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ABSTRACT The Monod equation has been widely applied as the general rate law
of microbial growth, but its applications are not always successful. By drawing on
the frameworks of kinetic and stoichiometric metabolic models and metabolic con-
trol analysis, the modeling reported here simulated the growth kinetics of a metha-
nogenic microorganism and illustrated that different enzymes and metabolites con-
trol growth rate to various extents and that their controls peak at either very low,
intermediate, or very high substrate concentrations. In comparison, with a single
term and two parameters, the Monod equation only approximately accounts for the
controls of rate-determining enzymes and metabolites at very high and very low
substrate concentrations, but neglects the enzymes and metabolites whose controls
are most notable at intermediate concentrations. These findings support a limited
link between the Monod equation and methanogen growth, and unify the compet-
ing views regarding enzyme roles in shaping growth kinetics. The results also pre-
clude a mechanistic derivation of the Monod equation from methanogen metabolic
networks and highlight a fundamental challenge in microbiology: single-term expres-
sions may not be sufficient for accurate prediction of microbial growth.

IMPORTANCE The Monod equation has been widely applied to predict the rate of mi-
crobial growth, but its application is not always successful. Using a novel metabolic
modeling approach, we simulated the growth of a methanogen and uncovered a
limited mechanistic link between the Monod equation and the methanogen’s meta-
bolic network. Specifically, the equation provides an approximation to the controls
by rate-determining metabolites and enzymes at very low and very high substrate
concentrations, but it is missing the remaining enzymes and metabolites whose con-
trols are most notable at intermediate concentrations. These results support the
Monod equation as a useful approximation of growth rates and highlight a funda-
mental challenge in microbial kinetics: single-term rate expressions may not be suffi-
cient for accurate prediction of microbial growth.

KEYWORDS Monod equation, half-saturation constant, maximum growth rate,
metabolic modeling, methanogenesis, microbial kinetics, specific affinity

In 1942, the French scientist Jacques Monod introduced a single mathematical
expression,

m ¼ mmax
C

C 1 KM
(1)

and two parameters, maximum growth rate (mmax) and half-saturation constant (KM), to
describe his discovery that specific rate (m) of microbial growth, the relative rate of bio-
mass increase (s21), responds hyperbolically to the concentration (C) of limiting sub-
strate (1, 2). This equation, named after him, is analogous to the Michaelis-Menten
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equation for enzymes, but it describes growth kinetics emerging from hundreds to
thousands of enzymes. It enables the quantitative prediction of microbial population
dynamics and has become a standard rate law for the analysis and modeling of micro-
bial processes across disciplines, and a vital tool for addressing current environmental
challenges, from biofuel production to contaminant remediation and global carbon cy-
cling (3–5).

In response to the fundamental importance and wide application of the Monod
equation, considerable attention has been directed towards deriving the rate law (6,
7). Some derivations have followed a reductionist approach, assuming a single rate-
determining or rate-limiting enzyme (8, 9), focusing on specific cellular process such as
substrate uptake and protein synthesis (7, 10), or reducing entire metabolism to a two-
step or multistep linear process (11, 12). Others have built on analogs from familiar
physics, including resistors in series (13), transition state theory (14), statistical quan-
tum mechanics (15), and thermodynamics (16). These efforts simplified microbial me-
tabolism to different extents and, as a result, masked the mechanistic link between the
Monod equation and the microbial metabolic network.

A related point of discussion is that the Monod equation may represent an oversimpli-
fication of microbial growth. As early as the 1950s, experimentalists have reported that
the equation did not always accurately reproduce the hyperbolic growth of laboratory
cultures (17–19). Likewise, application to natural environments resulted in predictions
which deviated from field observations by orders of magnitude (20). These observations
challenged the application of the rate law and triggered an extensive search for alterna-
tive rate expressions, a topic still receiving considerable attention today (21, 22).

The discrepancy between model and observations also gave rise to the contention
that the Monod equation might not reflect the metabolic complexity associated with
microbial growth (3, 21). Similar to rate laws for abiotic chemical reactions (23), the
Monod equation and other commonly used microbial rate laws employ single mathe-
matical expressions with constant parameters. In contrast, hundreds to thousands of
enzymes from the pathways of energy conservation, amino acid synthesis, signal trans-
duction, and others work in concert to establish a metabolic reaction network that
reproduces biomass. However, many physical laws, such as Newton’s three laws of
motion and the ideal gas law, appear relatively simple, and simplicity alone is not suffi-
cient to rule out a mechanistic link between the Monod equation and the metabolic
network of microbial growth.

Here, we seek to explore the mechanistic link between the Monod equation and mi-
crobial growth by using metabolic modeling. For this purpose, we assemble a kinetic
metabolic model that features catabolic pathways, including substrate uptake and the
production of ATPs, reducing equivalents, and carbon precursors, and couples production
fluxes to biomass synthesis according to the stoichiometric model of genome-scale meta-
bolic reactions (Fig. 1a). Ideally, we should simulate growth from enzyme kinetics, an
approach that would require the kinetic information of every enzyme involved in cell
reproduction. Our kinetic/stoichiometric-hybrid approach represents a compromise
between the paucity of kinetic data for biosynthesis enzymes and the desire to simulate
essential metabolic features that shape growth phenotypes. We analyze the model using
metabolic control analysis (MCA), a sensitivity analysis framework for evaluating the
extent to which emergent properties of a metabolic network as a whole are affected by
small changes in the properties of its components (24, 25). This approach allows us to
untangle the complexity of the control of growth rate by enzymes and metabolites, and
to uncover emergent network properties that bear out the hyperbolic growth phenotype
and the physical meanings of microbial kinetic parameters.

