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Introduction
Fc gamma receptors (FcγRs) are transmembrane proteins that 
bind to the Fc tail of IgG antibodies. They are required for cel-
lular effector functions of antibodies, including direct neutral-
ization of pathogens, recruitment of the complement system 
to directly lyse pathogens or infected cells, and cellular effec-
tor functions including phagocytosis and antibody-dependent 
cellular cytotoxicity/phagocytosis (ADCC/ADCP) [1, 2]. As 
many FcRs are mostly expressed on innate immune cells [3], 
they serve as a vital connection between the cellular and hu-
moral parts of the immune system, connecting antigen-specific 
interactions of antibodies to non-specific effector mechanisms 
of FcR-bearing cells.

FcγR activation is tightly regulated to prevent immune 
responses by non-antigen-bound antibodies, or in the absence 
of other ‘danger signals’ (e.g. cytokines). For example, most 
FcγRs recognize IgG with low affinity, but can bind immune 
complexes (ICs), like opsonized pathogens, with high avid-
ity [4]. FcγRI is the only FcγR with a high affinity for IgG. 
Because of its high affinity, FcγRI is constitutively saturated 
with monomeric IgG, even after isolation or extravasation of 
immune cells, but it does not lead to intracellular signaling and 
subsequent effector functions [1]. This led to the dogma that 
this receptor played no role in immune responses, resulting 
in FcγRI to be much less studied than the low affinity FcγRs. 
However, several studies demonstrated that FcγRI does play 
a significant part in inflammation, autoimmunity, and neu-
ropathy, as well in antibody-therapy in tumor models [5–9].

FcγRI saturated with pre-bound IgG is able to effectively 
bind ICs after cytokine stimulation [10]. This process is called 
‘inside-out signaling’, as the ligand binding capacity of the 
receptor is rapidly enhanced after intracellular signaling 
without affecting the receptor expression. This process is also 
described for integrins [11], as well as for FcαRI and FcγRIIa 
[12, 13]. Stimulation with cytokines strongly enhances IC 

binding, resulting in stronger cellular effector functions such 
as ADCC [10, 14]. Moreover, therapeutic antibodies that bind 
to FcγRI can also benefit from cytokine stimulation, leading 
to improved tumor killing [12, 15, 16].

In this review, we will discuss FcγRI interactions with IgG 
and ICs, as well as how to enhance FcγRI cellular effector 
functions via inside-out signaling. Additionally, this review 
will focus on how therapeutic antibodies targeting FcγRI, 
possibly in combination with inside-out signaling, can be 
turned into novel therapeutic strategies to treat human auto-
immune and malignant diseases.

The high affinity IgG receptor FcγRI
The affinities and specificities for the different IgG subclasses 
vary considerably within the FcγR family (e.g. FcγRI, FcγRIIa, 
FcγRIIb, and FcγRIII). Only FcγRI binds with high affinity to 
human IgG, and binds exclusively to IgG1, IgG3, and IgG4, 
not IgG2 [4, 17]. This high affinity binding is cross-species, as 
also rabbit IgG and mouse IgG2a and IgG2c can bind to hu-
man FcγRI with high affinity [18–20]. Likewise, mouse FcγRI 
is also a high affinity receptor for mouse IgG2a, which is a 
functional homologue of human IgG1 [21], as well as for hu-
man and rabbit IgG [19, 22].

FcγRI consists of three extracellular domains, a trans-
membrane part, and an intracellular tail (FcγRI-CY) (Fig. 
1A). Extracellular domains one (EC1) and two (EC2) are 
homologous to those found in other FcγRs, but EC3, which 
bridges EC2 with the transmembrane part of the receptor, is 
unique to FcγRI [23]. The transmembrane part is responsible 
for FcR γ-chain association, and the α-chain of the receptor 
has an intracellular tail [24]. The interaction between IgG 
and FcγRI lies within two binding sites of the EC2 domain 
(Fig. 2A). The binding of the Fc-tail to these two sites occurs 
in an asymmetric manner: to engage the receptor, the Fc-tail 
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must use a different set of residues from each chain of the 
homodimer [17]. Binding to site 1 is governed by the inser-
tion of Leucine235 (Fig. 2B), while binding to site 2 involves a 
relatively flat interaction surface and does not involve a local 
conformational change (Fig. 2C). Leucine235, as well as the 
critical residues 233 and 234, on IgG-Fc has been identified 
to be crucial for binding to FcγRI [17, 25]. These critical 
residues are changed in IgG2, explaining why this antibody 
cannot bind to FcγRI [17].

It was proposed that the high affinity of FcγRI was due to 
the extra EC3 domain [23], which was supported by studies 
that switched the extracellular domains of FcγRI with extra-
cellular domains of low affinity FcγRs [23, 26]. However, the 
crystal structure of FcγRI indicated that EC3 is located dis-
tally from the IgG binding site in EC2 [27]. As a result, EC3 is 
unlikely to come into direct contact with IgG, although it may 
promote high affinity binding by stabilizing the IgG binding 
conformation or extending the receptor into the extracellular 
space [17, 27]. Also, studies on the affinity of recombinant 
FcγRI lacking EC3 show that the effect of EC3 on high affin-
ity binding is relatively minor [23].

