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Abstract

The Taiwanese people are composed of diverse indigenous populations and the Taiwanese Han. About 95% of the
Taiwanese identify themselves as Taiwanese Han, but this may not be a homogeneous population because they migrated
to the island from various regions of continental East Asia over a period of 400 years. Little is known about the underlying
patterns of genetic ancestry, population admixture, and evolutionary adaptation in the Taiwanese Han people. Here, we
analyzed the whole-genome single-nucleotide polymorphism genotyping data from 14,401 individuals of Taiwanese Han
collected by the Taiwan Biobank and the whole-genome sequencing data for a subset of 772 people. We detected four
major genetic ancestries with distinct geographic distributions (i.e., Northern, Southeastern, Japonic, and Island
Southeast Asian ancestries) and signatures of population mixture contributing to the genomes of Taiwanese Han. We
further scanned for signatures of positive natural selection that caused unusually long-range haplotypes and elevations of
hitchhiked variants. As a result, we identified 16 candidate loci in which selection signals can be unambiguously localized
at five single genes: CTNNA2, LRP1B, CSNK1G3, ASTN2, and NEO1. Statistical associations were examined in 16 metabolic-
related traits to further elucidate the functional effects of each candidate gene. All five genes appear to have pleiotropic
connections to various types of disease susceptibility and significant associations with at least one metabolic-related trait.
Together, our results provide critical insights for understanding the evolutionary history and adaption of the Taiwanese
Han population.
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Introduction
Disease susceptibility differs greatly between populations and
appears to be correlated with human population history
(Chen et al. 2012; Corona et al. 2013). However, owing to
the complex history of human migration, most contemporary
populations are genetically admixed, which could complicate
the efforts of genetic profiling for susceptibility to diseases
(Gravel 2012; Kidd et al. 2012; Marnetto et al. 2020).
Therefore, understanding the genetic ancestry, population
substructure, and migration history of people who live in
the same geographic region may allow us to better charac-
terize the admixed ancestry for each individual genome, pro-
viding critical information to facilitate genome-wide

association studies for mapping disease-causing variants.
Disease susceptibility may also arise as side effects of evolu-
tionary adaptation. Under a certain selection pressure (e.g.,
malaria), genetic adaptation could increase an individuals’
fitness in terms of survival or reproductive success, but this
could sometimes be accompanied with the cost of the car-
riers’ health (Haldane 1932). Sickle-cell anemia, thalassemia,
and APOL1-mediated kidney diseases are among the most
noticeable examples in which carriers of the respective
disease-causing variants confer protective effects against par-
asitic infection (Kwiatkowski 2005; Weatherall 2008;
Genovese et al. 2010; Ko et al. 2012, 2013). Therefore, detec-
tion of genomic signatures of evolutionary adaptation pro-
vides an alternative approach to shed light on the biological
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mechanisms underlying disease susceptibility (Lachance and
Tishkoff 2013; Vasseur and Quintana-Murci 2013).

Taiwan is home to a diversity of human ethnic groups that
can be roughly grouped into three major populations.
Taiwanese Han people are the descendants of early immi-
grants (mainly Minnan and Hakka) who migrated from
Southern China in the last 400 years and were recently joined
by many immigrants from various geographic areas of China
at the end of World War II in 1945 (Dittmer 2004). The sec-
ond major group contains 16 officially recognized indigenous
populations, representing 2.3% of the total population in
Taiwan. These indigenous tribes harbor rich genetic diversity
and have been considered as the ancestral lineages of
Austronesian-speaking people (Trejaut et al. 2005; Soares
et al. 2011; Ko et al. 2014; Lipson et al. 2014; Trejaut et al.
2014; Chang, Liu, et al. 2015; Soares et al. 2016). Finally, the
third group, Taiwan plain aborigines (Pingpu), includes many
tribes that previously inhabited plains across the island of
Taiwan. Although they are thought to be descendants of
Austronesian-speaking people, most of these tribes may
have admixed with the Taiwanese Han people (Trejaut
et al. 2005, 2014). However, the extent of contribution of
genetic diversity from the Pingpu aborigines to the
Taiwanese Han, as well as the degree of population mixture
between the current Taiwanese Han and indigenous popula-
tions, is unclear.

