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We report results from the first genome-wide application of a rational drug target selection methodology to a metazoan
pathogen genome, the completed draft sequence of Brugia malayi, a parasitic nematode responsible for human lymphatic
filariasis. More than 1.5 billion people worldwide are at risk of contracting lymphatic filariasis and onchocerciasis, a related
filarial disease. Drug treatments for filariasis have not changed significantly in over 20 years, and with the risk of resistance
rising, there is an urgent need for the development of new anti-filarial drug therapies. The recent publication of the draft
genomic sequence for B. malayi enables a genome-wide search for new drug targets. However, there is no functional genomics
data in B. malayi to guide the selection of potential drug targets. To circumvent this problem, we have utilized the free-living
model nematode Caenorhabditis elegans as a surrogate for B. malayi. Sequence comparisons between the two genomes allow
us to map C. elegans orthologs to B. malayi genes. Using these orthology mappings and by incorporating the extensive
genomic and functional genomic data, including genome-wide RNAi screens, that already exist for C. elegans, we identify
potentially essential genes in B. malayi. Further incorporation of human host genome sequence data and a custom algorithm
for prioritization enables us to collect and rank nearly 600 drug target candidates. Previously identified potential drug targets
cluster near the top of our prioritized list, lending credibility to our methodology. Over-represented Gene Ontology terms,
predicted InterPro domains, and RNAi phenotypes of C. elegans orthologs associated with the potential target pool are
identified. By virtue of the selection procedure, the potential B. malayi drug targets highlight components of key processes in
nematode biology such as central metabolism, molting and regulation of gene expression.
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INTRODUCTION
The arrival of the post-genomic era has brought with it the possibility

of in silico selection of drug targets in major human pathogens using

rational target-based approaches. Soon after the first microbial

genomes were sequenced, comparative and subtractive genomic

strategies were proposed to isolate potential drug targets from an

organism’s complete catalog of gene products. Probable essentiality

could be inferred from inter-genomic sequence conservation [1], and

possible lead compound toxicity could be disfavored by focusing on

targets that lack close homologs in mammals [1,2]. For many

bacterial genomes, functional data is now available enabling direct

identification of essential genes and has been incorporated into the

approach [3]. Unfortunately, for metazoan pathogens, including

human helminth parasites, there is a dearth of complete genomic

sequences. To complicate matters further, many parasites are

genetically intractable, making gene functions difficult to establish

experimentally. However, by using a related model organism as

a proxy for missing functional genomic data and applying multiple

layers of subtractive filters based on comparative sequence analysis,

we can pre-validate a pool of targets to facilitate their entry into drug

discovery programs. This methodology was tested successfully in

parasitic nematodes, albeit incompletely as only fragmentary EST

sequence data was available [4,5], and has been endorsed by the

World Health Organization as a promising approach to identify new

helminth drug targets [6].

Worldwide, helminth parasites result in a combined conserva-

tive disease burden of 8 million DALYs (Disability Adjusted Life

Years) [7]. Lymphatic filariasis and onchocerciasis are tropical

diseases caused by filarial parasites that are transmitted to humans

by insects. Collectively, they afflict approximately 150 million

people in over 80 countries with more than 1.5 billion at risk of

infection [7]. The mainstay of filarial disease control for several

decades has been a limited number of drugs, predominantly

diethylcarbamazine, benzimidazoles (e.g. albendazole) and aver-

mectins (e.g. ivermectin) [8]. Ivermectin exerts its anthelmintic

effect by modulating the activity of glutamate-gated chloride

channel while albendazole binds to tubulin so as to inhibit its

polymerization and the subsequent formation of microtubules.

The mode of action of DEC is still not understood [8]. These

compounds suffer various drawbacks such as not being effective

against all stages of the parasite, the requirement for annual or

semi-annual administration, possible side effects and contra-

indications for certain individuals. Furthermore, signs of emerging

drug resistance are becoming increasingly apparent [9,10].

Therefore novel chemotherapeutics and vaccines are urgently

needed.
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In this report, we describe the results from the first application of

the in silico filtering methodology to a metazoan parasite genome, the

completed draft sequence of Brugia malayi [11]. We have expanded

our previous analysis, which was limited to nematode ESTs [4], and

applied this methodology to the complete gene complement

predicted for this organism. By incorporating a custom ranking

algorithm, we were able to identify and prioritize a pool of 589

potential targets for further study. We also discuss the significance of

those candidate targets in terms of nematode biology.