Several studies now show that the EC2 domain converts 
the high affinity binding of FcγRI [17, 27]. Because of a dele-
tion of one amino acid, the FG-loop, which is present in one 
of the two binding sites of EC2, is shorter in FcγRI than in 
the other FcγRs. This deletion may reduce steric hindrance for 
IgG. This deletion also revealed a unique hydrophobic pocket 
in EC2 of FcγRI, which perfectly suited the residue Leu235 
of the Fc-tail, explaining the high affinity [17] (Fig. 2B). 
Additionally, the FG-loop within EC2 has been demonstrated 
to interact with glycans on the Fc-tail of IgG, which is unique 
for FcγRI [28].

Binding of monomeric IgG to FcγRI does not lead to in-
tracellular signaling and subsequent FcγRI activation, but it 

does facilitate receptor-mediated endocytosis and recycling 
[23, 29, 30] (Fig. 1B). Monomeric IgG binding to FcγRI 
likely creates a threshold for IC, allowing only large ICs or 
many smaller complexes to displace monomeric IgG. Studies 
with FcγRI knock-out mice, as well as biochemical studies 
investigating IC binding, show that FcγRI does significantly 
bind and respond to ICs of various sizes [5, 20, 31]. FcγRI 
effector responses include bacterial clearance, inflammation, 
anaphylaxis, endocytosis, phagocytosis, antigen presentation, 
release of B-cell stimulating factors, and anti-tumor responses 
[5, 6, 20, 32].

FcγRI expression and signaling
FcγRI is constitutively expressed on most myeloid cells, in-
cluding macrophages, monocytes, and dendritic cells, and 
can be induced by cytokines on neutrophils, mast cells, and 
eosinophils [3]. FcγRI is also inducible on endothelial cells 
[33] and neurons [34]. Besides FcγRI, effector cells express 
other FcγRs that can bind to ICs as well.

FcγRI expression can be upregulated by cytokines. For ex-
ample, FcγRI expression on dendritic cells and monocytes can 
be increased by pro-inflammatory cytokines such as tumor 
necrosis factor alpha (TNF-α) and interferon gamma (IFN-γ) 
[10, 35]. Anti-inflammatory cytokines, like transforming 
growth factor beta (TGF-β), IL-4, and IL-10 can decrease 
FcγRI expression while increasing expression of the inhibi-
tory FcγRIIb. By altering expression levels of FcγRI, the im-
mune response can be regulated, as an increased number of 
receptors can bind more ligand.

FcγRI signals via the immunoreceptor tyrosine-based ac-
tivation motif (ITAM), which is located on the γ-chain (Fig. 
1). The ligand-binding domain of FcγRI can interact with 
ICs, such as antibody-opsonized pathogens or tumor cells 

Fig. 1. Schematic representation of FcγRI and FcγRI functions. (A) Schematic representation of FcγRI with three extracellular domains; EC1, EC2, and 
EC3, the transmembrane part and intracellular tail (FcγRI-CY). The γ-chain and α-chain are responsible for different actions of the receptor. (B) FcγRI 
functions are regulated on multiple levels [1]. Interaction of FcγRI with monomeric IgG leads to rapid internalization and recycling of the receptor-IgG 
complex to the plasma membrane [2]. Crosslinking of FcγRI by ICs induces immunoreceptor tyrosine-based activation motif (ITAM) signaling via FcRγ 
and internalization and degradation of the antigen-receptor complex in the lysosome. The degraded peptides can be presented on MHC class I (MHC I) 
or MHC class II (MHC II), which leads to T cell activation.



Targeting the high affinity receptor FcγRI 3

[20, 31, 36]. After cross-linking the ligand-binding EC2 by 
ICs, the tyrosine residues of the ITAM can be phosphorylated 
by kinases of the SRC family [1]. These phosphotyrosines 
serve as a docking site for SYK kinases, which bind via their 
SH2 domains and are activated upon binding [5]. SYK acti-
vation results in the activation of the RAS-MAPK pathway, 
increased intracellular calcium levels, and eventually activa-
tion of NF-κB transcription factors through induction of mul-
tiple downstream targets [37]. These signals activate immune 
cells, resulting in phagocytosis, oxidative burst, and cytokine 
release [24, 37]. However, cross-linking of the inhibitory 
FcγRIIb causes LYN to phosphorylate the immunoreceptor 
tyrosine-based inhibitory motif (ITIM), which recruits and 
activates the SH2-containing phosphatases SHIP and SHP1 
[38, 39]. Subsequently, the kinases downstream of ITAM 
signaling will be dephosphorylated by these phosphatases. 
This can suppress FcγRI effector functions by balancing the 
activating signaling cascades.