In this study, we analyzed the Axiom Genome-Wide
(whole-genome [WG]) TWB genotyping array (650k
single-nucleotide polymorphisms [SNPs]) in 14,401
individuals from the Taiwanese Han population and
the WG sequencing data for a subset of 772 people
collected by the Taiwan Biobank. As a result, we
detected four major genetic ancestries (with distinct
geographic ranges) in the Taiwanese Han and revealed
signatures of ancient population mixture before they
migrated to Taiwan. We further scanned for genomic
signatures of positive selection by summarizing the
lengths of extended haplotype (using Integrated
Haplotype Score [iHS]) and shapes of genealogy sur-
rounding the selection-candidate loci (using iSAFE).
Consequently, we identified 16 loci targeted by positive
natural selection in which selection signatures can be
localized unambiguously at five candidate genes. For
each of the five candidate genes, we further performed
multiple linear regression analyses with 16 metabolic-
related traits and discussed the possible role of each
gene in adaptive evolution and connections with dis-
ease susceptibility.

Results

Characterizing Genetic Structure and Ancestry in the
Taiwanese Han and Neighboring Populations
ADMIXTURE analysis was conducted to characterize the pat-
terns of genetic structure across 99 Asian populations by
merging the Pan-Asia and Human Genome Diversity
Project (HGDP) SNP genotyping data sets for a total of
19,290 intersected SNPs in 2,304 people (Li et al. 2008;

Abdulla et al. 2009). We ran ADMIXTURE for K¼ 2–30 where
K is the number of ancestral populations assumed in the
model and found that the K value with the lowest cross-
validation error (CVE) is 19. Because the inferred patterns
of ancestral components (ACs) among the populations of
interest are similar for K � 13, we chose the most parsimo-
nious model K¼ 13 to summarize the results of Taiwanese
populations, including Hakka (TW-HA), Minna (TW-HB),
Ami (AX-AM), and Atayal (AX-AT), together with the other
Sino-Tibetan speaking populations and several neighboring
populations. We designated different colors to different ACs
identified in our study (fig. 1A). In general, the patterns of
genetic structure can be distinguished broadly into different
language groups. For example, blue is the predominant AC for
most of the Sino-Tibetan speaking populations, whereas yel-
low is predominant for the Turkic/Tungusic/Mongolic/
Koreanic people, green for the Ryukyu and main-island
Japanese (Japonic), and pink for the Austronesian speaking
populations (e.g., Ami and Atayal). Particularly, the ancestries
for the Taiwanese Hakka/Minna are mainly composed of
these four aforementioned ACs with average proportions of
46%/45%, 23%/21%, 18%/21%, and 10%/10% for the blue,
yellow, pink, and green ACs, respectively (fig. 1B). We con-
ferred these Taiwanese Hakka/Minna populations together
with the Taiwanese Han since they are genetically very close
to each other. In contrast, a very distinct pattern of genetic
structure was observed for the other two Taiwanese indige-
nous populations (Ami and Atayal) who carry two major
ancestries (pink and blue), with an average of 77% for the
pink AC in both populations and 21% and 18% for the blue
AC in Ami and Atayal, respectively (fig. 1B). Several neighbor-
ing populations within the Sino-Tibetan language group also
displayed similar patterns of ancestry with the Taiwanese Han
including Singapore Chinese (SG-CH), Chinese Cantonese
(CN-GA), Chinese Han, and Tujia people (fig. 1B). All of these
populations live in Southeastern Asia (fig. 1C). The results for
the remaining populations are provided in supplementary
figure S1, Supplementary Material online.

