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INTRODUCTION

To improve care for the estimated 17.1 million children with psychiatric disorders in the
United States (1), it is critical to explore all possible connections to better understand these
disorders’ origins. The onset of neurodevelopmental/psychiatric disorders varies person-to-person.
However, even for disorders diagnosed after infancy, there is a growing appreciation that the origins
of these disorders are at the earliest stages of brain development—prenatally. Furthermore, not only
is it crucial to understand what is unusual during development, but also why this occurs.

A significant contributor to abnormal prenatal brain development is physiological stress
during pregnancy (2–6). Physiological stress induces a significant shift from homeostasis, and
may arise from chemical exposures, psychological stress, infections, and illnesses such as
preeclampsia or gestational diabetes. Epidemiological studies link maternal stress with offspring
neurodevelopmental impairments (2), and animal studies have demonstrated causality of this
relationship. For example, preeclampsia—a disorder with disruptedmaternal vascular and immune
biology—increases risk of neuropsychiatric problems among children (3). Evidence has come from
human and non-human preeclampsia studies implicating what in the offspring brain has changed:
its morphology, white matter, and vasculature. When we ask the further question of why these
changes occur with preeclampsia or any maternal stress, it is critical to consider the biology of not
only mother and offspring but also their link—the placenta. Changes in placenta may be a critical
factor for offspring neurodevelopment (Figure 1).

The placenta forms after conception and is delivered along with the offspring. During gestation,
placenta serves as the mediator between mother and fetus, supplying nutrients and oxygen to the
fetus and removing waste and CO2. The role of the placenta has been emphasized previously, and
continues to warrant attention when examining disorders with developmental origins (7). Many
cultures bury the placenta after birth, out of respect for its role as a “guide” through pregnancy or
its link to the child’s future (8). The level of respect for the placenta these cultures offer seems fitting,
as growing evidence suggests its importance in long-term neurodevelopmental outcomes.

PLACENTAL BIOLOGY

The nutrient and waste exchange of the placenta that supports fetal development is just part
of its critical role. The placenta also produces critical hormones, growth factors, proteins for
metabolizing endogenous molecules (e.g., 11βHSD2 breakdown of elevated cortisol in normal
pregnancy to limit fetal exposure) or transporting exogenous factors (e.g., efflux transporters for
xenobiotic chemicals), and other molecular substrates (e.g., such as serotonin which is directly
supplied to the fetal brain (9–11). All of these factors impact fetal development and regulate
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FIGURE 1 | Examples of placental mechanisms as the link between maternal physiological stressors and offspring brain outcomes.

communication between the separate but linked biological
domains of the mother and fetus. These processes of normal
pregnancy are dependent on proper placental structural
formation and its function throughout gestation (12). Maternal
physiological factors may influence the structure and function
of the placenta’s unique connection between mother and baby.
To better understand the placenta, it is important to understand
general periods of placental development:

Beginning of Gestation: Placental villi are multi-layered
folds of tissue in which fetal and maternal blood vessels
come in close contact (13). Villous and extravillous
structures form as a result of the proliferation and
differentiation of trophoblast cells, which arise during
the earliest divisions of cells in the embryo. The villous
and extravillous structures physically anchor the placenta
into the uterus and allow gas and nutrient exchange and
other functions.

First Half of Gestation: Trophoblasts undergo the most
changes. For example, some trophoblasts replace endothelial
cells that make up the uterine spiral arteries to ensure adequate
fetal blood supply. This mechanism also serves to protect
the placenta from potentially harmful fluctuations in oxygen
levels (14).

Second Half of Gestation: Extensive angiogenesis and
vascularization occurs. The formation of new blood vessels allows
blood to enter the trophoblast cell-lined sinuses in the uterus and

continue to meet the nutritional and other physiological needs of
the growing offspring (15).

