 cancers. Then, we explored the prognostic significance of

CCPOC in pan-cancer. As presented in Figure 7B, CCPOC acted

as a prognostic factor in almost 25% of cancer types. In addition,

the CCPOC-high group presented low lymphocyte infiltration,

such as CD8+ T cell, B cells, and NK cells (Figure 7C). Through

an extensive literature search, we identified 15 tumor types for

which data regarding the ORR of anti-PD-1/PD-L1 were

available (OC excluded, Supplementary Table S7). In line with

our suggestion, the CCPOC was negative to anti-PD-1/PD-

L1 response in pan-cancer (r = −0.47, OC excluded)

(Figure 7D). These data showed that CCPOC could be a

biomarker in predicting the prognosis and anti-PD-1/PD-

L1 response in other cancer types.

Discussion

Ovarian cancer (OC) is the most lethal gynecological cancer

with pathological andmolecular heterogeneity characteristics (Siegel

et al., 2019). Various multi-gene prognostic biomarkers have been

developed (Pan andMa, 2020; Yang et al., 2021), but their prediction

efficiencies are still uncertain. Therefore, a new signature that can

accurately recognize OC patients with poor prognoses is urgently

needed. Based on transcriptome data, OC has been unsupervised

FIGURE 4
Comparison of published classifiers with CCPOC. Forest plot reporting of the (A) concordance index (C-index) and (B) D-index (robust hazard
ratio) for CCPOC and published classifiers. The tables illustrate the superiority of CCPOC compared with published classifiers for Meta C-index (C)
and Meta D-index (D).
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and classified into four molecular subtypes (immunoreactive,

differentiated, proliferative, and mesenchymal) with distinct

molecular and clinical characteristics (Cancer Genome Atlas

Research Network, 2011). The mesenchymal subtype highly

expressed the mesenchymal signature and was associated with

worse clinical outcomes. The prognostic signature screened based

on molecular portraits specific to the worst prognosis subtype may

be used for risk stratification of OC patients. In addition, many

studies have explored the role of cell cycle in the prognosis

prediction of tumors (Hui et al., 2021; Jiang et al., 2021).

However, most studies have only studied the prognostic

relevance of cell cycle without considering tumor heterogeneity.

FIGURE 5
Immune microenvironment composition in CCPOC groups. (A) Expression levels of immuno-inhibitors, MHC I/II molecular, and immuno-
stimulator markers within the CCPOC groups. (B) Heatmap of the expression of DDR markers between the CCPOC-high and CCPOC-low groups.
(C) Distribution of 22 immune cells in the CCPOC groups. (*p < 0.05 and **p < 0.01).
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In this study, we applied a network-based approach to integrate cell

cycle signature andmodalities underlying the mesenchymal subtype

to establish a prognostic signature termed “Cell Cycle Prognostic

Signature of Ovarian Cancer” (CCPOC). To our knowledge, no

prognostic cell cycle-based signature has been constructed by

incorporating molecular subtyping information of OC.

The CCPOC was constructed by two cell cycle genes

(POLA2 and KIF20B) which were key regulators of the

mesenchymal subtype and could stratify patients into different

risk groups. Within these two cell cycle genes, KIF20B can

promote cell proliferation and could be a potential therapeutic

target in pancreatic cancer (Chen et al., 2021). Koh et al. reported

that the knockdown of POLA2 increases chemo-resistance in human

lung cancer cells (Koh et al., 2016). The defined CCPOC-high group

showed a worse OS than the CCPOC-low group. To confirm this

finding, we validated the results in seven independent cohorts

measured by various platforms and one independent internal

cohort (BL-OC cohort) and found that the signature successfully

stratified the prognosis in all cohorts. The CCPOC remained an

independent prognostic predictor in the multivariate Cox

proportional hazards analysis after adjusting for other clinical

factors. In line with the findings, we found that the C-index and

D-index of the CCPOC were significantly higher than those of the

published prognostic models, which was superior to the current

genomic classification. These data suggest that the CCPOC has a

strong and reproducible prognostic value for risk stratification of OC.

In addition, we also found that the CCPOC was related to weakened

tumor immunogenicity and inflamed antitumor immunity, and the

correlation analysis showed that CCPOCwas negatively related to the

ORR in pan-cancer (OC excluded), which indicated that the

CCPOC-low group may be sensitive to anti-PD-1/PD-L1 therapy.

Together, these findings show that the CCPOC could serve as a

robust prognostic signature in OC.

This study still has some limitations. First, the prognostic

signature was screened from gene expression profiles generated

from microarray platforms, which are expensive, difficult to

FIGURE 6
Dysregulated pathways and drug sensitivity within the CCPOC groups. (A) Enrichment of dysregulated pathways between the high- and low-
CCPOC groups. (B) and (C) chemotherapy sensitivity analysis. Survival analyses for the CCPOC groups in the GSE78220 cohort (D) and the
IMvigor210 cohort (F). Proportion of patients with response to anti-PD-1/L1 immunotherapy in low- or high-CCPOC groups in the GSE78220 cohort
(E) and the IMvigor210 cohort (G). (H) Distribution of the CCPOC scores in CCPOC groups. CR, complete response; PR, partial response; SD,
stable disease; PD, progressive disease.
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operate, and involve professional bioinformatics expertise, so it is

difficult to be popularized in daily clinical application. Second,

the training and validation datasets were all from retrospective

studies in the study, including fresh frozen samples. Therefore, in

practice, we need to detect the expression of signature genes

using conventional clinical techniques, such as RT-PRC or IHC,

and then reconstruct the new model and perform large-scale

multicenter cohorts to validate the validity and robustness of the

model.

In conclusion, using multi-dimensional network inference

underlying the mesenchymal subtype of OC, we have

identified and validated a two cell cycle signature, named

CCPOC, to risk-stratify patients and provide an easy method

for the exploration of new effective therapeutic options,

including novel target drugs and immune therapy in the

future.
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FIGURE 7
Pan-cancer analysis of the prognostic significance and anti-PD-1/PD-L1 response for CCPOC. (A)Distribution of CCPOC scores in pan-cancer.
(B) Prognostic relevance of CCPOC in various cancer types. (C) Heatmap of the correlation of immune cells and CCPOC scores across various
cancer types. (D) Correlation between CCPOC and anti-PD-1/PD-L1 ORR of various cancer types. (*p < 0.05, **p < 0.01, and ***p < 0.001).
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