We simulate microbial growth using M. barkeri as a model system. Our preference
for M. barkeri stems from extensive laboratory studies of its biochemistry, genetics, me-
tabolism, and physiology (26, 27), and their results serve as baselines for constructing
and validating our modeling approach. Moreover, methanogenic growth produces
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methane, a potent greenhouse gas, and hence is of environmental significance. We
focus on methylotrophic methanogenesis,

4
3
methanol ¼ 2

3
H2O1 1

3
CO2 1 CH4 (2)

a process that has recently been recognized as one of the dominant methanogenesis
pathways in marine sediments (28, 29). Our key results include (i) a hybrid computa-
tional framework that predicts methanogen growth rate on the basis of the stoichi-
ometry of genome-scale metabolic reactions and the kinetics of methanogenesis
enzymes, (ii) a new interpretation of the hyperbolic pattern of microbial growth, (iii)
the limited link between the Monod equation and methanogen metabolic network
via rate-determining enzymes and metabolites, and (iv) the amendment of the
Monod equation with a Gaussian error function that improves the prediction of
growth rates.

FIG 1 (a) A kinetic metabolic model of M. barkeri that focuses on the methanogenesis pathway. Methanol diffuses into the cytoplasm and is processed to
synthesize ATPs, reduced cofactors, and acetyl-coenzyme A, which are then consumed by pseudo-reactions of maintenance and biomass synthesis. Dashed
and solid arrows indicate diffusion and biochemical reactions, respectively; circles represent enzymes. (b) Proteome fractions of enzymes applied in
simulating growth. Green indicates enzyme abundances estimated by optimization, and gray indicates those obtained from in vitro cell-free lysates (see
Supplementary Dataset S1). ACS/CODH, acetyl-CoA synthase/carbon monoxide dehydrogenase; AHA, ATP synthase; ECH, energy-converting ferredoxin-
dependent hydrogenase; FMD, formylmethanofuran dehydrogenase; FPO, F420 dehydrogenase; FRH, F420-reducing hydrogenase; FTR, formylmethanofuran-
tetrahydromethanopterin N-formyltransferase; GERN, sodium/proton antiporter; HDR, heterodisulfide reductase; MCH, methenyltetrahydromethanopterin
cyclohydrolase; MCR, methyl-coenzyme M reductase; MER, 5,10-methylenetetrahydromethanopterin reductase; MTA, methanol:coenzyme M methyltransferase;
MTD, methylenetetrahydromethanopterin dehydrogenase; MTR, methyl-H4SPT:coenzyme M methyltransferase; VHT, methanophenazine-dependent hydrogenase;
CoA, coenzyme A; CH3CO-CoA, acetyl-coenzyme A; CoB, coenzyme B; CoM, coenzyme M; CoB-S-S-CoM or hsfd, mixed disulfide of CoB and CoM; F420/F420H2,
oxidized and reduced cofactor F420, respectively; Fdox/Fdred, oxidized and reduced ferredoxin, respectively; Mp/MpH2, oxidized and reduced methanophenazine;
CHO-MF, formyl-methanofuran; H4SPT, tetrahydrosarcinapterin; CHO-H4SPT, formyl-H4SPT; CH:H4SPT, methenyl-H4SPT; CH2=H4SPT, methylene-H4SPT; CH3-H4SPT,
methyl-H4SPT; CH3-CoM, methyl-coenzyme M.
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RESULTS
Model construction. We built a kinetic metabolic model of M. barkeri growing on

methanol and calibrated the model to represent the metabolic state of the organism
acclimating to typical laboratory conditions (37 °C, pH 7, and anoxic mineral medium
with 100 mM methanol as the sole carbon source) (26). This model treats M. barkeri as
a spherical cell of two compartments, the cytoplasm covered by the membrane, and
allows methanol, dissolved CO2, and CH4 to diffuse freely between the extracellular
environment and the cell (Fig. 1). The model uses 9 enzymes in the cytoplasm and 7
enzymes associated with the membrane to represent how the methanogenesis path-
way processes methanol to CO2 and CH4 and, at the same time, produces ATPs, carbon
precursors, and reduced redox cofactors. To relate pathway fluxes to growth rate
according to the Herbert-Pirt equation (30), the model also includes a hypothetical
reaction of ATP hydrolysis to account for biomass maintenance, and a pseudo-reaction
that produces biomass from ATPs, reduced cofactor F420 and ferredoxin, and acetyl
coenzyme A (acetyl-CoA, CH3CO-CoA). Taken together, a total of 21 reactions consume
and produce 35 metabolites.

Compared to the kinetic models developed for M. acetivorans (31), Escherichia coli (32),
and yeast glycolysis (33, 34), ourM. barkerimodel is unique in the following aspects:

First, our model explicitly tracks energy fluxes through the metabolic network. To this
end, the model simulates the buildup and consumption of membrane electrochemical
potential. It also computes reaction velocity by using the generalized reversible Michaelis-
Menten equation to account for reaction thermodynamics (35). These treatments are nec-
essary, considering that metabolic reactions may proceed close to thermodynamic equi-
librium and hence their rates may be limited by thermodynamics (36, 37).

