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Fit-for-Purpose Biometric Monitoring Technologies: 
Leveraging the Laboratory Biomarker Experience

Alan Godfrey1,*,†, Benjamin Vandendriessche2,3,†, Jessie P. Bakker4, Cheryl Fitzer-Attas5, Ninad Gujar6, Matthew Hobbs7, Qi Liu8, 
Carrie A. Northcott9, Virginia Parks10, William A. Wood11, Vadim Zipunnikov12, John A. Wagner13 and Elena S. Izmailova14

Biometric monitoring technologies (BioMeTs) are becoming increasingly common to aid data collection in clinical trials and 
practice. The state of BioMeTs, and associated digitally measured biomarkers, is highly reminiscent of the field of laboratory 
biomarkers 2 decades ago. In this review, we have summarized and leveraged historical perspectives, and lessons learned 
from laboratory biomarkers as they apply to BioMeTs. Both categories share common features, including goals and roles in 
biomedical research, definitions, and many elements of the biomarker qualification framework. They can also be classified 
based on the underlying technology, each with distinct features and performance characteristics, which require bench and 
human experimentation testing phases. In contrast to laboratory biomarkers, digitally measured biomarkers require pro-
spective data collection for purposes of analytical validation in human subjects, lack well-established and widely accepted 
performance characteristics, require human factor testing, and, for many applications, access to raw (sample-level) data. 
Novel methods to handle large volumes of data, as well as security and data rights requirements add to the complexity of 
this emerging field. Our review highlights the need for a common framework with appropriate vocabulary and standard-
ized approaches to evaluate digitally measured biomarkers, including defining performance characteristics and acceptance 
criteria. Additionally, the need for human factor testing drives early patient engagement during technology development. 
Finally, use of BioMeTs requires a relatively high degree of technology literacy among both study participants and healthcare 
professionals. Transparency of data generation and the need for novel analytical and statistical tools creates opportunities 
for precompetitive collaborations.

Measure what is measurable and make measur-
able what is not so.  Galileo Galilei (1564–1642).

What is a biomarker? The word itself is an abbreviation of 
“biological marker,” which has been used in peer-reviewed bio-
medical journals since the 1940 and 1950s in various contexts.1,2 
The abbreviated term “biomarker” was coined in 1980.3 The 
Biomarkers, Endpoints, and other Tools (BEST) glossary de-
fines a biomarker as a “defined characteristic that is measured 
as an indicator of normal biological processes, pathogenic 
processes, or responses to an exposure or intervention, includ-
ing therapeutic interventions.”4 This definition has been widely 
accepted since the National Institutes of Health Biomarkers 
Definitions Working Group defined the term in 1998.5

Traditionally, there have been two major categories of 
biomarkers: laboratory and imaging-based biomarkers. 
Recently, a new category has emerged: digitally measured 
biomarkers.6 In this review, we examine the historical un-
derpinnings of laboratory biomarkers and how they have 

influenced digitally measured biomarker development. To do 
so, we define laboratory biomarkers as measures produced 
by laboratory assays and digitally measured biomarkers as 
measures produced by biometric monitoring technologies 
(BioMeTs),7 which are “connected digital medicine prod-
ucts that process data captured by mobile sensors using 
algorithms to generate measures of behavioral and/or 
physiological function” that may ultimately result in the iden-
tification and deployment of digitally measured biomarkers. 
Just like laboratory assays do not necessarily produce a 
biomarker, digital measures derived from BioMeTs are not 
digitally measured biomarkers by definition. There are mul-
tiple types of BioMeTs that can be used either alone or in 
concert to create behavioral or physiological end points 
(Figure 1). Currently, signal modalities that can be mea-
sured by BioMeTs include but are not limited to motion, 
pressure, biopotentials, skin impedance, light, and tempera-
ture. We limit the scope of our review to mobile sensors in 
direct contact with the body but contactless technologies 
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that measure biometric signals, such as camera, WiFi, and 
Doppler radar-based devices, or digitally captured data by 
imaging devices used in the hospitals, are out of scope 
because of fundamental differences in the means of data 
collection. BioMeTs come in a variety of form factors, such 
as watches, adhesive patches, headbands, rings, and cloth-
ing, which form the basis for the development of digital end 
points. As new technologies are developed, the abilities of 
BioMeTs will continue to expand.

Digitally measured biomarkers, being newcomers, have 
not yet gained the same degree of acceptance and name 
recognition in the biomedical field as laboratory or imag-
ing-based biomarkers for several reasons. First, the field is 
inundated with technology applications collecting various 
types of health-related data of highly variable and often un-
known quality.8 Second, the field lacks commonly accepted 
language, frameworks, data standards, and methodologies 
to determine whether a certain application is ready and ap-
propriate for use in human experimentation. Frameworks9,10 
and recommendations11 have been proposed to answer 
this question and facilitate adoption of digitally measured 
biomarkers as tools for drug development and health care 
delivery; however, the field remains fragmented as it involves 
an interdisciplinary intersection of device engineering, soft-
ware development, data science, ethical and regulatory 
bodies, clinicians, academic researchers, drug development 
companies, and others. Lack of consensus in the field leads 
to a high number of feasibility/pilot experiments, sometimes 
referred to as “pilotitis,” many of which yield inconclusive 
results and trigger further experiments. Some results are 
published12; however, others are not disclosed, especially 
if the outcomes are negative.13 A more concerted effort is 
needed from all stakeholders to establish BioMeT perfor-
mance characteristics, human factor testing, and clinical 
interpretation for novel measurements. Moreover, adoption 
of new technologies depends on a large number of opinions 
and perspectives from patients, clinicians, regulators, and 
scientists. This necessitates that all groups be involved in the 

development and implementation of the approach in order 
to reach the user and the ultimate “goal” of the technology.14