Immunomodulatory effects are mainly regulated via the 
single inhibitory receptor, FcγRIIb. However, recent studies 
have shown that the activating FcγRI and FcγRIIa can also 
produce inhibitory signals [40–43]. FcγRI engagement along 
with phagocytic signaling may facilitate inhibitory functions, 
including secretion of IL-10, reducing pro-inflammatory cyto-
kine production, and reducing T-cell proliferation [44]. Upon 
IC binding to FcγRI, it is possible that IL-10 secretion affects 
the macrophage response, leading to both augmenting FcγRI 

and altering the status of the macrophage and subsequently 
the outcome of the FcγRI engagement. IC-mediated signaling 
by FcγRI can also inhibit IFN-γ signaling events [45]. This 
points to an IC-mediated inhibition of IFN-γ signaling that 
involves the ITAM-containing FcγRI as well as the ITIM-
dependent phosphatase SHP-1, thereby effectively suppressing 
STAT1 phosphorylation. Studies using various FcR-blocking 
antibodies in FcR γ-chain knockout mice and FcγRI−/− mice 
confirmed that the FcγRI mediates these suppressive effects 
[5, 6, 46]. However, more research is needed to better under-
stand the possible inhibitory signals of FcγRI.

Inside-out signaling on FcγRI regulation
Since triggering of FcR leads to strong effector responses and 
potential cytokine storms, these receptors need to be tightly 
regulated. An example of regulation is that only clusters of 
immunoglobulins can activate low affinity receptors. For 
FcγRI this is regulated differently; the receptor function is al-
ways blocked by its ligand IgG, and the receptor can only be 
activated with a proper second signal. FcγRI, like integrins, is 
under ‘ inside-out’ signaling, which means that binding of a 
cytokine to a cytokine receptor can change FcγRI so that it 
can bind and respond to ICs even when saturated with mon-
omeric IgG [10, 12, 14] (Fig. 3.I). TNF-α and IFN-γ, can rap-
idly enhance the IC binding capacity and subsequent effector 

Fig. 2. Schematic representation of Fc-FcγRI interaction. (A) Extracellular domains EC1, EC2, and EC3 are depicted in cyan, purple, and blue, 
respectively. The Fc-tail of the antibody is depicted in grey. CH stands for constant heavy chain, CL for constant light chain, VL for variable light chain, 
and VH for variable heavy chain. Orange dashed boxes indicate binding sites 1 and 2. (B) Detailed depiction of binding site 1 (FcγRI and Fc-chain). The 
surface of EC2 is shown in purple and the surface of EC1 in cyan. The residues of the Fc-chain involved in the interaction of FcγRI are represented with 
lines (grey = Fc-chain, yellow = carbon, red = oxygen, and blue = nitrogen). The blue dashed line represents the hydrophobic pocket where Leu235 
can bind. (C) Detailed depiction of binding site 2. The same color scheme as in (B) is used. Here the interaction surface lies relatively flat. For additional 
details see review by Kiyoshi et al. [17]. 
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functions, without altering FcγRI surface expression levels, 
and affecting affinity for monomeric IgG [10].

Two mechanisms have been proposed by which cytokine 
stimulation enhances the binding capacity of FcγRI: increased 
clustering of the receptor and/or a conformational change of 
FcγRI. First, FcγRI, which is normally found in lipid rafts 
[57], becomes more clustered in the plasma membrane in re-
sponse to cytokine stimulation, increasing its avidity [23, 58]. 
This was demonstrated by super resolution imaging, which 
revealed that cytokines influence the cluster size of FcγRI in 
Ba/F3-FcγRI cells [14]. This process is dependent on an in-
tact actin cytoskeleton, and the involvement of the serine/
threonine phosphatase PP1 (protein phosphatase 1), while 
the phosphorylation of FcγRI-CY itself is unaffected [14]. 
This in contrast to FcγRI crosslinking (outside-in signaling), 
where all four serines in the CY domain of FcγRI need to 
be dephosphorylated upon crosslinking to lead to phagocy-
tosis [59]. Interestingly, okadaic acid, which is a phosphatase 

inhibitor of PP2 at low concentrations and PP1 at higher 
concentrations, prevents the dephosporylation of these 
serines in outside-in signaling, while it does not directly in-
fluence FcγRI phosphorylation in inside-out signaling [14, 
60]. Second, a change in FcγRI conformation may increase its 
binding capacity and affinity for IC. In outside-in signaling, 
dephosphorylation changes the charge of FcγRI-CY, resulting 
in a conformational change. This is accompanied by a con-
formational change in the transmembrane domain and, ul-
timately, in one or more extracellular domains [61]. FcγRI 
crystallization revealed that when IgG binds, the EC1 and 
EC2 domains rotate 19 degrees with respect to the EC3 do-
main [10]. This rotation could lead to a conformation change 
of the receptor that alters the affinity of FcγRI for ICs. If the 
rotation tilts the EC2 domain, there may be more space for an 
IC to bind to multiple FcγRI molecules. Future research may 
reveal if increased FcγRI clustering after cytokine stimulation 
correlates with a conformational change of the receptor.