We further investigated the geographic distribution across
all populations with average ancestry proportion �3% in
each of the four ACs and detected distinct geographic distri-
butions among them (see fig. 1C). We designated the yellow
AC as the Northern ancestry since its proportion increases
with latitude of population location (q ¼ 0.74, P¼ 1.4 �
10�10 for Spearman’s rank correlation). The proportion of
blue AC appeared to be significantly correlated with latitude
(q ¼ 0.39, P¼ 0.0014) and scatters around the region of
Southeast Asia (referred as the Southeastern ancestry). The
proportion of green AC (referred to as the Japonic ancestry)
are significantly correlated with both longitude (q ¼ 0.58,
P¼ 0.00057) and latitude (q ¼ 0.56, P¼ 0.00091), whereby
the Ryukyu Japanese has the highest proportion (86%) among
all populations studied, followed by the main-island Japanese
(60%). Lastly, the proportion of pink ancestry is significantly
correlated with latitude (q ¼ �0.63, P¼ 3.5 � 10�8) and is
high in many Austronesian-speaking populations living in
Island Southeast Asia and Taiwan (referred to as the ISEA
ancestry).
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Identifying Admixed Ancestries in the Taiwanese Han
People
Since the Taiwanese Han population carries a considerable
proportion of ISEA ancestry that is also high in many
Austronesian-speaking populations, we attempted to detect
signatures of population mixture by assuming the Ami (rep-
resenting the ISEA ancestry) as one of the two donor pop-
ulations in the model of F3 statistics and scanned for any
other donor population that showed significant signatures
of population mixture contributing to the genomes of
Taiwanese Han (the recipient population). As a result, 23
out of the 99 populations in the data set showed significant
negative Z scores of F3 after correcting for multiple tests using
FDR (Z scores ranged from �9.1 to �2.2). These 23 popula-
tions spread across a wide geographic range in East Asia (EA),
from Siberia (Yakut people) to Singapore (SG-CH) in the
South end of EA (fig. 2A). A similar pattern was also observed
when the Taiwanese Han was replaced by the Chinese Han as
the recipient population in F3 (Z scores ranged from �8.1

to �2.5). Similar outcomes were also obtained when the
Atayal was used as the donor population instead of the
Ami (see supplementary fig. S2, Supplementary Material on-
line). We further applied F4, which allows detection of recent
gene flow between the ancestors of Taiwanese Han and in-
digenous Austronesian-speaking populations (represented by
Ami) by testing F4 (Yoruba, Ami; popi, Taiwanese Han) where
popi was selected from the 11 Sino-Tibetan speaking popu-
lations that are genetically close to Taiwanese Han. Since
Yoruba is the outgroup population in the test (assuming
no admixture with popi and Taiwanese Han), a significant
positive F4 value would suggest gene flow between the ances-
tors of Taiwanese Han (TWB) and Ami (AX-AM). Table 1
summarizes the results of the F4 tests; all showed significant
positive F4 values (Z¼ 3.2–35.3) except for two outcomes
when Singapore Chinese (SG-CH) and Chinese Cantonese
(CN-GA) were used as popi, independently. These two pop-
ulations appear to be genetically closest to the Taiwanese Han
among all the Sino-Tibetan speaking populations (fig. 1B).

FIG. 1. Inferred genetic ancestries in the Sino-Tibetan people and their neighboring populations in East Asia. (A) Admixture results for the Sino-
Tibetan and their neighboring populations. Each individual is indicated by a vertical line, which is subdivided into K (¼13) colored segments, where
K is the number of ancestral populations assumed in the analysis. The y-axis represents the estimated ancestry proportions. Ethnicity names are
labeled on the x-axis. The abbreviations of all populations are given in supplementary table S4, Supplementary Material online. The ADMIXTURE
analysis was performed across 99 Asian populations for a total of 19,290 SNPs in 2,304 individuals, but only the Sino-Tibetan, and several
neighboring populations from Altaic, Turkic, Tungusic, Mongolic, Koreanic, and Japonic linguistic groups as well as two Taiwanese
Austronesian populations—Ami (AX-AM) and Atayal (AX-AT) are shown. (B) Average proportions of ancestry of these populations. (C)
Geographic distributions of the four major ancestries of the Taiwanese Han are shown for the populations with average proportions �0.35 in
each ancestry. The genetic ancestries for the remaining populations are provided in supplementary figure S1, Supplementary Material online.
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In addition, signatures of population mixture were also
detected in the Chinese Han when the Hmong people were
used (as the donor population) to represent the Southeastern
ancestry (blue) using F3, since they carry the highest blue
ancestry proportions among all populations (0.89 and 0.82
for the Thailand and Chinese Hmong, respectively).
Consequently, 13 populations were identified with significant
negative values of Z scores, ranging from �2.1 to �7.9
(fig. 2B). Ten of these populations speak languages belonging
to the Altaic language groups (i.e., Mongolic/Tungusic/
Turkic/Koreanic/Japonic) and live at relatively high latitudes
(also see fig. 1C).