RESULTS AND DISCUSSION
Filarial parasites are related to the free-living nematode Caenor-

habditis elegans, a model organism with a fully sequenced and

extensively annotated genome. Multiple independent genome-

wide analyses of gene function for nearly all ,20000 C. elegans

genes have been undertaken using high-throughput RNA in-

terference (RNAi). This data, comprising ,61000 entries, is

publicly accessible via Wormbase [12]. The set of genes with non-

wild type phenotypes in RNAi screens constitutes a pool of

phenotypically significant and potentially essential C. elegans genes.

We reasoned that homologs of these genes in B. malayi are also

likely to be essential. C. elegans is generally believed to be a valid

model for less genetically tractable parasitic nematodes [13–15].

Indeed, there is good concordance between the phenotypes

resulting from the few cases where genes from filarial nematodes

have been targeted by RNAi and similar experiments targeting

their C. elegans orthologs [16–19].

Using release 150 of Wormbase (http://www.wormbase.org),

we recovered 4827 C. elegans genes with non-wild type RNAi

phenotypes (RNAi positive set). From the 11771 predicted gene

products in the data snapshot of the B. malayi genome used in our

studies, we identified 7435 as having an ortholog in C. elegans

(Materials and Methods). Of these, 3059 were mapped to the

RNAi positive set, constituting a predicted ‘‘essential’’ B. malayi

genome. The majority of these essential genes have close human

homologs and were removed. The remainder is a set of 589 first-

pass candidate drug targets (Fig. 1, Table S1).

Analysis of protein domains in the target set shows the presence

of several over-represented domains as compared to the whole

genome (Table S2), suggestive of an important role in nematode

biology. The C2H2 type zinc-finger domain and basic helix-loop-

helix dimerization domain are over-represented 3- and 4-fold

respectively in the target list, as compared to the whole genome,

indicative of proteins that bind to nucleic acids and are

presumably involved in essential gene regulation and develop-

mental pathways in the parasite. The collagen triple helix repeat,

over-represented by 5-fold, reflects unique components of the

cuticle and extracellular matrix. Twenty-four potential targets

contain InterPro domains that can be mapped to 14 distinct

Enzyme Commission (E.C.) numbers (Table S3). Functional

classification of the target set using gene ontology (GO)

annotations (Table S4) and statistical analysis of the GO term

content (Table 1) revealed several over-represented terms in-

cluding cuticle structure and ion transport.

While the pool of 589 candidates reflects a 20-fold reduction in

the search space, it is still too large to enter drug-screening

pipelines. To rank the output and identify the most promising

potential targets, we developed a computational algorithm for

integrating and weighting the biological data from C. elegans and B.

malayi (Table 2). The aim of the prioritization algorithm was to

predict the efficacy, selectivity and tractability of each candidate

target. Hasan et al. recently used a similar approach for prioritizing

potential drug targets in Mycobacterium tuberculosis [20].

Potential targets were rewarded for high sequence similarity

with C. elegans orthologs, but penalized heavily for the presence of

a close homolog in humans. Based on the protein length ratios of

the orthologs, we identified and penalized B. malayi gene models

that were incomplete or fragmented. Examples of such gene

models include two previously proposed drug targets, 2,3-bispho-

sphoglycerate-independent phosphoglycerate mutase [21] (model

13047.m00009) and chitin synthase 2 [22] (models 12621.m00166

Figure 1. Selection methodology. Venn diagrams summarizing the reduction in search space achieved by selection of ‘‘essential’’ B. malayi gene
products (left), and subsequent refinement of targets (right). Overlapping areas (not to scale) represent orthologous sequences (Materials and
Methods). Numbers indicate gene products.
doi:10.1371/journal.pone.0001189.g001
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and 14328.m00023) respectively; despite being penalized, these

gene models appear in the top half of the ranked list based on their

high scores in other positive ranking criteria. In some instances,

manual prediction of the complete coding region revealed strong

similarity to human proteins which was not detected using the

incomplete or fragmented models. RNAi phenotype data for C.

elegans (obtained from Wormbase) was used to prioritize B. malayi

orthologs with respect to their potential efficacy. All reported C.

elegans RNAi phenotypes were binned into nine categories and

assigned weights based on the severity of the observed phenotype

(see Methods and Table S5). Adult/larval lethality/arrest was

assigned the highest weight. Replicating the adult lethality

phenotype would be an important first step towards developing

an effective and much-needed macrofilaricide (compound target-

ing adult worms). To overcome the complications arising from

false positives we used ‘phenotype redundancy’ [23] as a measure

Table 1. Over-represented GO terms in the target pool.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