Fig. 3. Role of FcγRI in autoimmune diseases and possible clinical applications for targeting FcγRI. Numbers depict autoimmune diseases and Roman 
numerals the possible intervention techniques [1]. In SLE, IgG autoantibodies are produced against self-antigens, which opsonize late apoptotic cells. 
Blocking FcγRI (not depicted) increases phagocytosis of apoptotic cells [2, 47]. ICs, formed by autoantibodies and self-antigens, reside in the kidney, 
causing the infiltration of FcγRI-expressing monocytes and macrophages, which release pro-inflammatory cytokines and chemokines, leading to 
inflammation and subsequently LN [3]. In ITP, IgG autoantibody-coated platelets get cleared by FcγRI-expressing macrophages and blocking FcγRI 
reduced clearance by 50% [20] (not depicted) [4]. In atopic dermatitis, FcγRI expression is increased on M1 macrophages, making them readily bind 
to the increased total and antigen-specific serum IgG4 [48]. FcγRI-targeted immunotoxins alter the polarization towards M2 phenotype [5, 49]. In RA, 
IgG autoantibody ICs can bind macrophages and neutrophils causing the release of pro-inflammatory cytokines which increase inflammation and RA 
morbidity. The IgG-ICs also translocate to the joints, causing further inflammation. They can also directly bind to osteoclasts. Capturing the IgG-ICs with 
recombinant soluble FcγRs (III) reduces cartilage degradation (not depicted) [6, 50, 51]. Activation of FcγRI on DRG neurons caused increased neuron 
excitability and subsequent pain. Blocking the receptor relieved pain in mice [52, 53]. (I) Cytokines cause inside-out signaling, leading to enhanced 
clustering of FcγRI in the membrane. Cytokines also regulate expression of FcγRI by inducing transfer of intracellular FcγRI to the plasma membrane 
as well as de novo expression. (II) bsAbs can be engineered to bind FcγRI-expressing target cells and a tumor-target, thereby inducing tumor-killing 
[54–56]. (III) Recombinant soluble FcγR can ‘capture’ circulating ICs. SLE = systemic lupus erythematous, LN = lupus nephritis, ITP = immune 
thrombocytopenic purpura, RA = rheumatoid arthritis, and bsAbs = bispecific antibodies.
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The implications of FcR inside-out signaling in the treatment 
of patients with therapeutic antibodies is still under investiga-
tion. Activating inside-out signaling could be advantageous to 
increase the clinical efficacy of therapeutic antibodies. However, 
FcRs also play a role in the clearance of target–antibody 
complexes via endocytosis and subsequent degradation in the 
lysosomal compartment [12]. In these cases, it might be benefi-
cial to inhibit FcRs with antagonistic cytokines to preserve suf-
ficient therapeutic doses of the antibodies, ultimately allowing 
for lower antibody administration or maintenance doses [62]. 
Taking advantage of FcR inside-out signaling will ultimately de-
pend on the requirements of the effector cells needed, which 
FcR they express, and the mode(s) of action of the therapeutic 
antibodies [62]. This complexity should be taken into account 
to optimize the therapeutic effectiveness of existing and new 
antibodies.

Clinical applications of FcγRI
Antibody therapy
There is an increasing evidence that FcRs play a significant 
role in the induction and maintenance of pathological inflam-
matory responses induced by ICs, especially autoantibody 
ICs [47, 63]. The balance between ‘activating’ and ‘inhibi-
tory’ roles of FcRs modulates FcR-dependent antibody effec-
tor responses in normal immunity [64]. Deviation towards 
activating functions of FcγRs, as seen in some autoimmune 
diseases, will reduce the threshold for IC-mediated activa-
tion of inflammatory cells, leading to inflammation and tissue 
damage [2, 64]. Murine FcγRI has been implicated in a num-
ber of monoclonal antibody (mAb)-mediated disease models 
[6, 7, 65] and mAb therapy showed the potency of FcγRI in 
eliciting mAb-mediated effector responses [36] (Fig. 3).

Antibodies are of interest in immunotherapy due to their 
high target specificity. Binding of specific antigens is possible 
through the variable region located in the antigen-binding 
fragment (Fab), while the non-variable Fc tail can simulta-
neously bind to FcγRI. The Fab domain of FcγRI can in-
teract with ICs, such as antibody-opsonized pathogens or 
tumor cells, resulting in antigen internalization or block-
ade of signal transduction pathways [20, 31, 36]. Strategies 
for targeting FcγRI, inducing direct Fc blocking, and 
overcoming IC-mediated autoimmune disorders, are all 
part of the advancement of therapeutics for the treatment 
of inflammation [5, 66].

Autoimmune diseases
The pathogenic effects of systemic autoimmune diseases are 
thought to be triggered by the development of autoantibodies 
and subsequent IC deposition in tissues [67]. Autoantibodies 
cause inflammation in antibody-dependent autoimmunity 
syndromes including immune thrombocytopenic purpura 
(ITP), systemic lupus erythematosus (SLE), and arthritis by 
binding to FcγRs [67–70]. In several chronic inflammatory 
diseases increased expression of FcγRI on M1 macrophages 
has been observed. Targeting FcγRI with mAbs that block 
the receptor showed promising results in inducing elimina-
tion of the disease-causing M1 macrophage population, while 
leaving the M2 anti-inflammatory population intact, even 
though both express FcγRI [49].