Laboratory biomarker foundations
The state of the digitally measured biomarkers field and its 
challenges are highly reminiscent of the field of laboratory 
biomarkers15 2 decades ago. For example, the terms “bio-
marker” and “technology category” (e.g., enzyme-linked 
immunosorbent assay, reverse transcription polymerase 
chain reaction, or immunohistochemistry), have been 
commonly used for laboratory methods (Figure 1), but 
widespread adoption of biomarkers as tools in drug de-
velopment was not realized until unified definitions were 
created5 and general principles of biomarker assay vali-
dation for the purposes of human experimentation were 
established.16 Publication of the work by the National 
Institutes of Health (NIH) Biomarker Definitions Working 
Group was a turning point; it defined biomarker categories 
(diagnostic, disease staging, prognostic, or predictive) and 
also highlighted the role of biomarkers as surrogate end 
points,5 creating a necessary framework for adoption of 
biomarkers in clinical trials. Importantly, that group defined 
the term “validation” as a “performance characteristics 
(i.e., sensitivity, specificity, and reproducibility) of a mea-
surement or an assay technique.” The concept of validation 
was subsequently split into “analytical validation,” refer-
ring to biomarker performance characteristics and “clinical 
validation,” referring to association of a method readout 
to an outcome of interest.5 This important work was com-
plemented by the American Association of Pharmaceutical 
Sciences (AAPS) 2003 Biomarker Workshop, which devel-
oped the “fit for purpose” concept. The workshop used 
ligand binding assays as a use case to overcome the issue 
of “limited experience interpreting biomarker data and an 
unclear regulatory climate”16 by defining assay perfor-
mance characteristics and acceptance criteria to determine 
if a biomarker is fit for the purpose of supporting a cer-
tain end point in a clinical trial. In turn, those performance 

Figure 1 Timeline comparing a number of major technology developments (bottom) underlying laboratory biomarker assays and 
present-day biometric monitoring technologies (BioMeTs) and examples of major biomedical applications based on those technology 
developments (top). ECG, echocardiogram; IHC, immunohistochemistry; IVD, in vitro diagnostics; NGS, next-generation sequencing; 
NIH, National Institutes of Health; PCR, polymerase chain reaction; PPG, postprandial glucose.
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characteristics were based on those defined in the 2001 US 
Food and Drug Administration (FDA) Bioanalytical Method 
Validation pharmacokinetic assessments for conventional 
small molecule drugs.

The effort of the AAPS working group prompted expan-
sion of the “fit for purpose” concept beyond ligand binding 
assays, leading to defined assay performance characteris-
tics for other technologies, including immunohistochemistry, 
reverse transcription polymerase chain reaction, and mass 
spectrometry. There was also recognition of a need for a de-
fined set of characteristics and stringency of performance 
verification to render a certain biomarker method valid for 
a specific purpose in clinical development. The burden of 
proof required for a particular biomarker to be considered 
as “valid” is based on the predefined purpose(s) and also 
tailored to its purpose distinguishing between pharmacody-
namic, proof of mechanism, proof of concept, surrogate end 
points, and prognostic/predictive biomarkers.17 The technol-
ogies were classified into bins (qualitative, quasi-quantitative, 
and relative and definitive quantitative) and applicable assay 
characteristics were ascribed to a particular technology, re-
vealing limitations of certain methods in terms of ability to 
quantify the amount of analyte in any given specimen.17

Both concepts—analytical and clinical validation—were 
incorporated in the FDA guidance “Biomarker Qualification: 
evidentiary guidance for industry and FDA staff”18 describ-
ing an evidentiary framework for all biomarker qualification 
submissions, regardless of the type of biomarker or context 
of use (COU). For the purpose of biomarker qualification, 
the framework defined analytical validation as “establishing 
that the analytical performance characteristics of a bio-
marker test, such as the accuracy and reproducibility, are 
acceptable for the proposed COU in drug development,” 
highlighting the difference with the biomarker’s usefulness. 
It defined three key elements for a biomarker method: (1) 
source or materials for measurement, (2) an assay for ob-
taining the measurement, and (3) methods and/or criteria for 
interpreting those measurements,19 bringing together major 
advancements of the field in the last 2 decades.

With careful assay development supported by these 
guidance documents, the use of laboratory biomarkers in 
clinical development has become common across many 
therapeutic areas. Today, the procedure of developing and 
transferring biomarker assays for utilization in clinical trials 
in partnership with contract-research laboratories, in addi-
tion to already existing validated assays, is routine. Most, if 
not all, clinical trial professionals would agree that laboratory 
biomarkers have made clinical development programs more 
efficient and more robust.20

Extension to sensor technologies
Sensor-based technologies share some historical trends 
with laboratory biomarker assays. BioMeTs have been avail-
able in the ecosystem for many years, but the appreciation 
of their potential and widespread interest started emerg-
ing only in the last decade. Sensor technologies, such as 
wireless echocardiogram (ECG), pulse oximetry, and ac-
celerometers embedded in wearable devices, have existed 
for extended periods of time (Figure 1). However, a notice-
able interest in and uptake of remote patient monitoring for 

healthcare management and clinical trials did not happen 
until smartphones and computer tablets became ubiq-
uitously equipped with applications mediating BioMeT 
data synchronization and real-time collection of patient 
responses about their disease conditions and quality of 
life incorporated into electronic patient reported outcome 
and e-diaries.21 Moreover, a number of digital wellness 
devices were directed toward consumers, offering a con-
venient combination of vital signs, physical activity, and 
estimated sleep data in a single device. These devices are 
user-friendly, have an attractive form factor, and provide an 
easy way to digest data summaries in mobile applications, 
thus increasing the visibility and acceptance of BioMeT-like 
technologies among users and study participants. The num-
ber of smartphone applications capturing different aspects 
of health grew exponentially, raising legitimate concerns 
about app quality,22 security, user privacy, and data gover-
nance.23 Unlike the laboratory biomarker field, the digitally 
measured biomarker field continues to be “characterized 
by irrational exuberance and excessive hype”24 because of 
the lack of a commonly accepted framework for designing 
validation experiments and practical recommendations to 
interpret the validation data, similar to the work done by the 
NIH biomarker working group and AAPS biomarker work-
ing groups. Some elements outlined in the BEST framework 
and “Biomarker Qualification: evidentiary guidance for in-
dustry and FDA staff” may not apply because both were 
designed for laboratory and imaging25 biomarkers, rather 
than digital. As of May 2020, the list of qualified biomarkers 
or pending submissions did not include any digitally mea-
sured biomarkers.26,27

In 2017, the Clinical Trials Transformation Initiative mobile 
technology project11 drafted the first relevant framework for 
clinical research using BioMeTs (termed digital technologies 
in the recommendation itself), which was finalized in 2018. 
This documentation adopted the verification and validation 
processes from the FDA guidance for software validation,25 
and provided recommendations on some experimental and 
operational aspects, such as device choice, data manage-
ment, and statistical analysis that need to be considered for 
BioMeT use in clinical trials. Recently, the V3 framework was 
introduced to consolidate these efforts into a unified definition 
of verification, analytical validation, and clinical validation (V3) 
to determine if a BioMeT and/or digitally measured biomarker 
is fit-for-purpose.7 Here, we summarize and leverage historical 
perspectives and lessons learned from laboratory biomark-
ers while considering recent advances in BioMeTs to inform 
the development and use of digitally measured biomarkers. 
Although differences between conventional laboratory bio-
markers and digitally measured biomarkers are numerous, 
including the data transmission mode and associated secu-
rity and data right concerns, we focus here on elements that 
need to be addressed as a part of the V3 process (Figure 2), 
to leverage experiences from laboratory biomarkers.