GO Hierarchy GO Term ID GO Term Freq. in Geneome Freq. in Targets

Cellular Component GO:0005737 Cytoplasm 349 41

GO:0005739 Mitochondria 31 10

GO:0030054 Cell junction 13 7

GO:0005911 Intracellular junction 13 7

GO:0005921 Gap junction 13 7

Molecular Function GO:0005198 Structural molecule activity 192 24

GO:0042302 Structural constituent of cuticle 46 17

GO:0015077 Monovalent inorganic cation activity 32 11

GO:0015078 Hydrogen ion transporter activity 32 11

Biological Process GO:0006811 Ion transport 233 30

GO:0006820 Anion transport 91 18

GO:0015698 Inorganic anion transport 85 18

GO:0006817 Phosphate transport 81 18

GO term over representation was calculated as described in Materials and Methods. A minimum significance of p,0.05 was required. The fractions indicate the
frequency of the term in the entire predicted B. malayi proteome (of 11771) and the target pool (of 589), respectively.
doi:10.1371/journal.pone.0001189.t001..
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Table 2. Prioritization factors and relative weighting scheme.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Criteria Description Weight Observed Range

Homology and protein
length ratioa

Present in C. elegans bclb

5lc
if

lb

lc
v1

� �

bc

5
if

lb

lc
§1

� �
0…226

Present in H. sapiens
{4|

bh

5

261…0

Essentialityb Severity and reproducibility of the RNAi phenotype of the C. elegans ortholog
+
X9

i~1

ridi

5n

0…230

Stage specific expression Presence of specific ESTs in all stages (microfilariae, L2, L3, L4 and adults)c +10 0…10

Presence of ESTs in adultsc +7

Presence of ESTs in L4c +5

Presence of ESTs in L1c +4

Presence of ESTs in L3c +3

Presence of ESTs in L2c +1

Druggability Presence of LR5 druggable domain +50 0…50

Presence of druggable E.C. number +50 0…50

Expressabilityd GRAVY score measuring hydropathicity and expressability {5 gbz0:4ð Þ if gbw{0:4ð Þ
0 if gbƒ{0:4ð Þ

221…0

Total scores (range 252 … 275) for each target were obtained by summing the individual weights.
abc, maximum bit score of the B. malayi : C. elegans protein alignment; bh, maximum bit score of the B. malayi : H. sapiens protein alignment; lb, lc, number of amino
acids in B. malayi and C. elegans homologs respectively.

bri, number of instances an RNAi phenotype has been reported for the gene in wormbase; di, degree of severity (0–100) assigned to a phenotype bin i; n, number of
RNAi experiments reported for a particular gene.

cmaximum value, irrespective of expression data in other stages/categories (non-additive).
dgb, GRAVY score for the B. malayi protein.
doi:10.1371/journal.pone.0001189.t002..
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of confidence, in which independent experiments using different

reagents targeting a single gene produce the same phenotype. The

product of severity and redundancy for each phenotype category

was summed up and normalized by the total number of RNAi

experiments for each gene to provide an aggregate confidence

score. Interestingly, when the frequency distribution of the binned

RNAi categories for C. elegans sequences orthologous to the target

pool was compared with that expected from the whole genome, we

observed that reproductive and embryonic phenotypes (sterility

and embryonic arrest/lethality) associated with genes involved in

highly conserved metazoan processes were under-represented,

whereas post-embryonic phenotypes were slightly over-represent-

ed (Fig 2). The latter bodes well for our attempts to prioritize drug

targets for larvicidal and macrofilaricidal discovery.

Targets were also prioritized based on data for stage specific

expression from approximately 24000 ESTs derived from various

stage and gender specific B. malayi libraries [24]. Of 589 targets,

252 had corresponding EST sequences. We compiled expression

data from microfilariae (L1), L2, L3, L4 and adult stages of the

parasite and assigned highest weight to targets which have

evidence of expression in all five stages. Next were targets that

are expressed in the adults, L4, L1, L3 and L2 stage, in decreasing

order of priority.

Other important prioritization criteria included predicted

‘druggability’ and expressability. Druggability can be described

as the presence of protein folds that favor interactions with drug-

like chemical compounds. Hopkins et al identified 130 InterPro

protein domains that are targeted by established and experimental

small molecule drugs that follow the Lipinsky rule of 5 (LR5) [25].

Similarly, a list of 70 EC numbers of known enzyme targets and

respective marketed drugs was compiled [26]. Proteins with LR5

druggable domains or druggable EC numbers were given a high

priority. An important factor for selection of targets for rational

drug design is their potential to be expressed in heterologous

systems for protein production, purification and crystallization. A

genome wide survey for high throughput expression of C. elegans

proteins in Escherichia coli found that protein expression and

solubility are inversely correlated with hydrophobicity. Proteins

having GRAVY (grand average of hydropathicity) scores below an

empirically derived cutoff of 20.4 were more likely to be soluble

[27]. To prioritize drug targets in B. malayi, we penalized proteins

with a GRAVY score higher than 20.4. A complete set of data

values used for prioritizing the potential targets are available in

Supplementary Data Set S1.