Atopic dermatitis is an allergic skin disease characterized 
by increased levels of total and antigen-specific serum IgE 
and IgG4 [48]. In both the acute and chronically inflamed 

skin, FcγRI expression levels are increased, which probably 
results from upregulation of the receptors on macrophages 
[48]. In vitro and in vivo studies showed that FcγRI-targeted 
immunotoxins can effectively eliminate murine and human 
M1 macrophages with high specificity [49]. This elimination 
alters the micro-environment, favoring polarization towards 
the M2 phenotype. FcγRI-targeted therapeutics can thus be a 
powerful tool for both identifying M1 macrophages in vivo 
and reversing M1-associated chronic disease (Fig. 3.4).

ITP is an autoimmune disease characterized by low plate-
let counts caused by autoantibody-mediated clearance of 
platelets, which results in easy bruising and increased bleed-
ing. Here, FcγRI-expressing macrophages seem to play an 
essential role in this chronic disease, where they contribute 
to platelet clearance (Fig. 3.3). Using an anti-FcγRI antibody, 
platelet clearance could be reduced by 50% [20]. In mouse 
models, ITP could only be prevented by combining blocking 
antibodies for FcγRI and FcγRIV, the latter being a murine 
specific Fc-receptor. Nonetheless, the use of an anti-FcγRI 
mAb (clone 197) in a chronic ITP patient resulted in clinical 
improvement by preventing FcγRI mediated destruction of 
IgG-coated platelets [71].

SLE is a non-organ specific autoimmune disease in which 
IgG autoantibodies are produced against a wide range of 
self-antigens [68]. One pathogenic factor in SLE is the opso-
nization of late apoptotic cells by autoantibodies, resulting 
in decreased FcγRI-mediated clearance of apoptotic cells by 
phagocytes [47]. IgG autoantibodies may bind to molecules 
on apoptotic cells that are required for recognition and facil-
itation of macrophage uptake, such as phosphatidylserine or 
C1q [72–74]. Intracellular autoantigens may become exposed, 
in altered or unaltered form, at the outer surface of apoptotic 
cells during the apoptotic process [75, 76]. Decreased clear-
ance of apoptotic cells results in prolonged exposure of these 
cell surface-expressed autoantigens to the immune system, 
which may explain the development of autoantibodies against 
these intracellular antigens. In part, this is due to increased 
signaling caused by IgG binding to FcγRs, which may affect 
the ability of monocyte-derived macrophages to internalize 
apoptotic cells [47, 77]. Fc receptor blockade, with the partial 
blocking anti-FcγRI antibody 10.1 (see Limitations section), 
significantly reduced phagocytosis inhibition [47]. This effect 
was amplified when anti-FcγRI antibody was combined with 
anti-FcγRIII blocking antibody (3G8) on macrophages, and 
it abolished the inhibitory effect of SLE autoantibodies [47].

The formation of ICs between autoantibodies and self-
antigens has also been linked to the development of lupus 
nephritis (LN) [68, 78]. In the kidneys, the presence of ICs 
activates monocytes and macrophages by interacting with 
FcγRI and FcγRIII, triggering an inflammatory cascade of 
cytokines and chemokines. Monocytes secrete monocyte 
chemoattractant protein 1 (MCP-1) [79], which recruits 
macrophages but may also promote a further influx of 
monocytes into the kidney. The greater ability of monocytes 
to migrate and secrete MCP-1 is linked to increased FcγRI ex-
pression on the cell surface, especially in LN patients [79], and 
also with markers of impaired renal function. This could lead 
to a vicious cycle of renal inflammation and facilitate the in-
filtration of monocytes to sites of IC deposition in the kidney 
[80], which eventually could result in permanent tissue dam-
age [81]. FcγRI is critical for the development of LN, as mice 
with gamma chain-deficient FcγRI forming and depositing ICs 
were surprisingly protected from severe nephritis [67]. Taken 
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together, these data suggest an important role for FcγRI in the 
pathogenesis of both SLE and LN and blocking FcγRI seems 
to increase the clearance of apoptotic cells, but this warrants 
further research (Fig. 3.1 and 3.2).