A COMPARISON OF DIGITALLY MEASURED 
BIOMARKERS WITH LABORATORY BIOMARKERS

Digitally measured and conventional laboratory biomark-
ers share a common foundation. First, most of the BEST 
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definitions and the framework outlined in the FDA guidance 
on biomarker qualification,26 such as COU, apply to digi-
tally measured biomarkers (Table 1) as they share the same 
goals and roles in biomedical research.28 The FDA has clar-
ified that digitally measured biomarkers are not a separate 
class of biomarkers.29 Second, both laboratory and digitally 
measured biomarkers can be classified into a number of 
technologies with distinct features and performance char-
acteristics. Third, validation of a specific laboratory assay 
or BioMeT entails both bench and human experimentation 
testing phases, albeit these are not identical, and the ter-
minology varies (Table 1). Fundamentally, both categories 
represent measurements capturing the features of biolog-
ical processes, although the technological approaches for 
producing measurements are different.

The difference between these two categories are re-
lated to the fact that the methods of capturing the data 
have some essential differences. Unlike laboratory bio-
marker assays, analytical validation to ensure a BioMeT 
sensor correctly captures a physiological concept of in-
terest typically requires prospective data collection from 
human subjects. Analytical validation of a biomarker assay 
can be done entirely in the laboratory with retrospectively 
collected human samples as long as the specimens were 
collected following informed consent and stored appro-
priately. Another key difference is that the laboratory 
biomarker assay characteristics that need to be estab-
lished for a specific technology are relatively well-defined 
(Table 2), whereas this concept is more variable for 
BioMeTs, not in the least because the sensor technologies 
used in BioMeTs are developing and proliferating rapidly. 
Here, we discuss BioMeTs and physiological or behav-
ioral measures derived from them in the context of the 
sensor technology they rely on (Table 3). The examples in 
Table 2 and Table 3 highlight the differences in laboratory 

assay and BioMeT performance criteria. Although there 
are guidelines for establishing the accuracy for some 
categories of devices, such as blood pressure monitor-
ing devices,30 the acceptance of other sensor types is 
less well-defined or not defined at all. For example, one 
problematic category of sensors is accelerometers. There 
is a lot of variability in technological solutions as well as 
physiological concepts measured, ranging from gait and 
balance assessments to pronation and supination and 
hand tremor.31–33 Very often, analytical validation is per-
formed by comparing to a “gold standard” in the field. 
For gait, this can include comparison to electronic walk-
ways, which may capture the same end point and are also 
based on sensor recordings, yet walkways collect inter-
mittent force/pressure sensor recordings, compared with 
continuous tracking of the body through space34 with a 
BioMeT. Elsewhere, a comparison to a conventional stan-
dard, which is not based on an objective measurement by 
a sensor, but an established rating scale can be difficult, 
and yet essential for advancing the field of BioMeT-based 
clinical research. Despite these potential limitations, rating 
scales are routinely used as the accepted de facto stan-
dard. An added complexity is that some of the scales, 
while asking specific questions, are actually not looking 
at a simple physiological end point in isolation. A simple 
example includes the use of a self-reported physical activ-
ity diary compared with accelerometry over many days.35 
This study found poor convergent validity between the 
diary and a waist-mounted commercial device, which was 
attributed to an overestimation of the intensity and dura-
tion of different types of activities recalled subjectively by 
the study cohort. However, study authors also noted that 
the accelerometers used in their study underestimated in-
tensity and duration of certain types of activities because 
the commercial model was less sensitive to registering 

Figure 2 The V3 framework as applied to digital (left) and laboratory (right) biomarkers. Laboratory biomarkers go through an analytical 
and clinical validation step as defined in the Biomarkers, Endpoints, and other Tools framework.95 Digitally measured biomarkers are 
derived from sensor technology (BioMeT) that needs to undergo verification, before the physiological or behavioral measures of 
interest can be analytically and clinically validated.7 Whereas laboratory biomarkers can go through the process based on bench 
testing, digitally measured biomarkers are highly reliant on human subject testing. Figure adapted from ref. 7 with permission.
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activities, such as walking up the stairs, cycling, and ac-
tivities that mainly involve arm movements depending on 
wear location. For the given example, a more like-for-like 
result comparison between the accelerometer and indi-
rect calorimetry (the reference standard in this scenario) 
or video may have shown greater utility of the acceler-
ometer to quantify physical activity in the chosen cohort. 
Thus, scientific rigor pertaining to defining appropriate an-
alytical validation parameters and appropriate reference/

comparison tools (given a specific physiological construct 
of interest) is paramount, but unfortunately, is often lack-
ing for BioMeTs.

Human factor testing
BioMeTs require human factor and usability testing,36 
which needs to be incorporated judiciously into the eval-
uation process. This is one of the major distinctions with 
laboratory biomarkers—the subject interface is limited to 

Table 1 Comparison of laboratory assay-based biomarkers and BioMeT characteristics

Comparison parameters Laboratory biomarker assays
Digitally measured biomarkers derived from 

BioMeTs

Goals and role in biomedical 
research

The BEST framework defines several biomarker 
types: 1) diagnostic, 2) monitoring of symptoms 
or disease progression, 3) pharmacodynamic/

response, 4) predictive, 5) prognostic, 6) safety, and 
7) susceptibility/risk biomarker. 