The ranked output (Tables 3 and S1), sorted by the sum of the

individual scores for each predicted target, was then manually

curated to improve functional annotations where possible. Twelve

known or previously proposed targets were identified; nine of these

are among the top 40 targets shown in Table 3, endorsing the

validity of our approach. Two potential targets, triacylglycerol

lipase and adenosine deaminase, having domains associated with

druggable enzymes and ten targets with LR5 domains, including

the rhodopsin-like GPCR superfamily and integrins (alpha-chain),

were found concentrated in the top-half of the list. Many of the

candidates were predicted to participate in a variety of essential

processes which have no counterpart in mammals, such as molting

and synthesis of chitin. Perhaps surprisingly, we also found

potential targets that participate in important processes shared

across Metazoa. These potential targets are functionally analogous

to proteins present in mammals yet they bear no sequence

similarity. These include the glycolytic/gluconeogenic enzyme 2,3-

bisphosphoglycerate-independent phosphoglycerate mutase

(iPGM) characterized previously [21] and the innexin family of

gap junction protein [28]. The functions of some of our potential

targets are described below in more detail.

Molting
Several potential B. malayi targets identified by our bioinformatics

approach may mediate molting. Nematode molting, which takes

place 4 times from hatching to adulthood, is a highly regulated and

complex process involving the synthesis and secretion of a new

exoskeleton, followed by the separation and shedding of the old

cuticle [29]. Steroid hormones have been implicated in triggering

molting in nematodes, as found in arthropods [30,31]. A recent

genome-wide RNAi screen in C. elegans has identified 159 genes

that are required for molting [32]. These genes may mediate

distinct aspects of the process, from intracellular signaling (such as

hypodermal-specific transcription factors) to extracellular execu-

tion (such as cuticle-digesting proteases). The sequencing of the B.

malayi genome has revealed that almost all these genes have a B.

malayi counterpart [11], pointing to phylum-wide conservation in

the molting machinery, validating C. elegans as a good model for

this process. There is wide agreement that molting represents an

excellent process for chemotherapeutic intervention, given that it is

an ancestral feature of the phylum Nematoda and does not occur

in vertebrates [32,33]. Consistent with this, we recovered more

than a dozen B. malayi orthologs of proteins necessary for molting

in C. elegans which could be considered potential drug targets.

These include the B. malayi orthologs of C. elegans NOAH-1 and

NOAH-2, which contain zona pellucida (ZP) domains and several

plasminogen N-terminal (PAN) modules. These proteins share

similarity with Drosophila melanogaster NompA, a component of the

extracellular matrix [34]. Other high-ranking targets include the

orthologs of C. elegans bli-5 and mlt-11, which encode predicted

serine-peptidase inhibitors containing multiple Kunitz/Bovine

trypsin inhibitor domains. These protease inhibitors may play

a role in regulating the activity of hypodermally-expressed

subtilisin-like peptidases, such as BLI-4, which could be required

for processing cuticular collagens and activation of further collagen

processing/degrading enzymes, such as astacin metallopeptidases

[35]. Significantly, Kunitz-type serine protease inhibitors have

Figure 2. Frequencies of binned RNAi phenotypes in C. elegans
orthologs of B. malayi targets. Observed frequencies were all
statistically over- or under-represented relative to expected frequency
in the whole genome based on a hypergeometric distribution (P
values,1e-3). The entire set of observed values was statistically
different from the background (expected) values as measured by a G-
test (two sided P value = 5.9e-21).
doi:10.1371/journal.pone.0001189.g002
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been implicated in molting in the related filarial nematode

Onchocerca volvulus [36], further supporting the hypothesis that the

molecular machinery involved in the molting process is conserved

between filarial and rhabditid nematodes.

We also identified B. malayi orthologs of C. elegans mlt-8 and mlt-

9. mlt-8 encodes a novel protein that has been proposed to act as

an amplifier of endocrine cues during synthesis of the new cuticle,

while MLT-9 may be involved in hypodermal signaling [32]. In

addition, we identified orthologs of the C. elegans Patched signaling

family member ptr-23 and Hedgehog signaling family members

qua-1 and wrt-4. These genes have been demonstrated to play a role

in molting, even though their functions in the process remain

unclear [32,37–39]. In particular, qua-1, which has been

implicated in hypodermal signaling, encodes a nematode-specific

cysteine peptidase capable of autocatalytic activation. qua-1 is

essential for ecdysis and viability: deletion mutants arrest at the

Table 3. Ranked listing of the top 40 predicted drug targets.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Score B. malayi pub locus B. malayi description C. elegans homolog