The most common form of autoimmune inflammatory ar-
thritis is rheumatoid arthritis (RA), which affects up to 1% of 
the human population [82]. The pathogenesis of RA has been 
linked to IgG-IC/FcγRI signaling [50–52, 66, 83] and FcγRI 
expression levels correlate with disease progression [6]. When 
compared to total serum IgG1, RA-specific autoantibodies 
show differences in Fc-linked galactosylation and fucosylation. 
These IgG1 changes resulted in decreased affinity for FcγRIIIa 
and FcγRIIb, but not for FcγRI, which could increase the a-
vailability of RA-specific autoantibodies to bind and activate 
FcγRI [84]. In collagen-induced arthritis (CIA) and antigen-
induced arthritis (AIA) models, FcγRI-deficient mice showed 
reduced arthritic symptoms [50, 66, 83], and treatment with 
a FcγRI-directed immunotoxin reduced inflammation and 
bone degradation in human FcγRI–transgenic rats with joint 
inflammation [85]. In another AIA model, deletion of the 
FcγRI α-chain was partially protective, but it also impaired 
their ability to clear infection with Bordetella pertussis [6]. 
Additionally, IgG autoantibody ICs can bind to neutrophils, 
macrophages, and monocytes, causing pro-inflammatory cy-
tokine release and aggravating inflammation, contributing to 
RA morbidity. In RA patients, IgG-IC was present in high 
concentrations in the serum and infected joints, making it an 
important pathological characteristic of the disease [50, 86]. 
IgG-autoantibodies can directly bind to pre-osteoclasts and 
induce differentiation, as well as activate mature osteoclasts 
[69]. Interestingly, in AIA and CIA models, capturing IgG-IC 
with recombinant soluble FcγRI reduced cartilage degrada-
tion [50, 51]. Given this, it is of interest to investigate the 
effect of osteoclast specific anti-FcγRI blocking antibodies in 
combination with anti-inflammatory treatment options (Fig. 
3.5).

Besides being a direct target, FcγRI is also widely used as 
early biomarker for disease detection and prediction of dis-
ease outcome for sepsis, HIV, pediatric and adult Crohn’s 
Disease, and tuberculosis [87–92]. The FcγRI expression 
levels were significantly elevated on neutrophils in patients 
[87–90] and macrophages in in vivo models [91]. These data 
suggest an important role for FcγRI and it could be interest-
ing to examine if blocking FcγRI in these settings could im-
prove the disease outcome.

Neuropathy and pain
Chronic pain is a widespread condition that affects 20% 
of adults in Western countries [93, 94]. Some chronic pain 
disorders, such as arthritis, are characterized by persistent pe-
ripheral nociceptive feedback linked to peripheral inflamma-
tion, while others, such as neuropathic pain, are the result of 
irregular nervous system functioning due to injury or disease 
[95].

IgG-IC/FcγRI signaling has been linked to both the path-
ogenesis [50, 66, 83] and disease-associated pain [8, 52, 53] 
in RA. Joint pain is a prominent clinical characteristic of 
RA, which is caused in part by synovitis and joint destruc-
tion [96]. While RA pain is commonly thought to be caused 
by inflammation, it often continues even after inflammation 
has been controlled with available therapies, implying the 
involvement of non-inflammatory mechanisms. FcγRI, but 
not FcγRII or FcγRIII, has been shown to be expressed in 

subsets of nociceptive dorsal root ganglion (DRG) neurons 
in rats and mice [97, 98]. Activation of neuronal FcγRI in rat 
DRG neurons by ICs, raises intracellular calcium levels by 
activating the non-selective cation channel TRPC3 through 
the Syk-PLC-IP3 pathway, thereby increasing neuronal excit-
ability [97, 99]. Hence, IgG-IC accumulation in the inflamed 
joint is sufficient to directly stimulate and sensitize joint 
sensory neurons through neuronal FcγRI, resulting in joint 
pain. Direct FcγRI blockade with neutralizing antibodies and 
FcγRI genetic knockout substantially reduced pain-related 
behaviors in the AIA mouse model [52, 53]. These findings 
suggest that FcγRI can contribute to arthritis pain through a 
non-inflammatory mechanism, making it a promising thera-
peutic target in RA patients with pain refractory to current 
anti-inflammatory treatments (Fig. 3.6).

Tumor targeting with antibodies
Therapeutic mAbs are designed to recognize antigens on tu-
mor cells and mediate anti-tumor effects via various direct 
Fab-mediated and indirect Fc-mediated mechanisms. Direct 
mechanisms include inducing receptor internalization and 
degradation, directly inducing pro-apoptotic signals, and 
blocking the ligand binding site of growth factor receptors 
[100–102]. Indirect effects include IgG-mediated activa-
tion of the classical complement pathway, which results in 
complement-dependent cytotoxicity (CDC), and FcγR en-
gagement, which results in ADCC of tumor cells [103–105]. 
The recruitment of cytotoxic effector cells, such as natural 
killer (NK) cells, monocytes/macrophages, and polymorpho-
nuclear (PMN) cells mediates ADCC. The Fab-arms of mAbs 
can recognize and bind to only one unique epitope, whereas 
bispecific antibodies (bsAbs) can simultaneously bind two dif-
ferent and unique antigens, attributing dual functionalities.