Examples of COU in drug development:
• Pharmacodynamic for confirmation of MOA in a 

phase I or II clinical trial
• Prognostic for patient stratification in a phase III 

study

Bench testing phase Analytical validation - establishing that the analytical 
performance characteristics of a biomarker test, such 

as the accuracy and reproducibility, are acceptable 
for the proposed COU in drug development96

Verification - Evaluating and demonstrating the 
performance of a sensor technology within a 

BioMeT, and the sample-level data it generates, 
against a prespecified set of criteria

Human subject testing phase Clinical validation - establishes a biomarker’s 
relationship with the outcome of interest and confirms 

that it is acceptable for the proposed COU 
Clinical validation example: 

HbA1c could be used in drug development as a 
well-validated surrogate for the short-term clinical 

consequences of elevated glucose levels and long-
term vascular complications of diabetes mellitus

Analytical validation - Evaluating and demonstrating 
the performance of the algorithm, and the ability of 
this component of a BioMeT to measure, detect, or 

predict physiological or behavioral metrics 
Analytical Validation Example: 

Comparison of energy expenditure estimated by a 
fitness tracker against doubly labeled water. 

Clinical validation is the process that evaluates 
whether the digitally measured biomarker 

acceptably identifies, measures, or predicts a 
meaningful clinical, biological, physical, functional 

state, or experience 
Clinical validation example: 

95th percentile of stride velocity can be used in DMD 
as a biomarker of disease response to treatment78

Stability over time Example: Defining analyte stability in a defined type 
of specimen over a certain period of time under 

specified storage conditions

Example: Static and dynamic recalibration of an 
inertial measurement unit component inside a 

BioMeT to account for possible axis misalignment or 
inertial sensor alterations because of damage (e.g., 

device dropped)

Human factor testing N/A - other than defining the risk associated with 
sample collection procedure

Evaluation of human interaction with the BioMeT 
related to configuration, calibration, instructions, 

maintenance, user interface, and data 
synchronization

Data structure Snapshot in time Continuous or frequent (e.g., daily) data collection for 
extended periods of time

Product system, data, and 
network security

Vulnerabilities exist as in many cases a laboratory 
equipment involved in data generation is internet 

connected

BioMeTs transfer data over the internet, which 
introduces risks as actors could attack or assess 

products remotely and often in near-real time. 
Security issues will need to be re-assessed regularly 
as new technologies and vulnerabilities are identified

Data rights and governance Data security and privacy protection requirements 
apply, but given the restricted scope of data sharing 
in the process of data generation, the vulnerabilities 

are limited

Often collect sensitive data. The ability of BioMeTs to 
collect and integrate multimodal data can lead to 

the unconsented identification or localization of an 
individual. Data rights and governance concerns 

should be pivotal to the BioMeT development and 
deployment.

BEST, Biomarkers, Endpoints, and other Tools; BioMeT, biometric monitoring technology; COU, context of use; DMD, Duchenne Muscular Dystrophy; HbA1c, 
hemoglobin A1c; MOA, mechanism of action; N/A, not applicable.
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the procedure or biological sample collection (Table 1). 
For BioMeTs, key components include completion of setup 
and configuration, calibration if required, using the device 
according to provided instructions, and/or performing 
maintenance, such as cleaning, charging, or replacing a 
battery.36 Moreover, technical aspects of usability, such as 
the user interface, battery life, and data synchronization, 
should be tested and addressed appropriately, with patients 
and patient advocacy groups intimately involved as early 
as possible in the design process. BioMeTs used in clinical 
trials can be off-the-shelf (already existing and marketed 
solutions) or devices under development. For devices under 
development, usability testing can be completed at the end 
of the design phase, as required for marketed devices.37 For 
already marketed BioMeTs, some components of usability 
testing should preferably be done in the first study involving 
human subjects to have an early understanding of usability 
issues, and to correct them if possible, before deployment 
in other human studies. Usability studies may need to be 
repeated if the COU changes; for example, an initial test 
in normal healthy volunteers with subsequent testing in a 
disease population. The following factors should be con-
sidered: disease characteristics, demographics, symptoms 
and known disease heterogeneity, and the scientific ques-
tion(s) being addressed. This approach will ensure that the 
use of such BioMeTs will not impact the disease condition 
in a negative way (e.g., lead to skin irritation in a dermato-
logical condition). A particular BioMeT of interest may not 
be “fit-for-purpose” if it fails usability testing, meaning that 
study participants are unable to generate valid data and/
or adherence is suboptimal. Moreover, user literacy with 
digital sensors and corresponding mobile applications is 
critical for successful device deployment and data collec-
tion. The user facing materials, which may include manuals 
and hands-on-training for both clinical study participants 
and site staff, are a must have.38

Data structure and the need for raw data
The other distinctive feature of digitally measured bio-
markers is the multilayered data structure required for V3 
evaluation,7 interpretation, and reproducibility of results.38,39 
Data generated from BioMeTs can be classified into two cat-
egories: (i) raw data, also referred to as sample-level data, 
which are recorded directly by a sensor and output with lit-
tle if any further processing, and (ii) processed data, which 
have undergone analysis by an algorithm/software into 
different units, often summary statistics, such as the total 
number of steps or activity counts that can be aggregated 
at different time resolutions (e.g., minutes, hours, or days).

Access to sample-level data is required for verification 
purposes, as the sensor output needs to be compared 
with that of a bench standard, such as a shake table for 
accelerometers40 (Table 3). A review of raw data may also 
be required for particular applications (e.g., a review by a 
human reader to adjudicate if a certain cardiovascular 
event has taken place by examining an ECG waveform.39 
Availability of sample-level data also offers the potential for 
re-analysis as new or modified algorithms are developed.

There are challenges in obtaining sample-level data from 
certain devices due to a number of reasons, including both 

technical and commercial. Technical reasons include oper-
ational difficulties due to the high volumes generated that 
often exceed the memory capacity on-board. For exam-
ple, tri-axial accelerometry data sampled at 100 Hz creates 
18,000 data points/minute and, therefore, firmware might 
compress those data into a less complex signal of 20 Hz 
while retaining the original units. Many actigraphy devices 
have raw acceleration data immediately processed into 
“activity counts,” resulting in a time series of much lower 
frequency, such as one for 30  seconds. In this scenario, 
sample-level data are never accessible to the manufacturer 
or any user, as it is never written to memory. However, as 
memory capacity exponentially increases, it has become 
more common to collect and store raw high-frequency 
data,41 albeit with a trade-off against battery life.