Second, we derived the stoichiometry of the pseudo-biomass reaction from the M. bar-
keri genome-scale metabolic model by performing flux balance analysis (FBA) (38, 39). The
FBA results show that synthesizing 1 g of biomass consumes 0.14 mol ATP, 1.1 � 1022 mol
reduced ferredoxin, 1.1 � 1022 mol reduced F420, and 1.4 � 1022 mol acetyl coenzyme A.
By including the pseudo-biomass reaction, we constrained the kinetic model with the prin-
ciple of mass balance at the genome-scale.

Last, we estimated the concentrations of membrane enzymes by using optimization.
Enzyme concentrations are required to compute the velocities of enzyme reactions, but
the abundances of most of the membrane enzymes have yet to be determined experi-
mentally. As an alternative, we estimated their concentrations by maximizing the growth
rate of M. barkeri under typical laboratory conditions. The results are shown in Fig. 1b,
where the membrane enzymes have mass fractions of the proteome ranging from 0.1%
to 3.3%, with a median value of 1.1%. These features enable us to compute growth rates
from the properties and interactions of metabolic reactions without imposing ad hoc con-
straints on methane production or methanogen growth, and allow us to simulate metha-
nogen metabolism limited by energy sources, a condition prevailing in both bioreactors
and natural environments.

Model validation. To validate the metabolic model, we simulated the metabolism of
M. barkeri growing under typical laboratory conditions and compared the simulation
results at steady-state to the independent experimental observations that had been
excluded from the model construction. For example, the simulated membrane potential
is 135 mV, close to the experimentally determined value of 130 mV (40). The simulated H2

concentration is 0.7 mmolal, also close to the laboratory observation (i.e., 0.2mmolal) (41).
In addition, H2 and cofactor F420 share similar reduction potentials (Fig. 2a), which has
been observed in laboratory experiments (42). Of the electron fluxes from the oxidation
to the reduction of the methyl-group in methanol, 98% are carried by the production and
consumption of H2, and cofactor F420 oxidation accounts for the remaining 2% (Fig. 2a),
consistent with the dominant role of hydrogen cycling detected by laboratory experi-
ments (43, 44).

The model reproduces two patterns documented by metabolomic studies of E.
coli (36, 45). First, free energy is unevenly distributed among metabolic reactions,
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ranging from 231 kJ � mol21 to ,20.01 kJ � mol21 (Fig. 2b). Second, the majority (i.e.,
84%) of metabolites have concentrations greater than their respective Michaelis con-
stants (Fig. 2c).

The model predicts that at 100 mM methanol, M. barkeri laboratory cultures produce
0.21 CO2 and 0.67 CH4 molecules by consuming one molecule of methanol. These values
are smaller than the theoretical stoichiometric coefficients of the methanogenesis reac-
tion (0.25 CO2 and 0.75 CH4, respectively, see equation 2), but close to those determined
by the radioactive tracer technique (e.g., 0.21 CO2 and 0.64 CH4) (46, 47). This can be
accounted for by the methanol consumption in the production of reduced cofactors and
acetyl coenzyme A, the metabolites required by biosynthesis (48).

The model also predicts that the growth rate of M. barkeri laboratory cultures varies
hyperbolically with the external methanol concentration. This prediction was obtained by
simulating the growth of the laboratory cultures at external methanol concentrations
ranging from 1 mM to 100 mM. The results fit to the laboratory observations of
Daußmann et al. (49), with an R2 of 0.96 (Fig. 3a). Three parameters have been applied to
characterize hyperbolic growth relationships: maximum growth rate (mmax), half-saturation
constant (KM), and specific affinity (a). Following the phenomenological interpretation of
these parameters, we approximated mmax with the growth rate at 1 M methanol, deter-
mined KM as the methanol concentration that drives growth at half ofmmax, and estimated
a as the slope of the rate increase at methanol concentrations ,10 mM. The results are
1.0 d21 for mmax, 0.4 mM for KM, and 1.6 6 0.0 � 103 M21 � d21 for a. The values of mmax

and KM are close to those obtained from the laboratory, determined to be 1.0 6 0.5 d21

and 0.4 6 0.2 mM, respectively (see Text S1 in the supplementary material), but the spe-
cific affinity has yet to be analyzed experimentally. Combining these tests, we concluded
that our model reproduces previous laboratory observations across different scales and
can be applied to investigate the kinetics of methanogen growth.

FIG 2 Kinetic metabolic model reproduces independent experimental observations. (a) Electron fluxes from the
oxidation to the reduction of the methyl-group in methanol. Values in parentheses show reduction potentials
(V); arrow widths indicate electron fluxes relative to the flux of the reduction of methyl-coenzyme M to
methane (i.e., 3.6 � 10218 mol � s21). (b) Gibbs free energy (DG) is unevenly distributed among enzyme
reactions. (c) 81% of metabolites have concentrations greater than the respective Michaelis constants (Km).
Solid line shows the 1:1 ratio; shaded area covers up to 10-fold deviations from the 1:1 ratio. See the Fig. 1
legend for definitions of abbreviations.

Links Between the Monod Equation and Methanogen Growth Microbiology Spectrum

March/April 2022 Volume 10 Issue 2 10.1128/spectrum.02259-21 5

https://journals.asm.org/journal/spectrum
https://doi.org/10.1128/spectrum.02259-21


Sensitivity analysis. To uncover the mechanistic link between the Monod equation
and the metabolic network of M. barkeri, we performed sensitivity analysis on the met-
abolic model using MCA. We computed both the scaled flux control coefficients of
enzymes and the scaled flux response coefficients of metabolites (50). These coeffi-
cients measure the fractional change in growth rate by a fractional change in the con-
centration of an enzyme or a metabolite. A coefficient near 0 occurs when a network
component places little influence on growth rate, whereas a value near 1 indicates
that a component is paramount in determining growth rate.