275 Bm1_35120 PAN domain containing protein noah-2

248 Bm1_36170 PAN domain containing protein noah-1

248 Bm1_45135 Conserved hypothetical protein, putative pqn-83

179 Bm1_35215 chitin synthase 1, chs-1 chs-1

172 Bm1_36850 hypothetical protein C01B10.11

172 Bm1_22725 RNA dependent RNA polymerase family protein ego-1

157 Bm1_15245 RH17657p-related C25H3.9

157 Bm1_43465 Temporarily assigned gene name protein 40, putative nrf-6

154 Bm1_38120 hypothetical protein W04G3.8

151 Bm1_35395 Acyltransferase family protein T14D7.2

143 Bm1_36765 SD01790p-related Y41E3.1

141 Bm1_25640 hypothetical protein ZC247.1

140 Bm1_35480 hypothetical protein mlt-8

133 Bm1_49915 conserved hypothetical protein K07A12.7

125 Bm1_45670 WH2 motif family protein C34E10.11

123 Bm1_37495 conserved hypothetical protein mlt-9

119 Bm1_46940 hypothetical protein C52A11.2

116 Bm1_38110 hypothetical protein W04G3.2

115 Bm1_32730 LBP/BPI/CETP family, C-terminal domain containing protein C06G1.1

114 Bm1_42470 hypothetical protein B0491.5

112 Bm1_55705 Conserved hypothetical protein, putative B0205.11

110 Bm1_38105 hypothetical protein W04G3.3

108 Bm1_38425 39-59 exonuclease family protein C10G6.1

107 Bm1_43740 conserved hypothetical protein T14D7.2

107 Bm1_19285 Innexin family protein inx-4

106 Bm1_51995 LBP/BPI/CETP family, C-terminal domain containing protein F44A2.3

105 Bm1_38160 Fatty acid desaturase family protein fat-2

105 Bm1_02135 ribosomal protein L9 domain containing protein B0205.11

103 Bm1_03880 hypothetical protein Y71G12B.13

100 Bm1_35075 Innexin inx-3, putative inx-3

99 Bm1_31660 hypothetical protein C55C3.5

98 Bm1_02195 hypothetical protein mlt-8

98 Bm1_09270 Skp1 related (ubiquitin ligase complex component) protein 18-like skr-18

97 Bm1_50630 hypothetical protein T19B10.2

96 Bm1_08695 trehalose-6-phosphate phosphatase, putative gob-1

96 Bm1_39265 GH05862p-related F42G8.10

91 Bm1_34455 amine oxidase, flavin-containing-related (putative UDP galactopyranomutase) H04M03.4

88 Bm1_08915 hypothetical protein (immunoGlobulin-like Cell adhesion Molecule family) igcm-3

84 Bm1_16245 symbol-related ZK809.3

82 Bm1_33575 hypothetical protein ZK899.2

Previously identified targets are shown with bold identifiers. Manually added annotations are shown in italics. B. malayi pub locus and descriptions are from Ghedin et
al. [11]. C. elegans gene names and RNAi phenotypes are from Wormbase.
doi:10.1371/journal.pone.0001189.t003..
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first molt (L1 to L2) exhibiting severe morphological abnormalities.

qua-1 orthologs are both well conserved and ubiquitous throughout

the phylum Nematoda [39], making QUA-1 a particularly attractive

target for the development of specific inhibitors [33].

Structural Components
C. elegans has become one of the preferred models to investigate the

assembly and molecular interactions of cell junctions because cell-

cell and cell-matrix attachment components are generally well

conserved between nematodes and vertebrates (reviewed in [40]).

However, a few nematode-specific components do exist, some of

which were identified in our screen, including the B. malayi

homologs of C.elegans ajm-1 and pat-12/gei-16. The C. elegans coiled-

coil protein AJM-1 localizes to apical junctions and is required for

embryonic elongation and maintenance of epithelial integrity

[41,42]. C. elegans pat-12/gei-16 has been implicated in the

formation of Fibrous Organelles (FOs), which are found

exclusively in nematodes and mediate attachment between body

wall muscle and the cuticle across the hypodermis. FOs are

essential for viability, ensure maintenance of body rigidity and

allow for locomotion [43]. Phenotypic inspection of pat-12/gei-16

mutants, together with the molecular characterization of the gene

product function, suggest that the protein acts as an adaptor

providing linkages between the various structural components of

FOs (Benjamin D. Williams and Caroline A. Behm, personal

communication; [44,45]). It is noteworthy that in the human

filarial nematode O. volvulus, the homolog of gei-16 encodes the

well-characterized OvB20 larval antigen [46,47]. Immunogold

electron microscopy of O. lienalis with a OvB20-specific serum

revealed localization to discrete foci in the hypodermis and cuticle

[47], suggesting that the essential function of pat-12/gei-16

homologs in formation of FOs is likely to be evolutionarily

conserved in filiarial nematodes.