The advantage of processed data is that it allows a digi-
tal tool to collect information over very long time periods in 
the field—in some cases, this could be as long as several 
months. Depending on the mode of data transmission, an-
other potential advantage is that a lower sampled signal can 
be sent via Bluetooth, whereas a high sampled signal might 
overwhelm this kind of transmission. The major drawback of 
this approach is that the units of processed data are usually 
specific to each manufacturer, such that the activity count of 
company A is not the same as the activity count of company 
B. As such, it is not possible to apply the same algorithm to 
data collected from different devices, and even if multiple 
algorithms are developed, their outputs may not be directly 
comparable despite purporting to measure the same con-
struct, such as the number of steps in a given day. Thus, 
there is a need for harmonizing the units of the processed 
data across BioMeT platforms and standardizing derived 
summaries to facilitate more comprehensive cross-study 
comparison and compatibility. Another potential drawback 
of processing data is that doing so may remove behavioral 
features of interest, such as gait parameters estimated from 
sub-second raw data,42–44 which could be clinically mean-
ingful. Although complete harmonization and transparency 
of data processing and associated algorithms might be ben-
eficial to the end user, manufacturers often prefer to enable 
protection and control over intellectual property thereby 
preventing competitor reverse-engineered alternatives. 
Moreover, it lessens the technical know-how required by 
more clinically oriented users who wish to avoid the burden 
of trying to store and interpret raw data.

Handling large amounts of data
BioMeTs are capable of generating an ever-increasing 
amount of data, which requires retrospective or (near) re-
al-time processing. Unlike laboratory biomarkers that are 
usually sampled individually at predefined time points, 
BioMeT data are typically sampled at high rates, are often 
multimodal, and collected under ambulatory conditions 
leading to more complex and unpredictable environmental 
influences, thus raising new challenges for data analysis. 
A typical data processing workflow consists of 1) prepro-
cessing steps (e.g., filtering of an ECG signal to remove 
unwanted artifacts), 2) analysis (e.g., calculation of heart 
rate (HR) from the preprocessed ECG), 3) presentation of 
the results (e.g., plotting of the minute-by-minute averaged 
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HR over prolonged periods of time), and 4) transforming 
the continuous HR signal into a study end point for statis-
tical analysis. The field of signal processing and assorted 
statistical techniques have built up a rich catalogue of 
tools to help “lift the signal from the noise” for this type 
of data. There is, however, a big gap between the com-
plexity of data collected with BioMeTs and the available 
statistical methodology to leverage the richness of the 
data fully, and to extract the digitally measured biomark-
ers that are most sensitive to quantify safety, efficacy, or 
treatment effects. Analytic challenges are centered around 
the complexity of BioMeT data that are longitudinal, have 
different time scales (e.g., sub-second level for accelerom-
eters and minute-level for continuous glucose monitoring 
(CGM)), exhibit huge intersubject and intrasubject hetero-
geneity across days and weeks of observation,45 and which 
may follow daily, weekly, and/or seasonal cycles.46 This 
is further complicated by the fact that many BioMeTs are 
capable of collecting multimodal data under uncontrolled 
real-world conditions (e.g., simultaneously collected heart 
rate, accelerometry, and CGM in closed-loop systems). 
Some of these analytical challenges have been actively ad-
dressed through the recent development of functional data 
approaches47,48 providing deeper insights into the diurnal 
organization of composite biomarkers of physical activity, 
sleep, and circadian rhythms. Open-source platforms for 
rapid dissemination of reproducible software, such as the 
GGIR package in R49 and the Open Wearables Initiative,50 
help promote the development of standardized algorithms 
and digitally measured biomarkers.

Considering the heterogeneity and the granularity needed 
to investigate subtle signal changes and their correlation to 
disease onset and progression, traditional rule-based ap-
proaches for data handling, manipulation, and synthesis 
can be slow to develop, complex to maintain, and sensitive 
to environmental influences. More recently, machine learn-
ing (ML) is gaining popularity as a complementary set of 
tools to build analytical models by letting them learn from 
large amounts of data, potentially alleviating some of these 
shortcomings. The general concept of ML is that if the pro-
grammer uses the right data to train the ML model for the 
problem under consideration, it will then be able to predict 

(“infer”) the outcome for that problem on new data. The ini-
tial challenge is to ensure the training data offers appropriate 
context and enough variability, ensuring a broad enough 
spectrum of normative data as well as incidences of interest 
(i.e., anomalies) that the ML methodology can adequately 
interpret. A subsequent challenge is that those ML-derived 
insights are corroborated by suitable reference standards, 
offering an overall degree of trust to any ML-based out-
comes and decisions.

To date, approaches for the use of ML in healthcare re-
main cautious, primarily due to the fact that ML algorithms 
are often described as “black boxes” to signify that the user 
knows what goes in and what comes out, but is blinded to 
the specific ML functionality. In a way, this interpretation is 
understandable, as the trained ML model usually does not 
have readable source code in the typical sense. Although 
the ML model may generate verifiable outputs, an under-
standing of how it came to that conclusion can be difficult, 
sometimes even impossible, to come by. This can create 
uncertainty and mistrust, especially when considering some-
thing as sensitive as medical decision making. Additionally, 
there are a number of other potential pitfalls, especially 
when using deep learning: 1) the more complex the model 
topology, the more (labeled) training data is needed to create 
it, which can be difficult to acquire, 2) monolithic models 
are harder to verify and validate as intermediate steps are 
obscured, 3) the model is assumed to “learn” from scratch, 
ignoring relevant domain (tacit) knowledge, and 4) many 
medically relevant (and correctly identified) events are rare, 
creating so-called unbalanced datasets. The first successful 
medical applications of ML are primarily situated in medical 
imaging51,52 and histopathological screening,53,54 especially 
for malignancies. But commonly used approaches, such as 
convolutional neural networks, have been successfully ap-
plied to BioMeT data.55

Typically, ML approaches have been created by siloed 
teams of data scientists focusing on technological and tech-
nical development rather than ensuring transparency and 
translation (pragmatic implementation), which would sup-
port acceptance in the wider field. The latter can only be 
successful when considering multidisciplinary approaches— 
data scientists working with healthcare professionals to 

Table 2 Laboratory biomarker classification for assay validation characteristics purposes17 (provides examples, not all-inclusive list)

Analytical technology category 
(example) Assay characteristics Assay controls and requirements

Definitive assay example (mass 
spectrometry)