We first analyzed the control of growth rate by methanogenesis enzymes. The role
of enzymes in shaping growth rates has been widely appreciated, but the mechanistic
underpinning of growth-rate control remains controversial. In particular, traditional ki-
netic theories assume that growth rate is determined by a single ‘pacemaker’ or rate-
determining enzyme (7, 9), while both metabolic control theory and metabolic engi-
neering emphasize that chemical fluxes through a microbial metabolic network, and
hence growth rate, are controlled by all network enzymes, and that the flux controls
vary with environmental conditions (24, 25, 51).

The flux control coefficients obtained at various external methanol concentrations
reveal that growth-rate controls by different enzymes shift with methanol concentra-
tions to different extents (Fig. 4). Specifically, the scaled control coefficient of metha-
nol:coenzyme M methyltransferase (MTA) stays close to 1 (i.e.,.0.9) at very low metha-
nol (,0.2 mM), while that of methyl-coenzyme M reductase (MCR) rises above 0.9 at
.15 mM methanol. At intermediate concentrations (0.2 ; 15 mM), the coefficients of
the two enzymes vary in opposite directions, crossing over at a methanol concentra-
tion of ;0.6 mM. In contrast, the coefficients of the other enzymes remain ,0.02 at
very high and low methanol concentrations, and reach their maximum values (,0.06)

FIG 3 (a, b, and c) Specific growth rate (m) varies hyperbolically with external methanol concentration. (d)
Variations with methanol concentration in relative difference between the Monod equation and the simulation
results. Insert in panel b shows rates at relatively low methanol concentrations; data points in green represent
experimental observations of Daußmann et al. (49); lines with “X” data markers are specific growth rates, sums
of net growth rates, and the maintenance rate, obtained from metabolic simulation; blue dash lines represent
the results of the Monod equation (equation 1), evaluated using the maximum growth rate and half-saturation
constants determined phenomenologically from the simulation results; dark dotted lines are calculated using
equation 8 and the simulation-derived maximum growth rate and specific affinity; red solid lines represent the
Monod equation amended with a Gaussian function (equation 11).
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between 0.6 and 1.2 mM methanol. In addition, diffusive methanol uptake and the
release of CO2 and CH4 have control coefficients of,1023.

From the flux control coefficients, we can approximate MCR and MTA as the rate-deter-
mining enzymes at .15 mM and ,0.2 mM methanol, respectively. The dominant control
by MCR is consistent with the long-standing hypothesis that MCR is a rate-controlling
enzyme (52, 53), but this hypothesis may only be valid at very high methanol concentra-
tions, such as those in laboratory bioreactors. The significant control of MTA at ,0.2 mM
methanol resonates with the observation that nutrient permeases and transporters domi-
nate the control of metabolic fluxes at low substrate levels (54–56). Methanol diffuses
freely through the membrane and does not require a permease. Also, diffusive methanol
uptake does not significantly affect growth rate, which is in agreement with the previous
assessment (3). Instead, methanol consumption by MTA in the cytosol determines the
uptake flux of methanol, and hence the growth rate. Finally, these results are consistent
with laboratory reports that microbial growth on other nutrients, such as glucose and ace-
tate, is controlled by different enzymes at high and low substrate concentrations (54, 57).

We then analyzed control by metabolites. Metabolites regulate metabolic fluxes, and
hence growth rate, on different levels, from specific allosteric regulation to global

FIG 4 Scaled flux control coefficients of different enzymes (a to f) and diffusion processes (g to i) vary with ambient methanol concentrations to different
extents. Solid lines are the results of MCA; dashed lines represent the conditions (equations 9 and 10) under which growth rate follows the Monod
equation (equation 1). See the Fig. 1 legend for definitions of abbreviations.
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transcriptional and translational regulation (58, 59). Here, we focused on the control
exerted by the reactants and products of metabolic reactions. In the methanogenesis
pathway, most metabolites contain chemical moieties and, because of the conservation
of chemical moieties, their concentrations are not independent (50). For example, over
short time scales, the total concentrations of coenzyme M and methyl-coenzyme M do
not change. Likewise, the total concentrations of reduced and oxidized ferredoxin remain
constant. Therefore, we calculated the flux response coefficients of the total concentra-
tions of chemical moieties.

Fig. 5 shows how flux response coefficients vary with methanol concentrations. The
coefficient of coenzyme M moiety is 0.9 at 1 mM methanol, and decreases to 0.3 at
100 mM methanol. In comparison, the remaining moieties have relatively low coefficients,
i.e., ,0.2. Their coefficients vary with methanol concentration according to bell-shaped
curves, with values of ,0.02 at ,0.2 mM and .15 mM concentrations, and reach maxi-
mum values at intermediate concentrations. These results suggest that coenzyme M moi-
ety dominates the control of growth rate across different methanol concentrations, while
controls by the other moieties are most significant at intermediate concentrations.
Moreover, around 1 mM, coenzyme M moiety can be approximated as a rate-determining
moiety.