We characterized admixed ancestries for each individual
genome across 14,401 people collected by the Taiwan
Biobank (https://www.twbiobank.org.tw/new_web_en/) us-
ing ADMIXTURE together with the SNP data sets of the
HGDP and eight populations from the Southeast Asia data
set published by Mörseburg et al. (2016). The Pan-Asia data
set was excluded from this analysis to increase the number of
analyzed SNPs from 19,290 to 101,955. ADMIXTURE was run
by assuming different K values. The ADMIXTURE results for
K¼ 3–9 are provided in supplementary figure S3,
Supplementary Material online, in which K¼ 9 appears to
fit best to the data set with the lowest CVE value. Figure 2C

FIG. 2. Geographic distributions of populations with admixed signature with the Taiwanese Han or Chinese Han, and the inferred ancestries of
14,401 individual genomes in the Taiwan Biobank. (A) Geographic distribution of populations in the F3 tests—F3(Taiwanese Han; Ami, popi),
where the Taiwanese Han (recipient population) is labeled in blue and the Ami (donor population) is labeled in green to represent the ISEA
ancestry. (B) Geographic distribution of populations in the F3 tests—F3(Chinese Han; CN-HM, popi), where the recipient population is the Chinese
Han, whereas the donor population is Chinese Hmong (CN-HM) to represent the Southeastern ancestry. (C) Admixture results across 52
populations for a total of 101,959 SNPs (after removing all populations from the Pan-Asia SNP data set).

Table 1. F4 Test of Population Mixture for the Sino-Tibetan Speaking Populations.

Pop1 (A) Pop2 (B) Pop3 (C) Pop4 (D) F4 Z P PFDR

Yoruba AX-AM SG-CH TWB 0 0.49 0.49 0.49
Yoruba AX-AM CN-GA TWB 0.0011 0.22 0.22 0.24
Yoruba AX-AM Tujia TWB 0.0062 3.2 0.00078 0.0010
Yoruba AX-AM Han TWB 0.0066 5.3 7.0 3 1028 1.0 3 1027

Yoruba AX-AM Lahu TWB 0.0144 5.8 4.2 3 1029 7.3 3 1029

Yoruba AX-AM CHB TWB 0.01 7.7 6.8 3 10215 1.4 3 10214

Yoruba AX-AM CN-SH TWB 0.015 8.8 <6.8 3 10215 <1.4 3 10214

Yoruba AX-AM Yizu TWB 0.020 9.3 <6.8 3 10215 <1.4 3 10214

Yoruba AX-AM Naxi TWB 0.023 9.3 <6.8 3 10215 <1.4 3 10214

Yoruba AX-AM TH-KA TWB 0.026 11.7 <6.8 3 10215 <1.4 3 10214

Yoruba AX-AM IN-TB TWB 0.0823 35.3 <6.8 3 10215 <1.4 3 10214

NOTE.—F4 was conducted by assuming F4(A, B; C, D) where the four populations are related by the unrooted population tree ((A, B), (C, D)). Population abbreviations are: AX-
AM, Ami; SG-CH, Singapore Chinese; CN-GA, Chinese Cantonese; CHB, Chinese Han in Beijing; CN-SH, Chinese Han in Shanghai; and TH-KA, Thailand Karen.
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illustrates the inferred ancestral proportions for each
Taiwanese-Han individual from the Taiwan Biobank under
the assumption of nine ancestral populations. Three major
ACs were identified in the Taiwanese Han people. The
Southeastern ancestry (blue) constitutes the highest percent-
age for most Taiwanese Han people (average 59%, range 24–
64%), followed by the Northern ancestry (yellow) with 24%
on average (range 8–41%). The ISEA ancestry (pink) consti-
tutes 15% of the genome on average but varies considerably
from 0.1% to 62% (fig. 2C). Since we excluded the Pan-Asia
data set, the Ryukyu Japanese population (JP-RK), which con-
tains the highest proportion of green AC (86%), was not
included in this analysis and, consequently, the ancestry pro-
portion previously attributed to the green AC can no longer
be separated from the blue and yellow ACs.