Eight B. malayi innexin homologs were identified as potential

targets (see Tables S1 and S2). Innexins are invertebrate structural

proteins that form intercellular channels, or gap junctions,

allowing electrical coupling between adjacent cells (reviewed in

[28]). Distantly related connexins in vertebrates perform analo-

gous functions. In C. elegans, the innexin family comprises 25

paralogs, showing different spatio-temporal expression patterns

[48]. Detailed studies on seven C. elegans inx genes have revealed

that particular inx genes are required for distinct processes

including locomotion, egg laying, synchronized contraction of

the pharyngeal musculature and inhibition of oocyte maturation

[28,49]. Notably, the innexin genes unc-7 and unc-9, which are

required for locomotion, also modulate response to the anthel-

mintic drug ivermectin [50–52].

Chitin is a structural component of the eggshell [53] and

pharynx [54] of nematodes and it is absent in mammals. As

expected, our analyses revealed the two chitin synthase genes

previously proposed as drug targets in B. malayi [22,55] and O.

volvulus [22]. These genes are orthologs of the two chitin synthase

genes present in the C. elegans genome that are responsible for

chitin deposition in the eggshell (chs-1) and pharynx (chs-2) and

essential for development [54]. Functional conservation of

nematode chitin synthases is highly likely since the B. malayi chs-

1 transcript is predominantly found in the oocytes and early

embryos [55]. Orthologs of two other C. elegans genes (H02I12.1

and W03F11.1) encoding proteins containing putative chitin

binding domains, were also identified. Interestingly, RNAi against

H02I12.1, which contains a peritrophin A chitin-binding module,

compromises the egg osmotic integrity during early embryogenesis

[56], suggesting that this gene plays a role in eggshell chitin

deposition. Thus, aspects of chitin metabolism are clearly essential

in nematodes and involve a number of components worthy of

further evaluation as drug targets.

The sugar galactofuranose (Galf) is an important component of

cell surface glycoconjugates of several prokaryotic and eukaryotic

pathogens and has been shown to be essential for viability and

virulence [57–59]. From the B. malayi genome, we annotated two

putative orthologs of UDP-galactopyranose mutase (GLF), the

enzyme that is required for biosynthesis of Galf. Both the sugar

and the enzyme are absent from mammals making GLF an

attractive drug target [57].

Central Metabolism
In nematodes, the glucose disaccharide trehalose is proposed to

serve as an energy reserve and a protectant against various

environmental stresses such as heat, cold and freezing, oxidative

and osmotic stress, anoxia, even dessication and anhydrobiosis

[60,61]. It is an abundant storage sugar in the filarial nematodes

Brugia pahangi and Acanthocheilonema viteae [62] and is also found in

bacteria, fungi and insects but not in mammals. We identified

trehalose-6-phosphate phosphatase as an ortholog of the essential

C. elegans gene gob-1 (gut obstructed). Removal of this gene activity

in C. elegans gives rise to larval lethality, partly due to intestinal

blockage and subsequent starvation [63]. This gob-1 lethality is

completely suppressed when the upstream trehalose-6-phosphate

synthase genes are deleted, indicating that the lethality is due to

toxic build-up of the intermediate trehalose-6-phosphate [63].

Mammals take up various unsaturated fatty acids from food as

essential nutrients whereas C. elegans has fatty acid desaturases that

catalyze the production of polyunsaturated fatty acids [64].

Among the highly ranked targets was the B. malayi ortholog of

the essential C. elegans fat-2 gene encoding a D-12 fatty acid

desaturase that converts oleic acid (18:1) to linoleic acid (18:2)

implying that B. malayi also synthesizes polyunsaturated fatty acids

rather than acquiring them from the host environment.

The glycolytic/gluconeogenic pathway is present in most

cellular organisms, however, the enzymes in the pathway may

not be conserved. We identified a 2,3-bisphosphoglycerate-

independent phosphoglycerate mutase (iPGM) as such an

example. This enzyme has a distinct sequence and structure from

the 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase

(dPGM) found in mammals. Both enzymes are responsible for the

interconversion of 2-phosphoglycerate and 3-phosphoglycerate,

however different catalytic mechanisms are involved. The bio-

chemical activities of both B. malayi and C. elegans iPGM enzymes

have been demonstrated as well as the essentiality of the gene for

nematode development. Down regulation of C. elegans iPGM using

RNAi, results in embryonic and larval lethality [21].