The remarkable control by coenzyme M moiety can be explained by its interactions
with MCR and MTA, the two rate-determining enzymes. MCR and MTA consume
methyl-coenzyme M and coenzyme, respectively, the two metabolites that contain
coenzyme M moiety. Therefore, increases in moiety concentration speed up the reac-
tions of MCR and MTA and hence, the growth rate. The association of rate-determining
metabolites with rate-determining enzymes also appears in other metabolic processes.
For example, while methionine is the rate-determining metabolite of ethylene produc-
tion, methionine-consuming S-adenosylmethionine synthetase is the rate-determining
enzyme of the process (60). As a second example, cysteine is the rate-limiting metabo-
lite for glutathione biosynthesis, and the rate-determining enzyme is glutamate cyste-
ine ligase (61). Combining the MCA results, we conclude that there are two rate-

FIG 5 Scaled flux response coefficients of different chemical moieties vary with ambient methanol concentrations to different extents. Solid lines are the
results of MCA; dashed line is the result obtained numerically from equations 3 to 6. See the Fig. 1 legend for definitions of abbreviations.
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determining steps in the methanogenesis pathway: the metabolic reactions of MCR
and MTA at very high and very low methanol concentrations, respectively.

Kinetic parameters. Having identified the rate-determining enzymes and metabo-
lites, we are curious about how they shape the hyperbolic relationship between
growth rate and methanol concentration. We first look at specific affinity, a, a parame-
ter that defines the initial slope of the hyperbolic relationship. In our case, this parame-
ter is determined by MTA, the enzyme that exerts significant control at very low metha-
nol concentrations, according to the following formula:

a ¼ Wprot � fMTA � YP=CH3OH � kMTA;app

Km;CH3OH
(3)

where Wprot is the total protein weight per cell, YP/CH3OH is the protein yield per methanol
molecule, f MTA is the proteome fraction of MTA, Km,CH3OH is the Michaelis constant, and
kMTA,app is the apparent rate constant, which is the catalytic constant kMTA adjusted by the
concentration of coenzyme M. The constant kMTA,app is determined by the following
formula:

kMTA;app ¼ kMTA � CCoM;0

CCoM;0 1 Km;CoM
(4)

Here, Km,CoM is the Michaelis constant and CCoM,0 is coenzyme M concentration at meth-
anol concentrations near 0. Equation 3 is derived from MCA and the simulation results
at ,0.2 mM methanol, including that (i) MTA dominates the growth control (Fig. 4a),
(ii) growth rate follows first-order kinetics with methanol concentration (Fig. 3a), and
(iii) the reaction velocity of MTA varies almost linearly with methanol concentration

FIG 6 Variations with methanol concentration in the velocity VMTA (a), coenzyme M concentration (CoM) (b), and the Gibbs free
energy change (DG) (c) of the MTA reaction, and in the velocity (VMCR) (d), concentrations of methyl-coenzyme M (MCoM) and
coenzyme B (CoB) (e), and the Gibbs free energy change (f) of the MCR reaction. TcoM and Tcob, concentrations of coenzyme M and
coenzyme B moiety, respectively; shaded areas indicate methanol concentrations where growth rate varied linearly (a to c) or
approached its maximum (d to f, see Fig. 3a). See the Fig. 1 legend for definitions of abbreviations.
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(Fig. 6a) because coenzyme M concentration stays relatively constant at the concentra-
tion difference between coenzyme M and coenzyme B moieties (Fig. 6b), the Gibbs
free energy of the MTA reaction falls below 210 kJ � mol21 and does not limit much
the reaction velocity (Fig. 6c), and the Michaelis constant (Km,CH3OH) of methanol is rela-
tively large, i.e., ;50 mM methanol (62, 63). In equation 3, the product of kMTA,app and
f MTA gives the maximum velocity VMTA,max of the MTA reaction, i.e., VMTA,max = kMTA,

app�f MTA. Therefore, the specific affinity a is a composite parameter that reflects the li-
mitation of methanogen growth placed by MTA and coenzyme M moiety at very low
methanol concentrations, and its value varies linearly with the proteome fraction of
MTA and hyperbolically with the concentration of coenzyme M moiety.

Maximum growth rate,mmax, defines the upper bound of the hyperbolic relationship
and is related to MCR, the enzyme that significantly controls growth rates at very high
methanol concentrations, as shown by the following formula:

mmax ¼ Wprot � fMCR � YP=CH4 � kMCR;app (5)

where YP/CH4 is the protein yield per methane molecule (g � mol21), f MCR is the pro-
teome fraction of MCR, and kMCR,app is the apparent catalytic constant (mol � g21 � s21),
the catalytic constant kMCR adjusted with the concentrations of methyl-coenzyme M
and coenzyme B at.15 mM methanol. This is determined by the following formula:

kMCR;app � kMcr � TCoM

TCoM 1 Km;MCoM
� TCoB

TCoB 1 Km;CoB
(6)

Here, TCoB is the total concentration of coenzyme B moiety. Because coenzyme B moi-
ety has a concentration of 1.7 mM, much larger than the Michaelis constant Km,CoB of
59 mM (64, 65), the equation can be further simplified:

kMCR;app � kMcr � TCoM

TCoM 1 Km;MCoM
(7)

Equation 5 is obtained from the MCA and the simulation results at .15 mM metha-
nol, including (i) growth rate follows a zero-order kinetics with respect to methanol
concentration and is controlled primarily by MCR (Fig. 3a and 4a), and (ii) MCR reaction
velocity reaches its maximum value (Fig. 6d) because methyl-coenzyme M and coen-
zyme B approach their maximum possible concentrations (Fig. 6e) and the free energy
change of MCR reaction stays below 225 kJ � mol21 (Fig. 6f). Equation 5 suggests that
the maximum growth rate, mmax, is a composite parameter which describes the limita-
tion of methanogen growth by MCR and coenzyme M moiety at very high methanol
concentrations, and that its value increases linearly with the proteome fraction of MCR
and hyperbolically with the concentration of coenzyme M moiety.