Accuracy, trueness (bias), precision, sensitivity, LLOQ; 
ULOQ, specificity, dilution linearity, parallelism, assay 

range

Requires calibrators and uses a regression 
model to calculate absolute values for 
sample with an unknown amount of 

analyte

Relative quantitative assay example: LBA Precision, trueness (bias) reproducibility, sensitivity, 
LLOQ; ULOQ, specificity, dilution linearity, parallelism, 

and assay range

Requires a standard curve and low/medium/
high controls; quantitation is relative not 

absolute

Quasi-quantitative assay (flow cytometry) Precision, sensitivity, specificity, and assay range No calibration standard, a continuous 
response as a characteristic of a test 

sample

Qualitative assay (IHC) Reproducibility, sensitivity, and specificity Discrete scoring scales or binary outcome 
(yes/no)

IHC, immunohistochemistry; LBA, ligand-binding assay; LLOQ, lower limit of quantification; ULOQ, upper limit of quantification.
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understand clinical limitations, as well as data scientists with 
human biology or medical backgrounds who intrinsically 
understand the problems they are trying to solve, formu-
lating targeted approaches that are adequately validated, 
described, and open. Such approaches are being adopted 
by major European academic studies that are currently un-
derway to utilize real-world, free-living data from individuals 
with conditions, such as neurodegenerative movement dis-
orders and immune-mediated inflammatory diseases.56,57 
Where ML has notable historical roots in the identification 
of abnormalities for cancer screening, the same approaches 
have been used to investigate useful markers from BioMeT 
data.58,59

Once the challenges outlined above are successfully 
addressed, BioMeTs will facilitate establishing nuanced 
patient-level normative values for physiological measures, 
such as HR and blood glucose level, and behavioral mea-
sures, such as the estimated daily number of steps and 
sleep duration. This will 1) help with more accurate estima-
tion of patient-level treatment interventions effects and allow 
for near real-time tracking of recovery or functional decline, 
and 2) allow the development of individualized clinical risk 
prediction models to identify subjects with an increased risk 
for adverse health-related events, such as falls in elderly, 
re-admissions in different clinical subgroups, or relapse in 
multiple sclerosis.

Security concerns
Most BioMeTs transfer data over the internet, which intro-
duces security-related risks because an actor could attack 
and access the product remotely and often in near-real 
time.9 When using BioMeTs, responsible parties will need 
to protect the internet-connected systems, data, and net-
works from unauthorized access and attacks, including 

human error, such as sending personal health information 
to an unapproved party. Additional concerns include poten-
tial unbinding in clinical trials, which should be considered 
carefully during the study design. Measures to ensure safe 
and secure systems include but are not limited to using prin-
ciples of “safety by design,” collaborating with third parties 
when a vulnerability has been discovered, building products 
that capture evidence of tampering, and updating systems 
to decrease the risk of harm from code flaws or other is-
sues.60 Over the past few years, regulatory agencies, like 
the FDA, have issued a number of guidance documents for 
both premarket and postmarket security considerations for 
connected medical devices.61,62 A BioMeT’s security risk 
will need to be continuously re-assessed as new technolo-
gies and vulnerabilities are discovered.9

Data rights and governance concerns
When considering the data rights from BioMeTs, the indus-
try has started to coalesce around the term “governance” 
rather than “privacy,” as more individuals want to be em-
powered to choose how to share their data (e.g., for rare 
disease research), rather than defaulting to privacy and a 
lack of ability to choose to share.9 As BioMeTs have one 
or more mobile components, are usually developed to be 
used outside the controlled environments typical for lab-
oratory biomarkers, and often collect personal and/or 
sensitive data, data rights and governance should be piv-
otal to their development. Although exact definitions vary 
by country, personal data are generally considered to be 
directly or indirectly identifiable, whereas sensitive data 
covers many categories but includes health data, such 
as diagnoses, medical test results, and prescriptions. The 
ability of BioMeTs to collect and integrate multimodal data 
can lead to the unconsented identification or localization of 

Table 3 Examples of organizing BioMeTs into categories based on signal modalities to establish common performance characteristics 
(provides examples, not all-inclusive list)

Physiological 
concept Sensor Verification Analytical Validation

Step count Accelerometer Accuracy, precision, reliability of raw acceleration 
data by means of a shake table moving with known 

frequency and amplitude

Comparison of a step count data produced 
by an algorithm to a human rater counting 

steps

Blood pressure Pressure sensor 
embedded in 

an inflatable air-
bladder cuff

Accuracy, precision, and reliability of pneumatic 
leakage, pressure transducer accuracy, and cuff 

durability

Comparison to an auscultatory standard 
or intra-arterial blood pressure 

measurement with a predefined sample 
size with established validation criteria and 

reporting97

HR by ECG method Electrode ECG: inputting a sine wave with known frequency and 
amplitude and measuring how closely the device 

reproduces this known signal; HR: comparing 
the performance of a new HR algorithm on ECG 

databases with known and validated feature labels 
as specified in the relevant international standards

Comparison of HR to a previously 
analytically validated heart rate monitor

SpO2 (measuring 
oxygenated and 
deoxygenated 
hemoglobin)

Light source and 
detector

Inputting a known optical signal and measuring how 
closely the device reproduces this signal

Comparison of pulse oximeter values (SpO2) 
against arterial blood samples (SaO2).

Body temperature: Thermistor Comparison to a probe under defined range of 
temperature

Comparison of a number of sequential 
measurements under defined conditions 
to a temperature measured in a specific 

location98

BioMeTs, biometric monitoring technologies; ECG, echocardiogram; HR, heart rate.
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an individual,63 even though that may not be the intent of 
the investigator. For example, if an investigator is interested 
in using a smartphone application to generate a BioMeT of 
interest, they must be aware for the potential of an appli-
cation to access geolocation data. In the European Union, 
the General Data Protection Regulation (GDPR) has set the 
stage for improved transparency, privacy protection, and 
portability of personal (health) data. In the United States, 
the more narrowly scoped Health Insurance Portability and 
Accountability Act (HIPAA) defines similar responsibilities 
when handling personal health information. Providers of 
BioMeTs have a responsibility to inform their users of the 
potential risks and the steps taken to mitigate those risks. 
We will not attempt to draw extensive parallels with the field 
of laboratory biomarkers as BioMeTs and digitally mea-
sured biomarkers have unique and much more extensive 
requirements that warrant a discussion of their own.

CASE STUDIES

Below, we consider examples of BioMeTs used or intended 
to be used in drug development across three areas: (1) 
next-generation sequencing (NGS) based on in vitro diag-
nostics (IVD), (2) BioMeTs used to support clinical trials and 
labeling claims, and (3) hybrid solutions, combining labora-
tory and BioMeT features. This will highlight the challenges 
of qualifying these BioMeTs for clinical research while com-
paring and contrasting them with conventional laboratory 
biomarkers.