Some therapeutic bsAbs were developed to act as a bridge 
between cytotoxic effector cells expressing FcγRI and 
tumor-target-overexpressing malignant cells [106, 107] (Fig. 
3.II). FcγRI expression is restricted mainly to cytotoxic im-
mune cells such as monocytes, macrophages, and cytokine-
stimulated PMNs. As a result, tumor cells bound with bsAbs 
can be selectively detected by effector cells with cytotoxic po-
tential. Multiple studies have shown the potential of FcγRI 
in anti-cancer therapy by using bsAbs and fusion proteins to 
recruit FcγRI on immune cells to tumor-associated-antigens 
on various tumor cell types including acute myeloid leukemia, 
acute, and chronic myelomonocytic leukemia and melanoma 
[9, 16, 54, 108, 109].

FcγRIs are highly potent triggering molecules to activated 
PMNs and, in the presence of mAbs that bind FcγRI out-
side the ligand binding domain, it can mediate lysis of vari-
ous tumors [106]. A humanized mAb that can bind outside of 
the Fc-region of FcγRI is H22. As a result, serum IgG has no 
effect on H22 binding to FcγRI [110]. In the presence of hu-
man IgG or serum, bispecific molecules derived from H22 and 
coupled to tumor-specific antibodies like HER2/neu and TAG-
72 or other ligands will trigger lysis of target cells [54–56]. 
Interestingly, the ADCC activity of the bsAb is significantly 
higher than that of the mAb alone [56, 106]. Experiments 
in murine tumor models using bsAbs that target tumor cells 
and FcγRI also demonstrate the potent effector functions of 
FcγRI [16, 106]. In some cases, FcγRI-based bsAb could es-
tablish long-term T-cell immunity [106]. Since these bsAbs 
can bind FcγRI in the presence of saturating concentrations 
of IgG [16, 110], they can effectively exploit the cytotoxic 
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potential of FcγRI under physiological conditions [16, 54]. It 
should be noted that most of these studies into FcγRI bsAbs 
were performed more than two decades ago. Only recently 
research into FcγRI targeting has revived, as the role of FcγRI 
in several diseases is becoming increasingly clear. Moreover, 
the recent developments regarding designing and producing 
bsAbs resulted in better and more stable bsAbs [107], making 
it easier to study FcγRI tumor targeting. After selecting the 
appropriate tumor target and anti-FcγRI mAb when develop-
ing novel bsAbs, they could become valuable tools in effective 
tumor destruction [54–56, 106, 111].

Additionally, cytokine stimulation could be a promising 
addition to anti-tumor therapeutic antibodies to enhance the 
activity of FcγRI-expressing immune cells [12] (Fig. 3.I). The 
efficacy of various therapeutic antibodies was increased when 
combined with cytokine stimulation both in vitro and in vivo 
[15, 112, 113]. Some cytokines, like granulocyte colony-stim-
ulating factor (G-CSF), are associated with increased FcγRI 
expression on neutrophils and increased recruitment of effec-
tor cells [54, 114]. However, these processes take several hours 
or even days. Inside-out signaling of FcγRI to enhance FcγRI-
IC binding occurs rapidly, within minutes [14]. Cytokine 
stimulation combined with antibody therapy may increase 
the binding capacity of FcγRI-expressing cells to tumor cells 
immediately after cytokine administration (minutes), while 
increasing FcγRI expression and recruiting more effector cells 
from the bone marrow occurs later (hours or days). This may 
result in more effective anti-tumor responses, especially when 
timing of cytokine administration correctly. Understanding 
the regulatory mechanisms of FcγRI activation may aid in the 
manipulation of immune responses using cytokines during 
infections, autoimmune diseases, and antibody-based immu-
notherapy.

Limitations
The use of mAbs directed against the IgG binding site of 
FcγRI, which block IC binding and subsequent cell activation, 
is the most direct way to inhibit or modulate FcγRI signaling. 
Mouse anti-human FcγRI antibodies to inhibit FcγRI ligand 
binding have been developed [19], but these antibodies may 
not be FcγRI-specific blocking antibodies as they bind via 
their Fc domain rather than their Fab domain or outside of 
the ligand binding domain of FcγRI [23, 52, 115, 116]. The 
current commercially available FcγRI blocking antibodies in-
clude clones 10.1 (mIgG1), m22 (mIgG1), and 197 (mIgG2a). 
Clone 10.1 is the most commonly used commercial antibody 
[19, 23], but it is not directly a ligand binding blocking an-
tibody as the binding site of 10.1 is located in EC3 of FcγRI 
[23], while the IgG binding site is located in EC2 (17) (Fig. 
2). Our own unpublished data indicates that 10.1 can achieve 
~40% IgG blocking at saturating antibody concentrations, 
indicating it can probably sterically hinder IgG binding to 
FcγRI to some extent. Hence, there is a need to develop spe-
cific FcγRI blocking antibodies. However, this is difficult as 
the Fc portion of IgG antibodies will readily bind with high 
affinity to FcγRI, making screening for potential candidates 
very challenging. To our knowledge, no specific and high af-
finity Fab-mediated FcγRI blocking antibodies are currently 
available. Alternative strategies to block FcγRI are using an 
IgG Fc-fragment preparation or intravenous administration 
of pooled human immunoglobulin (IVIg) [64, 117]. Indeed, in 
pediatric ITP patients, IVIg results in rapid recovery of plate-
let counts [118].