Lastly, the half-saturation constant, KM, represents the methanol concentration
which supports methanogen growth at half of the maximum rate,mmax. Under this con-
dition, growth rate is controlled by multiple enzymes and chemical moieties (Fig. 4
and 5). Accordingly, the half-saturation constant is determined by the properties of
many different enzymes and chemical moieties. Due to the complexity of the meta-
bolic model, no analytical expression is available to relate KM to the different enzymes
and chemical moieties, and the metabolic significance of KM remains unclear.

Rate laws. The Monod equation bears a limited link to the metabolic network of
methanogen growth. To illustrate this point, we followed Button (66) and Healey (67),
approximated the half-saturation constant (KM) with the ratio of maximum growth rate
(mmax) to specific affinity (a), and recast the Monod equation in an alternative form:

m ¼ mmaxaC
mmax 1aC

(8)

By combining the equation with the physical meanings of the two parameters
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(equations 3 and 5), the flux control coefficients of MCR («MCR) and MTA («MTA) can be
calculated according to the following formulae:

«MCR ¼ aC
aC 1 mmax

(9)

and

«MTA ¼ mmax

aC1mmax
(10)

As shown in Fig. 4a, these two equations capture the overall trends of the control coef-
ficients of MCR and MTA given by the metabolic model, but appreciable deviations
appear at.10 mM methanol.

We calculated the flux response coefficient of coenzyme M moiety by substituting
equations 3, 4, 5, and 6 to 8. Figure 5a shows that the calculated response coefficient
follows the similar trend of the coefficient obtained from the metabolic modeling, but
notable gap appears at ,10 mM methanol. These results (Fig. 4a and 5a) indicate that
there is a mechanistic link between the Monod equation and the metabolic network of
methanogen, but the link is limited. In particular, the Monod equation provides an
approximation of the control by rate-determining metabolites and enzymes at very
low and very high methanol concentrations. However, the equation is missing the
remaining enzymes and chemical moieties whose controls are most notable at inter-
mediate concentrations.

By approximately accounting for the rate-determining metabolite and enzymes, the
alternative Monod equation should provide an approximation of the kinetics of M. bar-
keri growth. Figure 3 compares the growth rates obtained from the Monod equation
and its alternative form to those obtained from the metabolic modeling. By applying
the simulation-derived mmax and a values, the relative difference between the alterna-
tive Monod equation and the simulation results remains ,5% at ,30 mM and .5 mM
methanol, and reaches a maximum value of 23% at 0.4 mM methanol. By applying the
simulation-derived mmax and the KM values, the Monod equation reproduces well the
simulation results at .0.2 mM methanol, with relative differences of ,5%. Below
0.2 mM methanol, the differences become larger at smaller concentrations, reaching a
maximum value of 58% at 1 mM methanol. Consistent with these results, the Monod
equation fits well with observations of laboratory experiments carried out at relatively
large substrate concentrations. For example, Daußmann et al. (49) analyzed the growth
rates of M. barkeri at methanol concentrations above 0.2 mM, and their results fit well
with the Monod equation (R2 = 0.98, Fig. 3c).

The missing link of the Monod equation suggests that the gap between the simula-
tion results and the Monod equation can be merged by accounting for the enzymes
and chemical moieties whose controls are most notable at intermediate concentra-
tions. Considering that the variations in the coefficients of these enzymes and chemical
moieties can be described with an asymmetric Gaussian function (Fig. 4 and 5), we sug-
gest calculating growth rate according to the formula below:

m ¼ mmax � a � C
mmax1a � C 1 moexp 2p

1
b
ln
mmax

aC

� �2
" #

(11)

Here, mo is the maximum difference between the rates obtained from the alternative
Monod equation (equation 8) and from metabolic modeling (or experimental observa-
tions), and b is a dimensionless parameter related to the integral breadth of the error
peak (Fig. 3d). By fitting the error function to the modeling results, we obtain a best-fit
b value of 2.1 6 0.1 at methanol concentration smaller than the ratio of mmax to a, i.e.,
C , mmax/a, and 3.1 6 0.2 at C $ mmax/a. As illustrated in Fig. 3d, the amended Monod
equation matches the simulation results relatively well, with a maximum relative error
of less than 5%.
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From the perspective of MCA, the Monod equation represents a special case of
methanogen growth, where the control coefficients of MCR and MTA are defined by
equations 9 and 10, respectively. Likewise, other rate laws in common use are also spe-
cial cases and their applications to methanogens require different assumptions. For
example, the first-order equation

m ¼ aC (12)

is applicable at , 0.2 mM methanol, where «MTA remains close to 1 and MTA places a
dominant control on growth rate (Fig. 3a and 4a). At .15 mM, where MCR dominates
the control, the rate expression becomes zero order, i.e., m = mmax. Moreover, Liebig’s
law of the minimum, represented by

m ¼ mmax; C $ Co

aC; C , Co

�
(13)

is applicable when MCR and MTA are mutually exclusive in regulating methanogen
growth; that is, the scaled control coefficient of MCR stays at 1 when methanol concen-
tration is above the concentration Co, and the coefficient of MTA remains at 1 when
methanol concentration is less than the concentration Co.