NGS-based IVD
NGS-based IVD tests provide an interesting case of how 
definitions, prior experience with genetic tests, and ex-
amples of test validation provided sufficient information 
to develop laboratory biomarker tests using a novel tech-
nology platform. This is because these tests use a novel, 
unprecedented technology platform while leveraging exist-
ing framework and definitions.64 IVDs are laboratory tests 
performed on samples, such as blood or tissue that have 
been taken from the human body. To be marketed legally 
in the United States, they need to go through a clearance 
or approval process at the FDA. Many IVDs are used in 
clinical trials, often as companion diagnostics or their pro-
totypes, to determine clinical trial eligibility criteria or to 
determine who should get a treatment.65 The NGS-based 
tests were radically different from other genomic-based 
tests—they provided an opportunity to interrogate multiple 
genetic changes from very small amounts of DNA material 
derived from tumor samples in a timeframe compatible with 
clinical trial timelines. In 2017, after the approval of three 
different tumor profiling NGS-based IVD devices, the FDA 
published a document highlighting the approach taken for 
the regulation of these devices and the analytical and clini-
cal evidence used to support claims based on NGS-based 
biomarkers. Yet, this work took several years, whereas prior 
to these approvals, a comprehensive validation study was 
performed to provide an example of assay performance 
characteristics and acceptance criteria.66 Platform valida-
tion performance characteristics were established using 
DNA derived from a wide range of tissue types, including 

tissue types associated with CDx indications. One of the 
approved NGS tests is FoundationOneCDx (F1CDx), de-
signed to detect genetic mutations in 324 genes and 2 
genomic signatures in tumor tissue.

The challenges and risks included potential misman-
agement of patients resulting from false results of the test. 
Patients with false-positive results may undergo treatment 
with one of the therapies in the intended use statement 
without clinical benefit and may experience adverse reac-
tions associated with the therapy; conversely, patients with 
false-negative results may not be considered for treatment 
with the indicated therapy. The probable benefits of F1CDx 
were based on data collected in clinical trials to support the 
FDA premarket approval of the assay and the clinical benefit 
of the assay was demonstrated in a retrospective analysis 
of efficacy and safety data obtained from a randomized, 
double-blind, placebo-controlled study. The FDA has spe-
cific guidance on evaluating test performance and analytical 
test validation, including measuring the accuracy, precision, 
limit of detection, and specificity.67 The prerequisites for this 
framework were: the information in the public domain about 
test analytical validation, which included validation param-
eters and assay performance, as well as demonstrated 
clinical validity based on the results from several clinical 
studies. Using a similar regulatory approach, in 2017, the 
FDA approved a cancer treatment based on such a com-
mon biomarker rather than the location in the body where 
the tumor originated.68

BioMeTs used to support clinical trials and labeling 
claims
Remote assessment of sleep for drug development trials. 
Actigraphy has been used to estimate sleep parameters 
in the research setting for decades69,70 establishing sleep 
parameters in both healthy populations and specific disease 
conditions71–74 in natural settings for extended periods of 
time. This approach is less expensive and more accessible 
than in-laboratory polysomnography, and is also better 
suited to monitoring night-to-night variability of sleep over 
long periods. Wrist-worn actigraphy devices have been 
tested extensively for usability and have favorable operational 
characteristics, such as a long battery life, large memory, 
and extremely low maintenance, allowing noninvasive 
use over long time periods. Actigraphy device-based end 
points have been used successfully to support successful 
regulatory submissions; for example, Bayer Healthcare used 
actigraphy methods for primary and secondary end points to 
expand the indications for Aleve PM. The sponsor performed 
a multicenter, double-blind, randomized controlled trial 
in 712 participants with an advanced circadian phase 
with postoperative pain. Comparisons of different doses 
demonstrated statistically significant differences in sleep 
onset latency of up to 16 minutes, and in wake after sleep 
onset of up to 70 minutes.75

Sleep measurements via actigraphy provides one of the 
best examples of BioMeT analytical validation. Multiple 
studies have been conducted in different sleep disor-
ders comparing the output from actigraphy devices to 
polysomnography metrics, driving wide adoption of actig-
raphy-based sleep parameters, characterizing them, and 
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highlighting data limitations. One example76 previously 
quantified a range of accelerometer-based outcomes, 
such as non-wear time and z-angle (defined by authors 
as the dorsal-ventral direction when the wrist is in the an-
atomic position) across 5-second epochs to estimate the 
sleep period time window and sleep episodes. The work 
was subsequently used to examine genomewide associ-
ations from > 85,000 UK Biobank participants.77 Ongoing 
pragmatic challenges include difficulties differentiating 
naps from daytime sedentary periods, and sleep from mo-
tionless wakefulness common in insomnia.70

Stride velocity 95th centile in Duchenne Muscular 
Dystrophy. One of the recently published examples of 
successfully validated BioMeTs is the stride velocity 95th 
centile as a secondary end point in Duchenne Muscular 
Dystrophy (DMD),78 providing a clear example of the 
roadmap to qualify a motion-based measure derived from 
a BioMeT as a clinical end point. The COU is a validated 
wearable device for continuous monitoring of ambulation 
in patients with DMD 5 years of age and above. This is the 
first BioMeT, to our knowledge, approved for use in clinical 
trials and drug development with substantial information 
available in the public domain. Those proposing the 
BioMeT and stride velocity 95th centile (i.e., the applicant) 
asked for a qualification to support a primary end point 
as a digital clinical outcome assessment measure and 
not as a “patient reported outcome,” citing deficiencies 
currently used in clinical scales in DMD, such as the 
6-minute walk test, North Star Ambulatory Assessment, 
and four-stair climb. The applicant provided data from 
a comprehensive set of experiments, which included 
biological plausibility, face validity, content validity, 
accuracy, reliability, concurrent validity, sensitivity to 
change, and known group discrimination. Nevertheless, 
only a secondary end point qualification was granted, as 
regulators cited the additional need for “data on quality 
of walking, fall, sway, real-world stairs, time to stand, and 
correlation with patient well-being” and longer follow-up 
studies. The roadmap to this qualification was pioneering 
and highlighted a number of the potential pitfalls, namely 
the lack of a framework to design experiments for 
qualification for this specific application, clearly defined 
performance parameters, and acceptance criteria to 
interpret the data needed to obtain a qualification for use 
in drug development.