GESTATIONAL DIABETES

Abnormal placental morphology and function have significant
impacts on fetal outcome. For example, gestational diabetes
mellitus (GDM) has been linked to offspring risk for metabolic,
cardiovascular, and neuropsychiatric problems including autism
spectrum disorder (ASD), ADHD, depression, anxiety, and
cognitive delay (16). Maternal diabetic abnormalities may have
direct impacts on fetal metabolism, changing levels of specific
nutrients and hormones. However, studies have also found in
GDM models that maternal hyperglycemia leads to decreased
placental glucose transporters (17). This in turn may lead to
decreased fetal glucose, further leading to delays, as glucose is
a critical nutrient (13). GDM also induces altered metabolism
and placental development and function at early stages which
may be responsible for excessive fetal growth (13). Specifically,
inflammatory and cellular stress pathways in placental cells such
as NF-κB signaling or ER stress likely play a role in GDM (18).
Evidence suggests that abnormal maternal metabolism stimulates
both adipose and placental cells, increasing production of
inflammatory cytokines that then may influence the fetus in
multiple ways (19).
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MATERNAL INFLAMMATION

Other maternal factors, including bacterial or viral infections
such as influenza, can elicit increased inflammatory cytokines
which may alter placental function. Maternal immune activation
(MIA) during pregnancy has been linked with an increased risk
for neuropsychiatric risk in offspring, including ASD (20).

Animal models show that influenza infection during
pregnancy alters the placenta in multiple ways. After maternal
influenza, overall placental growth is reduced (21), as well as
reduced labyrinth zone thickness, suggesting that disrupted
vascular development of the placenta occurs and then
likely reduces nutrient and oxygen exchange (22). Maternal
influenza also alters the expression of a significant number of
placental genes, mainly implicating inflammatory, immune,
and hypoxia pathways but also overlapping with risk genes for
neuropsychiatric disorders (23). In these studies, placentas also
showed cellular abnormalities including thrombi and elevated
immune cell number. Offspring brain showed persistent changes
in some key neuronal genes many weeks after this maternal
exposure (23). At the same time, no viral genes were found
in placenta or offspring brain, suggesting indirect pathways
for brain alterations such as placental morphological and
functional changes.

FETAL ALCOHOL SPECTRUM DISORDER

Fetal Alcohol SpectrumDisorder (FASD) affects up to 1.5 of every
1,000 births in the United States (24). FASD includes low body
weight, poor coordination, and cardiovascular complications.
Children with FASD experience neurodevelopmental challenges
such as hyperactive behavior, poor memory, and speech
and language delays. As with other maternal physiological
disruptions, the role of the placenta may be critical for impacts
of gestational alcohol exposure.

Disruptions to placental vascular structure and function may
be a mechanism involved in the origins of FASD. Increased
glucocorticoid levels with alcohol consumption (25) may play
a role in reduced blood flow, given known impacts of cortisol
on placental angiogenesis (26). In human placentae from
pregnancies in which women were prospectively assessed to
have used alcohol, levels of two angiogenic proteins vascular
endothelial growth factor receptor 2 (VEGFR2) and annexin-
A4 (ANX-A4), were reduced (27). VEGFR2 and ANX-A4 both
enhance proliferation, migration, and survival of the endothelial
cells critical for placental blood vessels, suggesting that maternal
and/or fetal blood flow that underlies many other placental
functions may be dysregulated A trend increase of the pro-
inflammatory cytokine, TNFα, in placenta after alcohol exposure
also suggests that placental processes sensitive to inflammation,
such as serotonin production, may be affected. This study reveals
different aspects of placental abnormality than other assessments
showing a higher rate of placenta accreta with gestational alcohol
exposure (28). Placenta accreta occurs when trophoblast cells
invade the uterine wall abnormally, which suggests altered initial
placentation due to alcohol exposure. Placenta accreta can lead
to complications during delivery and may be managed by

pre-term cesarean delivery, both of which are linked to increased
neurodevelopmental risk for children (29).