DISCUSSION

We built a kinetic metabolic model for M. barkeri growth and analyzed it using meta-
bolic control analysis. We identified the metabolic reactions of MCR and MTA as the rate-
determining steps at very high and very low methanol concentrations, respectively, and
showed that the Monod equation approximately accounts for control by MCR, MTA, and
coenzyme M moiety, but neglects the remaining enzymes and chemical moieties whose
controls are most notable at intermediate concentrations. These results support the
Monod equation as an approximate rate expression (17–19) and shed new light on micro-
bial kinetics, including how to improve the prediction of growth rates.

In our model, growth rates are computed from first principles based on the stoichi-
ometry, kinetics, and thermodynamics of metabolic reactions, and the resulting hyper-
bolic growth relationship represents an emergent property of the methanogen meta-
bolic network. Previous studies have approached the hyperbolic relationship by
assuming a single rate-determining enzyme, and attributed the relationship to the sat-
uration effect of substrate enzyme interactions as described by the Michaelis-Menten
equation (68, 69). Our results suggest that the hyperbolic relationship arises from the
substrate-dependent shift in rate-determining metabolic reactions. At the physiological
level, this shift manifests as the change in the substrate-growth rate relationship from
first-order at very low methanol concentrations to zero-order at very high concentra-
tions, or as a hyperbolic relationship across the entire concentration range.

The results support a new approach to improving the prediction of growth rates.
Previous studies have addressed the gap between model and observations by amending
the Monod equation with additional parameters and functions, or by using alternative
rate expressions, from the logistic equation to the Droop equation (7, 22). Our results cast
significant doubt on the effectiveness of these efforts, because a single-term mathemati-
cal expression may not be able to properly and fully account for the controls exerted by
different enzymes and metabolites and their unique responses to variations of substrate
concentrations. Instead, we amended the alternative Monod equation with a Gaussian
function to compensate for the incomplete consideration of the growth-rate control. We
estimated the parameters of the Gaussian function from the results of metabolic model-
ing. Alternatively, the parameters can be determined based on the hyperbolic growth
relationship obtained from laboratory experiments. The error function improved the
application of the Monod equation to methanogen growth, and future tests are required
to assess whether the Gaussian function is also applicable to other microbes.

Our results also unify the two views regarding the roles of enzymes in growth rate
control. The MCA results quantified the control by individual enzymes in the M. barkeri
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metabolic model, which supports the distribution of control among all network
enzymes, a key principle of metabolic control theory (24, 25). At very high or very low
substrate concentrations, growth rates are controlled primarily by a single enzyme,
which supports the assumption of a rate-determining enzyme (8, 9). Therefore, while
metabolic control theory emphasizes the general relationship between growth rates
and enzymes across different substrate concentrations, the assumption of a rate-deter-
mining enzyme represents special cases at extreme concentrations.

In summary, the Monod equation approximately accounts for the rate-determining
metabolic reactions of methanogen growth at very low and very high substrate concen-
trations. However, the rate law is missing the enzymes and chemical moieties whose con-
trols are most notable at intermediate concentrations. These results support the Monod
equation as a useful approximation of growth rates and bring about a fundamental chal-
lenge of microbial kinetics: a single-term mathematical expression may not be able to
accurately predict growth rates across different substrate concentrations. To improve
growth rate prediction, we suggest compensating for the incomplete accounting for
growth-rate control by amending the alternative Monod equation with an error function.
We also suggest that by integrating the stoichiometry, kinetics, and thermodynamics of
metabolic reactions, metabolic modeling can be applied as a numerical tool to delineate
the relationship between microbial rates and substrate concentrations and other environ-
mental conditions arising from underlying metabolic mechanisms, moving microbial
kinetics beyond the Monod equation and other empirical models.

MATERIALS ANDMETHODS
Kinetic model. The kinetic model defines the metabolic state of M. barkeri using metabolite concen-

trations and represents methanogen growth as an initial value problem of ordinary differential equa-
tions (ODEs). Each ODE describes the rate at which a metabolite concentration changes over time (t),
and is constructed according to the principle of mass balance. Specifically, the ODE of metabolite j is

dCj

dt
¼ 1

V
� Jj 1

X
i

cj;ivi
� �

(14)

where Cj is the concentration (mol � L21) of the metabolite, Jj is the diffusive flux (mol � s21) of methanol,
CO2, or CH4, �i is the reaction velocity of enzyme i (mol � s21), cj,i is the stoichiometric coefficient of metabolite
j in the reaction (negative for metabolite consumption), V is the volume of the compartment, which is either
the cytoplasm volume (Vcyto) or the membrane volume (Vmem, L). In addition, for coenzyme M, ferredoxin,
and other chemical moieties, their concentrations are subject to the law of moiety conservation, as given in

CM ¼
X
i

CM;i (15)

where CM and CM,i are the concentrations of total moiety M and its form, i. A special metabolite is the
charges, or protons and sodium cations, translocated across the membrane, which contribute to the
membrane potential Dc ,

dDc
dt

¼ F
Cm

�
X
i

cC;i � �i (16)

Here, F is the Faraday constant (96,485 C � mol21), Cm is the membrane capacitance (F, or C � V21), and
cC,i is the stoichiometric coefficient of protons or sodium cations translocated out of the cytoplasm in
the metabolic reaction of enzyme i.