Another promising strategy in autoimmune diseases is to 
target the ICs rather than FcγRI. Recombinant soluble FcγRs 
can be used to ‘capture’ circulating ICs and subsequently 
prevent binding to surface-bound FcγRs [50, 51] (Fig. 3.III). 
Normally, recombinant soluble ectodomains of FcγRI will be 
expected to be rapidly and fully occupied by circulating IgG. 
Surprisingly, in vivo mouse experiments revealed that solu-
ble FcγRI is effective at alleviating IC-induced inflammation 
in antibody-dependent models of tissue damage, including 
CIA [50, 51]. The ‘on’ and ‘off’ rates of monomeric IgG are 
fast enough to enable recombinant soluble FcγRI to interact 
with high concentrations of oligomeric ICs in tissues, which 
may retain soluble FcγRI locally long enough to effectively 
inhibit inflammatory cell activation through IC binding to cell 
surface-bound FcγRI [4]. However, since FcγRI can bind to 
more than one IgG subclass, it would act more as a universal 
inhibitor of ICs. Another constraint to use soluble FcγRI is its 
small molecular size (45 kDa), resulting in fast renal clearance 
[64]. It also makes it difficult to achieve high enough FcγRI 
therapeutic concentrations at the site of inflammation to be 
effective.

The combination of therapeutic antibodies with cytokines 
has great potential due to the potent pro-inflammatory effects 
and induction of FcγRI inside-out signaling. However, there 
are only a few clinical trials currently investigating anti-tumor 
mAb therapy with cytokines [119–121]. In these studies, there 
are often no control groups receiving monotherapy (either 
mAb or cytokine), for good ethical reasons. This does make 
it difficult to determine the effect of cytokine stimulation on 
mAb therapy in humans. Nonetheless, the results of these 
studies are very promising. Adding G-CSF to mAb therapy in 
relapsed leukemia patients produced good therapy responses 
for a short duration [119, 120]. Before stem cell transplanta-
tion, patients receive anti-thymocyte globulin (ATG), an infu-
sion of horse- or rabbit-derived antibodies against human T 
cells and the precursor thymocytes that leads to depletion of 
T-cells by inducing CDC and ADCC. When ATG is combined 
with G-CSF infusion in these patients, neutrophil-mediated 
ATG cytotoxicity was significantly higher, thereby enhancing 
T-cell clearance [122]. Furthermore, the addition of G-CSF to 
ATG treatment in anemia patients resulted in reduced inflam-
mation and days of hospitalization in the first three months 
[123], although it does not improve the long-term outcome 
and sustainability of remission [124].

Directly evaluating the influence of FcγRI inside-out 
signaling on therapeutic antibody therapy remains challeng-
ing, as it is difficult to determine the activation status of FcγRI, 
and the surface expression of FcγRI is often not measured in 
clinical trials. In addition, inside-out signaling is a rapid proc-
ess which occurs minutes after cytokine stimulation, while 
clinical trials usually focus on long term effects of antibody 
therapy. Nonetheless, the in vitro and in vivo data on inside-
out signaling is very promising in regard to enhancing FcγRI 
effector functions.

Concluding remarks & outlook
Therapeutic antibodies can exploit FcγR-mediated effec-
tor functions and targeting FcγRI is a promising strategy 
to enhance the efficacy of antibody-based therapy (Fig. 3). 
FcγRI plays an important role in mAb based therapy [5, 7, 
12], and through antibody engineering, activating, or inhib-
itory immunomodulatory effector functions of FcγRI can be 
initiated [16, 54–56, 106]. Moreover, in various autoimmune 
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diseases, antigens and autoantibodies cross-link and form ICs 
that bind and activate FcγRI [67]. These inflammatory effec-
tor functions can cause extensive tissue damage in diseases 
like RA and SLE, but also chronic joint pain [52, 53]. In these 
autoimmune diseases, blocking IC-FcγRI interactions with 
mAbs that specifically block the ligand binding domain of 
FcγRI may be beneficial.

Using anti-FcγRI/ anti-tumor bsAbs is an attractive alterna-
tive to conventional mAbs for direct tumor killing as they ex-
hibit dual specificity for the target and effector cells. They can 
be designed to recruit a range of cellular effectors, like T cells 
and NK cells [106, 107]. If these bsAbs bind an epitope out-
side of the ligand binding domain of FcγRI, there is no com-
petition with human IgG, thus ADCC activity can be attained 
under normal serum conditions [16, 54]. Additionally, this de-
sign would make it possible for IgG to still mediate its func-
tion by binding with its Fc-tail to FcγRI [16]. Together, these 
bsAbs can result in optimal tumor killing.

In conclusion, the involvement of FcγRI in many inflamma-
tory diseases makes FcγRI a promising target in treatment of 
autoimmune and malignant diseases. A better understanding 
of inside-out signaling in combination with antibody therapy 
will lead to better and safer therapies.
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