Nucleic Acid Metabolism
Other potentially interesting targets revealed by our analysis include

orthologs of C. elegans transcription factors lin-14, die-1 and pry-1

known to be involved in key developmental and morphogenetic

processes. C. elegans lin-14 is a nematode-specific transcription factor

required for larval stage-specific gene expression [65]. Mutations in

lin-14 cause cell lineage defects in several cell types. The C. elegans

gene die-1 belongs to the zinc finger family of transcription factors.

Loss of die-1 affects epithelial cell rearrangements during embryonic

epidermal morphogenesis, leading ultimately to embryonic arrest

[66]. We also recovered the B. malayi homolog of C. elegans pry-1 [67]

encoding a protein with limited homology to vertebrate Axins, which

act as scaffold proteins in the Wnt/beta-catenin signaling pathway

[68]. Despite its sequence divergence, PRY-1, like Axin, serves as

a negative regulator in the Wnt signaling pathway in C. elegans and

Drug Targets in Brugia malayi

PLoS ONE | www.plosone.org 6 November 2007 | Issue 11 | e1189



can functionally complement for the Danio rerio (zebrafish) axin1

knockout masterblind [69]. This example illustrates how specific

components of signaling pathways, which are conserved between

vertebrates and nematodes but have diverged at the primary

sequence level, may differ sufficiently to allow for the development of

nematode-specific inhibitors.

We also identified genes involved in RNA processing. Trans-

splicing, which involves the addition of a short leader sequence to

the 59-end of mRNA, is an essential step in the maturation of most

mRNAs in nematodes and several other invertebrates and

protozoa (reviewed in [70]). Our analysis identified the B. malayi

orthologs of two known components (SL30p and SL95p) required

for in vitro RNA trans-splicing in embryonic lysates from the human

nematode Ascaris lumbricoides [71]. Recently, orthologs of these two

genes in C. elegans (sut-1 and sna-2 respectively) have also been

implicated in RNA trans-splicing [72]. Additionally, we identified

an ortholog of C. elegans ego-1, which belongs to a family of RNA-

directed RNA polymerases. ego-1 is essential for viability and

fertility and in particular plays a crucial role in germline

development, where it promotes cell proliferation, meiosis, and

gametogenesis. It is thought that EGO-1 influences all these

distinct processes by inducing and reinforcing germline RNAi of

specific genes [73–75]. While many components of the RNAi

pathway appear to be missing from the B. malayi genome, most

notably the spreading machinery [11], presence of ego-1 suggests

conservation of the role of this class of RNA-directed RNA

polymerases in germline silencing across Nematoda.

In addition to drug target discovery, our method highlights

proteins participating in biological processes that are necessarily

conserved across parasitic and free-living worms; in the case of B.

malayi and the sequenced Caenorhabditids these processes span an

evolutionary distance of 350 million years since their last common

ancestor [11]. This substantially extends our confidence in identifying

nematode-centric processes over those conserved only between the

Caenorhabditid genomes. Significantly, 50% of the targets were

annotated as hypothetical proteins. These may participate in

completely novel nematode processes and are worthy of further study.

The recently completed draft genomic sequence of B. malayi has

enabled us to predict potentially essential genes and apply a method

for rational drug target discovery. In contrast to empirical methods,

the bioinformatics approach described herein yields a larger pool of

candidates and is not biased, thereby providing a wider range of

potential targets. Given the threat of emerging drug resistance

resulting from continued reliance on a limited repertoire of available

drugs, a wider array of choices for drug targets will be invaluable.

The method is also tunable and quickly provides a manageable set of

targets for closer analysis. By adjusting the parameters of the

comparative sequence analysis, the initial target pool size can be

increased or decreased by an order of magnitude. Varying the

weights for the factors used in the prioritization scheme can tailor the

ranking to the needs of the end-user.

The basic subtractive filtering methodology is applicable to

a wide variety of sequenced pathogens, ranging from microbial

species to the metazoan parasite analyzed here. Although it is

currently limited by the availability of complete genome sequence

and functional genomics data, the rapid pace of technological

advancements in these areas will soon overcome those limitations,

and we expect this methodology to gain widespread applicability.

MATERIALS AND METHODS

Data sources
DNA sequences and protein translations for the B. malayi genome are

as described [11]. The sequence set used in this study differs slightly

from the final released genome, though efforts were made to

maintain synchrony with the final release. Stage specific ESTs and

tentative consensus sequences for B. malayi were obtained from the

TIGR gene indices project (now housed at Dana Farber Cancer

Institute, http://compbio.dfci.harvard.edu/tgi). Complete DNA

coding sequence, protein sequence, and RNAi phenotype data from

release 150 of the C. elegans genome was obtained from Wormbase

(http://www.wormbase.org). Human genome protein sequences

were obtained from Ensembl release 41 (http://www.ensembl.org)

corresponding to the NCBI build 36 of the human genome.