According to Fiksen et al. (70), diffusive flux Jj (mol � s21) into a cell can be calculated by the follow-
ing formula:

Jj ¼ 4pDjr Cj;env 2 Cj;cytoð Þ (17)

where Dj is the diffusion coefficient (m2 � s21), r is cell radius and its value is 1 mm (26, 71), and Cj,env and
Cj,cyto are the concentrations in the environment and the cytoplasm, respectively.

We applied a generalized reversible multiplicative Michaelis-Menten equation to calculate reaction
velocity �i (mol � s21) (35, 37),

�i ¼ Wprot � ki � f i �
Y
S

CS=Km;S

11CS=Km;S1CP=Km;P
� 12 exp

DGi

x iRT

� �� �
(18)

where ki is the catalytic constant of enzyme i (mol � g21 � s21), f i is the mass fraction of enzyme i in the
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proteome, CS and CP are the concentrations of substrate and product, respectively, Km,S and Km,P are the
respective Michaelis constants, DGi is the Gibbs free energy change of the reaction (J � mol21), x i is the
stoichiometric number of electrons transferred or charges translocated per reaction, R is the gas con-
stant (8.3145 J � mol21 � K21), and T is the temperature in Kelvin. The free energy change is calculated
according to the formula

DGi ¼ RTln
Qi

Ki

� �
1 cC;iFDc (19)

where Qi is the quotient and Ki is the equilibrium constant of the reaction.
We fixed the ATP flux of the maintenance metabolism at 109 mmol � g21

dw � hr21 (72), and calculated
the fluxes through the pseudo-biomass reaction, and hence the specific growth rate, from the difference
between the ATP production flux through ATP synthase and the consumption flux of the maintenance.
The results gave a net specific growth rate (30, 73). We also fixed the concentrations of ATP, ADP, and
inorganic phosphate in the cytoplasm at 10, 1, and 10 mM (74, 75), assigned the sizes of chemical moiety
pools according to the results of previous laboratory analyses, and set dissolved CO2 in the laboratory
growth media at 20 mM and CH4 at 0.1 atm. Further details of the model construction are available in
Text S1 in the supplemental material.

Membrane enzyme concentrations.We take the proteome fractions f M,i of membrane enzymes as
decision variables and maximize specific growth ratem according to the formula

maxm fM;i
� �

(20)

This optimization is subject to the ODEs of the kinetic growth model (equations 14 and 16; see Text S1),
and hence is a dynamic optimization problem. The optimization is further constrained by the total pro-
teome fraction (f M) of the membrane enzymes, as given by

X
i

fM;i ¼ fM (21)

According to laboratory observations (76, 77), we set the value of f M at 10%.
Flux balance analysis. We estimated the stoichiometric coefficients of the pseudo-biomass reac-

tion by assuming that M. barkeri optimizes flux distribution through its metabolic network, including
the metabolite fluxes from the methanogenesis pathway to biomass synthesis, in order to maximize
growth rate. Accordingly, we analyzed the updated iMG746 genome-scale metabolic model of M. bar-
keri using FBA (39, 72). FBA predicted steady-state flux distribution through metabolic networks from
the objective of maximizing growth rates, under the stoichiometric constraints of metabolic reactions
and within the permissible ranges of individual fluxes. We drove FBA using methanol uptake flux as
input and calculated the stoichiometry of the pseudo-biomass reaction from FBA output, in particular,
the specific growth rate and fluxes of ATPs, reduced cofactor F420 and ferredoxin, and acetyl coen-
zyme A out of the methanogenesis subsystem. We also calculated protein yield, YP/CH3OH and YP/CH4
(equations 3 and 5), from the growth rate and the exchange fluxes of methanol and methane.

Model implementation and analysis. We implemented and evaluated the kinetic model using the
software COPASI (build 217) (78). We performed FBA using the COBRA Toolbox (version 3.0) (79). We fol-
lowed the method of control vector parametrization and solved the dynamic optimization problem by
splitting it into an outer optimization problem and an inner initial value problem (80). The outer optimi-
zation problem searches for optimal enzyme levels and is solved with the Nelder-Mead method, a sim-
plex-based direct-search algorithm. The maximum iteration number, tolerance, and relative size of initial
simplex were set to 104, 10210, and 10, respectively. The inner initial value problem simulated the dy-
namics of methanogen growth and was integrated forward for 106 s, well beyond the 103 s required to
reach steady-state. Absolute and relative error tolerance were 1028 and 1026, respectively. Because our
interest was the growth of M. barkeri at constant concentrations of methanol, CO2, and CH4 in the envi-
ronment, we focused on steady-state solutions.

According to MCA theory (24, 25), the control exerted by network component i on growth rate can
be quantified with the scaled coefficient « i, calculated by

« i ¼ f i

m
� @m
@f i

(22)

where the fractional change in growth rate (m) is divided by a fractional change in the cellular level of
the component. For enzymes, f i is the mass fraction in the proteome and coefficient « i is the scaled
flux control coefficient; for metabolites, f i is the concentration and coefficient « i is the scaled flux
response coefficient. We numerically calculated the coefficients by changing f i by 1%. Coefficients for
diffusion reactions were computed by changing diffusion coefficients by 1%.

The kinetic model in SBML and COPASI formats and the MATLAB program for running FBA are avail-
able from GitHub (https://github.com/geomicrobiology/Methanosarcina). The model components,
including the ODEs and initial concentrations of metabolites, the kinetic expressions of metabolic reac-
tions, and the respective thermodynamic and kinetic parameters, are available in the supplementary ma-
terial (Data Set S1).
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