We also applied fineSTRUCTRUE developed by Lawson
et al. (2012) to this data set (after exclusion of the Western
and Southern Asian populations) for detecting any subtle
population substructure within the Taiwanese Han. Due to
computational limitation, only 854 individuals were included
for this analysis (including 500 Han Taiwanese). Although
based on the coancestry matrix, we did not observe any ap-
parent pattern of population substructure within the Taiwan
Han (see supplementary fig. S4A, Supplementary Material
online), the population tree separated the Han Taiwanese
into three main groups. Most of the Taiwanese individuals
(472 of 500) were clustered together forming a subtree to-
gether with a few individuals of Chinese Han and the She
population (group 1). Another 27 individuals (group 2) were
grouped into the neighboring subtree that also contains sev-
eral Northern Asian populations (e.g., Mongolia, Xibo,
Hezhen, Tu, and Japanese). Finally, one Taiwanese-Han indi-
vidual (group 3) was placed closer to the Dusun population
(who live in Northern Borneo) on a relatively distantly related
subtree that also includes several Austronesian speaking pop-
ulations (supplementary fig. S4B, Supplementary Material on-
line). These three groups differ considerably in their estimated
proportions of the three major ancestries inferred by
ADMIXTURE. Although the 472 Taiwanese Han people in
group 1 showed similar estimates in average proportion of
each ancestry, the 27 individuals in group 2 showed a signif-
icant increase in proportion of Northern ancestry (average
proportion¼ 29%), but a decrease in proportion of ISEA an-
cestry (average proportion¼ 10%). For the last individual
(group 3), the proportion of ISEA ancestry is as high as
54%, but only 10% and 34% proportion of Northern and
Southeastern ancestries, respectively (supplementary fig.
S4C, Supplementary Material online).

Identifying Candidate Loci Targeted by Positive
Natural Selection
To detect for genome-wide signatures of positive selection in
the Taiwanese Han, we applied Voight et al.’s (2016) jiHSj to
scan for unusually long extended haplotypes using the WG
SNP genotyping data of Taiwan Biobank. jiHSjwas computed
for every SNP with assured ancestral/derived information and
with minor allele frequency >0.01 (Voight et al. 2006).
Subsequently, jiHSj scores were obtained for a total of

562,983 SNPs in 14,401 individuals. The empirical distribution
of jiHSj in our results is approximate to a folded standard
normal distribution with top 1% value�2.66 (supplementary
fig. S5, Supplementary Material online). Since it is well known
that the EDAR gene has experienced recent positive selection
in the Han population (Sabeti et al. 2007; Grossman et al.
2010; Kamberov et al. 2013), we used the observed selection
signatures of EDAR in our result as the threshold for identi-
fying other selection-candidate loci. Therefore, a SNP cluster
would be considered as a selection-candidate locus if it con-
tains �3 SNPs higher than 4.18 (the highest jiHSj value of
EDAR) and �10 SNPs above the top-1% jiHSj cutoff-score
(2.66) within the 500-kb range nearby the core SNP of the
highest jiHSj score. As a result, selection signatures were iden-
tified in 16 genomic loci; the highest jiHSj score is rs10483453
(9.56) located at chromosome 14: 35.6–36.0 Mb, encompass-
ing multiple genes within this region, followed by rs9262558
(jiHSj ¼ 7.5) located at the region of 28.5–33.1 Mb on chro-
mosome 6, representing the HLA gene family (fig. 3). The
number of SNPs above the cutoff of top-1% jiHSj is 25 for
the former region and 325 for the HLA gene family (table 2). In
addition, because the sample size is considerably large in our
data set (14,401), we were able to identify candidate core
SNPs from a wide range of allele frequencies. The allele fre-
quency for the core SNP of EDAR (rs17034770) is as high as
0.89, whereas the frequency for the core SNP of LRP1B on
chromosome 2 is as low as 0.05 (table 2).