Ortholog/homolog assignments
Ortholog assignments were based on WashU BLASTP all-vs-all

analysis, Jaccard clustering, and bidirectional best hit clustering, as

described [11]. These assignments were supplemented with one-

way best hits using NCBI BLASTP [76] with an e-value cutoff of

1610220, BLOSUM 62 as the scoring matrix and B. malayi

sequences as the query. Similarity between B. malayi sequences and

human sequences was established using one-way best hits with

NCBI BLASTP with an e-value cutoff of 1610213 and B. malayi

sequences as the query. E-value cutoffs were empirically adjusted

to maintain a reasonable target pool size for subsequent literature

scanning and retain known potential drug targets, chitin synthase

1 and 2, within the target pool.

GO terms
Gene ontology (GO) term assignments were obtained as described

[11] where essentially the following procedure was used. Interpro

domain assignments were first applied to B. malayi proteins using

InterproScan. GO terms attached to the InterPro domains were

transferred to the B. malayi gene products using Interpro2GO

(http://www.ebi.ac.uk/interpro). A custom GO slim subset of

ontology terms generated by TIGR for the B. malayi sequencing

project was used to provide a broad overview of the ontology

content. Over-representation of GO terms was analyzed using the

program Ontologizer [77] with a p-value cutoff of 0.05,

Bonferroni correction, and term-for-term methodology.

Protein properties
Average hydropathy scores (GRAVY) were calculated as the

average of the individual hydropathy scores for each amino acid

using the data of Kyte and Doolittle [78]. EC numbers were

mapped to B. malayi proteins using pre-compiled mapping of EC

numbers to GO terms, revision 1.54, available from http://www.

geneontology.org/external2go/ec2go.

RNAi phenotype binning
C. elegans RNAi phenotypes associated with orthologs of the B.

malayi candidate drug target sequences were binned into 9

categories with corresponding weights as shown:

Bin Weight

larval/adult lethality/arrest 100

embryonic lethality 90

sterility 80

morphology defect 80

growth defect 70

movement defect 60

vulval/egg laying defect 50

other/unclassified 10

wild-type 0
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To establish a background distribution, all C. elegans RNAi

phenotypes were binned into the same categories. Background

frequencies were used to estimate expected frequencies for

a sample size equal to the size of the RNAi phenotype set

associated with the orthologs of the B. malayi

SUPPORTING INFORMATION

Supplementary Table S1 Ranked list of candidate targets.

Previously identified targets are shown with bold identifiers.

Manually added annotations are shown in italics. B. malayi pub

locus and descriptions are from Ghedin et al. [11]. C. elegans gene

names and RNAi phenotypes are from Wormbase.

Found at: doi:10.1371/journal.pone.0001189.s001 (0.30 MB

PDF)

Supplementary Table S2 Frequency of Interpro domains in

the target sequences.

Found at: doi:10.1371/journal.pone.0001189.s002 (0.09 MB

PDF)

Supplementary Table S3 EC numbers mapped to targets

using ec2go.

Found at: doi:10.1371/journal.pone.0001189.s003 (0.05 MB

PDF)

Supplementary Table S4 GO terms associated with target

pool sequences. The GO terms are a subset of the GO hierarchy

(GO slim). All children of the GO slim nodes are mapped up to the

nearest parent in the slim hierarchy. Counts total the occurrences

of the exact GO term listed and all its children.

Found at: doi:10.1371/journal.pone.0001189.s004 (0.07 MB

PDF)

Supplementary Table S5 RNAi phenotype components of

each binning category.

Found at: doi:10.1371/journal.pone.0001189.s005 (0.12 MB

PDF)

Supplementary Data Set S1 Data set for target prioritization.

Data values used in assigning scores for prioritization of targets.

Maximum bit scores for alignments of putative B. malayi, C. elegans

and Human orthologs were obtained from BLASTP results (see

materials and methods). Bitscores of 0.0 are recorded when no

similarity was identified with an E-value below the threshold used

in the BLAST comparison. The total number of RNAi experi-

ments reported for each target gene are based on wormbase

release 150. Pheno Bins record the number of instances that

a phenotype was reported in these experiments that belongs to

each of 9 phenotype bins (see text). In this table, the ‘‘other/

unclassified’’ bin was split into ‘‘other’’ and ‘‘unclassified’’ bins.

Stage expression count refers to the number of distinct life cycle

stages (L2, L3, L4, adult and microfilariae) having EST evidence

for a particular target gene. L2, L3, L4, adult and microfilariae

record the number of ESTs for that stage. Total Score was

calculated as described in Table 2. Known targets are indicated in

bold. Na indicates ‘‘no value’’.

Found at: doi:10.1371/journal.pone.0001189.s006 (0.13 MB

PDF)
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