Hybrid solutions, combining laboratory and BioMeT 
features
Continuous glucose monitors. CGM provides an 
interesting example of a hybrid between conventional 
laboratory biomarkers and BioMeTs. Blood glucose (BG) 
concentration is a well-established biomarker of disease 
activity for type 1 and type 2 diabetes mellitus. It is a 
useful pharmacodynamic biomarker to track glucose 
concentration over the course of treatment, and is also 
a safety biomarker for the purposes of drug development 
in early-stage clinical trials.79 For late-stage drug 
development, including pivotal trials, glycated hemoglobin 
is an established surrogate end point that reflects mean 

glucose levels of the previous 2–3 months.80 CGMs were 
developed as minimally invasive or implantable devices 
to enable longitudinal monitoring in the interstitial fluid 
to overcome the shortcomings of earlier generation 
blood glucose monitors that required up to four finger-
stick measurements throughout the day, an approach 
that often missed hyperglycemic and hypoglycemic 
events,81 especially during sleep. CGMs have features 
of both laboratory biomarker assays and BioMeTs. The 
laboratory biomarker features include calibration vs. a 
well-established gold standard, BG, reference ranges, 
and reference interval. A number of CGM instruments, 
designated as medical devices, are used in care 
management.82 The most common principle is the 
measurement of interstitial fluid via the glucose-oxidase 
electrochemical reaction83 with interstitial fluid harvesting 
every 10  seconds and an average glucose value is 
recorded every 1–5 minutes 24 hours a day.84

Although several BG sensing mechanisms have been 
utilized, analytic validation of the data obtained from the 
sensors includes quantification of accuracy using primar-
ily the mean absolute relative difference between CGM 
sensor output and the reference standard highly accu-
rate laboratory instrument, collected in a hospital setting. 
Notably, accuracy of commercial grade CGMs show a 
mean absolute relative difference of between 5% and 10% 
on BG levels (based on an ideal BG range of 70–140 mg/
dL).83 Analytical validation has been obtained on remote 
monitoring of BG levels, BG level variability, minimum and 
maximum glycemic values, and number of severe hypogly-
cemic episodes.85 BioMeT features include the continuous 
nature of the data, highly complex usability testing, and 
the extensive user training required prior to using a CGM 
device. The challenges are the need of clearly defined end 
points to be used for drug development86 and the need 
of analytical approaches to deal with continuous data,87 
including meta-data for improved data interpretation (e.g., 
the influence of exercise or diet).88

CONCLUSIONS AND RECOMMENDATIONS

User-friendly, affordable, and scalable BioMeTs are im-
proving our ability to directly impact disease management, 
especially for chronic conditions, and define a more per-
sonalized, inclusive, and preventive modern medicine. 
Never before have healthcare professionals had access to 
such high resolution, objective, and, in certain cases, habit-
ual-based data. Yet, proliferation of many BioMeTs is also 
driven by the ease in which they have entered the com-
mercial market. This has caused mistrust and skepticism, 
as quite often data from BioMeTs have been reported as 
inaccurate or easily manipulated.89–91 Thus, their obvious 
medical advantages need to outweigh the technical short-
comings by improving how they are used and regulated. In 
contrast to IVDs, there is no uniform requirement for ana-
lytical validation for all BioMeTs prior to the release to the 
market in the United States. Moreover, no device is cleared 
for the purpose of use in a clinical trial.92,93 A more robust 
regulatory framework is needed and biomarker qualifica-
tion evidentiary guidance from the FDA is a good first step. 
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In the European Union, various initiatives are underway 
on national levels to certify BioMeTs so they can be safely 
used in clinical practice.94 These quality labels will become 
increasingly important to generate trust. Here, we draw 
parallels to the development of laboratory biomarkers and 
how they could and should inform the current challenges 
facing BioMeTs and their digitally measured biomarkers.

The development of digitally measured biomarkers is 
a seemingly straightforward process once the hardware 
is created. Yet, steps required for complete and thorough 
verification, analytical validation, and clinical validation7 
(Figure 2) is long and complex and should be informed by 
an agreed set of standards for the type of BioMeT and its 
context of use, ensuring its fit-for-purpose. Although com-
plete transparency is questionable in the commercial sector 
due to intellectual property concerns, some transparency 
should be evidenced to ensure minimal black-box devel-
opment, and, therefore, confidence and openness in how 
raw and processed data are acquired. Therefore, we make 
a number of recommendations for future considerations 
within the BioMeT and digitally measured biomarker field:

1. The existing biomarker qualification framework should 
be conceptually adopted and extended to cover 
digitally measured biomarkers, including appropriate 
descriptions as to what digitally measured biomarker 
tests entail, common vocabulary and standardized 
approaches to technology validation according to 
a specific sensor type, and the physiological or 
behavioral measure of interest.

2. Leverage experience from laboratory biomarkers to 
enable appropriate comparison with conventional 
standards to understand data behavior and limita-
tions. We discussed that the performance criteria for 
laboratory biomarker assays cannot be translated di-
rectly to BioMeT-derived physiological and behavioral 
measures. However, as more digitally measured bio-
markers are validated according to the V3 framework, 
we will be able to draw lessons to harmonize their 
performance criteria across a wide variety of BioMeT 
signal modalities.

3. A major difference to laboratory biomarkers is that a 
BioMeT used to generate a specific digitally measured 
biomarker needs to interface either directly or indirectly 
with the patient. Therefore, engaging patients and 
patient advocacy groups as early as possible in the 
development process is of the utmost importance to 
ensure the technology will fit into the patient’s life with 
minimal disruption and will not negatively impact out-
comes. The same holds true for regulatory authorities 
and health care providers who should be engaged as 
early as possible to provide input in the design process.

4. The literacy needs for intended users need to be con-
sidered carefully. Health care professionals should be 
equipped with basic tools to understand the language 
of digitally measured biomarker development, and to 
evaluate proposed digitally measured biomarkers for 
suitability in the clinic.

5. Transparently disclose, with sufficient level of de-
tail, how raw data are acquired, processed, and 

digital results are calculated to determine if a BioMeT 
is fit-for-purpose.

6. Share insights derived from experiments that include a 
BioMeT in the public domain to move the field forward 
as a whole.

7. Develop novel but standardized statistical approaches 
and open ML tools to analyze and interpret large 
amounts of data generated by BioMeTs.
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