A recent positive selection event not only causes unusually
long blocks of shared haplotypes in the genome but also
produces a “star-like” genealogy surrounding the selection-
favored mutation due to an excess of newly arisen mutations
(Hudson 1990). To further confirm these 16 candidate loci
detected by jiHSj, we applied iSAFE to analyze the WG se-
quencing data from 772 individuals (a subset of the 14,401
individuals). The iSAFE statistic is designed to characterize the
shape of genealogy for a given candidate region and to pro-
vide better resolution for identifying the underlying candidate
gene/variant targeted by selection (Akbari et al. 2018). As a
result, we identified five genes (out of 16 loci) with the peak of
iSAFE signals pointed to a single gene. These five genes include
CTNNA2 (Catenin Alpha 2) and LRP1B (LDL Receptor Related
Protein 1B) at chromosome 2, CSNK1G3 (Casein Kinase 1
Gamma 3) at chromosome 5, ASTN2 (Astrotactin 2) at chro-
mosome 9, and NEO1 (Neogenin 1) at chromosome 15.
Figure 4 displays the localized jiHSj and iSAFE plots for
each of the five genes. An elevation of linkage disequilibrium
(LD) is also noticeable underneath each candidate region. In
addition, we incorporated the combined annotation-
dependent depletion (CADD) score to examine the func-
tional importance for each SNP. Based on the iSAFE scores,
the top 20 candidate SNPs for each gene and their CADD
scores are provided in supplementary table S1,
Supplementary Material online. Of the remaining candidate
loci (excluding EDAR), five appear to harbor multiple genes
underneath the peak signals of iSAFE and, therefore, the
selection-targeted gene cannot be determined, whereas three
loci appear to be situated at the intergenic regions. Finally,
selection signatures for the other two loci are less evident
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because their iSAFE peak scores are only marginally significant
(�0.1, the suggestive significance value by Akbari et al.
[2018]). Table 2 summarizes the peak iSAFE scores for each
candidate region and the identified candidate gene accord-
ingly. The plots of jiHSj, iSAFE, and LD heat map for these loci
are provided in supplementary figure S6, Supplementary
Material online.

Analysis of Associations between Selection-Candidate
Genes and Metabolic-Related Traits
For each selection-candidate gene, we performed multiple
linear regression analyses in 16 metabolic-related traits by

incorporating sex, age, body mass index, and PC1–8 in prin-
cipal component analysis as covariates. These trait measure-
ments were collected by the Taiwan Biobank from a series of
physical/blood/urine examinations and can be broadly cate-
gorized into three functional classes including kidney/dia-
betic, cardiovascular, and liver functions. The mean and
standard deviation of each trait are listed in supplementary
table S2, Supplementary Material online. For each gene, the
linear regression results were only considered for the SNPs
located at the peak iSAFE-score region (“peak region” is de-
fined by the SNPs of iSAFE scores� 0.1 with an additional 50-
kb extension at both ends). We next applied a LD-based

FIG. 3. Genome-wide scans of signatures of recent positive selection for the Taiwanese Han people. The Manhattan plot demonstrates the jiHSj
scores across 22 autosomes and the X chromosome for a total of 562,982 SNPs in 14,401 Taiwanese Han people. The threshold is set at the highest
jiHSj score (4.18) of EDAR, a well-studied gene targeted by recent positive selection in the Han Chinese (Sabeti et al. 2007; Grossman et al. 2010;
Kamberov et al. 2013). The selection-candidate SNP clusters are colored in red. Gene symbols of the selection-candidate loci are shown if the
underlying candidate genes can be unambiguously identified by iSAFE.

Table 2. List of Candidate Regions Targeted by Positive Selection in the Taiwanese Han Population.