The aforementioned studies demonstrate examples of
common maternal conditions with placental abnormalities that
have also been linked to neurodevelopmental abnormalities
of offspring. There are many other factors that can influence
placental changes and therefore development of offspring;
for example, regardless of maternal physiology, infant
neurodevelopment has also been correlated with placental
epigenetic variation (30). What is apparent from these studies
is that the placenta’s role is more than a waystation for the fetal
brain to be exposed to molecules from maternal circulation. The
impact of placenta nutrient transport, serotonin production,
and hormone regulation are significant, as general development
of the fetus has been found to be negatively influenced
when these functions are abnormal (31). Additionally, a
range of maternal physiological stresses impact placenta
function (gestational diabetes mellitus, maternal infection).
These forms of maternal stress and others may have overlapping
neurodevelopmental impacts on offspring because of overlapping
placental abnormalities.

LINKING PLACENTA AND
NEURODEVELOPMENT

In the examples discussed above, maternal conditions during
pregnancy are linked both with improper function of the placenta
as well as with increased likelihood of neurodevelopmental
problems in offspring. The critical nature of the placenta
for neurodevelopmental changes is hypothesized from
such descriptive studies, but few studies have been able to
causally connect placental abnormalities directly to altered
brain development.

The impact of alcohol on placental growth factor (PLGF)
has been explored for its mechanistic role in disruptions of
fetal brain vasculature in mice. With CRISPR-Cas9 mediated
over-expression of the PLGF gene in placenta, the reduced
proportion of cerebrocortical radial vessels with maternal alcohol
consumption is corrected to normal levels (32).

Maternal immune activation (MIA), a risk factor for ASD,
involves elevation of maternal IL-6, a proinflammatory cytokine
responsive to infections. Sophisticated work has shown that the
impact of IL-6 on the placenta is the critical mediator of MIA
effects on offspring neurodevelopment (20). A specific transgenic
removal of placental IL-6 receptor, through the CYP19Cre driver
(a transgene under the control of the aromatase cytochrome
P450 19), resulted in offspring protected from the impacts of
MIA in brain and behavior. Other findings from this work
suggest that IL-6 signaling may play this critical role because
it impacts placental angiogenesis and vascular permeability,
hormone production, or further inflammatory signaling cascades
in fetal circulation.

Another study has implicated the placenta’s adaptation to
nutrient deprivation (i.e., maternal starvation) as a way to
protect offspring hypothalamus neurodevelopment—a critical
brain region for hormonal regulation. During mouse gestation,
expression of the gene Peg3 is coordinated in the fetal
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hypothalamus and placenta, coordinating multiple other genes
that regulate both placental and hypothalamic development (33).
Following food deprivation, this pattern is uncoupled, with
Peg3 expression increased in fetal hypothalamus and decreased
in placenta. This study demonstrates also that this maternal
starvation stress advances hypothalamic cell growth, despite the
reduction in nutrients due to breakdown of placental cells from
decreased Peg3 expression. Poor neurodevelopmental outcomes
in the setting of maternal starvation may represent failure of this
protective mechanism.

Maternal inflammation can be linked through the
placenta to disrupted serotonin development in the fetal
brain, particularly in the forebrain where serotonin plays
a role in emotional regulation circuits. Specifically, MIA
disrupts placental tryptophan metabolism, including altered
expression of genes that synthesize serotonin [tryptophan
hydroxylase 1 (TPH1) and indoleamine 2,3-dioxygenase 1].
Interestingly, controlled investigations of isolated placental
and brain tissue after MIA also shows that TPH1 activity is
increased only in placenta, but serotonin levels increase in
fetal brain. Ultimately this increase in serotonin delivered to
fetal brain suppresses normal outgrowth of fetal serotonin
axons (34).

CONCLUSION

The placenta has a temporary role in development during
gestation—despite its time-limited presence, impacts of its
function are clear well into adulthood. The impact of maternal

illness or exposures during pregnancy on neuropsychiatric
functioning of the next generation may well be heavily influenced
by the health and performance of the placenta. If prenatal brain
developmental changes from maternal physiological stresses that
contribute to ASD, cognitive delays, or other neuropsychiatric
problems originate in the placenta, finding ways to protect its
structure and function are critical. Moreover, the placenta is
a much more accessible biological target than the developing
fetal brain for such interventions. Therefore, understanding
mechanisms by which it influences the fetal brain, such as
inflammatory signaling and serotonin production, will allow for
more protective measures to be developed for healthy brain
development in children.
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