Chr Site (Mb) SNPjiHSj jiHSj Freq. #SNP Gene SNPiSAFE iSAFE

2 80.2–80.5 rs10496236 5.15 0.55 18 CTNNA2 rs17018689 0.18
2 108.8–109.8 rs17034770 4.18 0.89 10 EDAR rs1469965 0.72
2 141.5–141.9 rs79810070 5.50 0.05 19 LRP1B rs17516755 0.20
2 163.8–164.3 rs61158130 5.96 0.08 29 Intergenic rs10167931 0.21
3 13.6–14.3 rs873853 6.16 0.56 10 Multiple genes rs17038710 0.09
4 18.8–19.6 rs73803337 4.73 0.10 14 Intergenic rs1382157 0.16
5 111.3–111.8 rs59969240 6.42 0.07 27 Multiple genes rs351772 0.40
5 122.6–123.1 rs4572998 4.31 0.13 22 CSNK1G3 rs6868518 0.31
6 28.5–33.1 rs9262558 7.51 0.11 325 HLA family — —
6 83.0–83.7 rs287848 4.55 0.31 43 intergenic rs992013 0.25
6 107.6–108.0 rs79851990 5.94 0.17 15 PDSS2/SOBP rs7767511 0.23
7 133.3–134.0 rs9656434 4.91 0.49 19 EXOC4/LRGUK rs992013 0.15
9 3.9–4.1 rs4741879 5.50 0.22 20 GLIS3 rs72685692 0.11
9 119.0–119.3 rs10983123 5.99 0.19 17 ASTN2 rs888401 0.19
14 35.6–36.0 rs10483453 9.56 0.13 25 KIAA0391/PSMA6 rs10144857 0.21
15 72.8–73.8 rs9806341 6.12 0.46 25 NEO1 rs8039418 0.41

NOTE.—“SNP” is the rs ID of the core SNP with the highest jiHSj score at a given candidate region. “Freq.” is the derived-allele frequency of the core SNP. “#SNP” is the number of
SNPs whose jiHSj values � 2.66 (top 1%). “SNPiSAFE”, the rs ID of the SNP with the highest iSAFE score. “iSAFE” is the value of iSAFE of each SNPiSAFE. “Chr” represents
chromosome.
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clumping procedure to report significant SNPs in regression
for a given candidate region targeted by selection. The clump-
ing procedure first takes SNPs that are significant at P� 10�4

as index SNPs. The threshold was set to correct for the num-
ber of identified candidate loci (5) multiplied by the number

of traits (16). A clump was formed by including all other
“clumped” SNPs that passed the second significance thresh-
old (P� 0.01) within a 250-kb distance from the index SNP
and are in LD with the index SNP (r2 � 0.5) (Purcell et al.
2007). Table 3 summarizes the results of the detected traits

FIG. 4. Plots of jiHSj and iSAFE scores and LD heat maps of five selection-targeted genes in the Taiwanese Han population. The jiHSj and iSAFE
scores were plotted against each of the five selection-candidate loci where the selection-targeted gene can be unambiguously identified (based on
the iSAFE signals). In each iSAFE plot, the point size and color gradient represent C scores that were estimated to profile the degree of functional
importance (deleteriousness) according to Kircher et al. (2014) and Rentzsch et al. (2019). The heat map demonstrates the pairwise estimates of LD.
Each pixel represents a pairwise LD estimate using the squared correlation coefficient scaled by allele frequency (r2). All possible pairs of
polymorphic sites were measured. Levels of LD ranging from 0 to 1 are illustrated according to a white to red color gradient. The physical position
of each polymorphic site is marked by a black line segment above the heat map, which is aligned with the plot of gene structures (based on the
GRCh37/hg19, UCSC genome browser). The plots for the remaining candidate loci are presented in supplementary figure S6, Supplementary
Material online.
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and associated SNPs within the selection-targeted region (i.e.,
the peak iSAFE-score region) in each of the five genes as also
shown in figure 5. CTNNA2 was found to be associated with

serum albumin (P¼ 9.3� 10�5), whereas LRP1B appears to
be associated with levels of low-density lipoprotein choles-
terol (LDLC) and serum level of glutamic-oxaloacetic

Table 3. List of SNPs and Associated Metabolic-Related Traits in the Five Genes Targeted by Positive Natural Selection.

Gene SNP Chr Position Trait Reg. Cof. P iSAFE Imp.

CTNNA2 2_80464202 2 80464202 Albumin 21.25 9.3 3 1025 — 0.54
rs554504577 2 80362623 20.91 0.0026 — 0.51
rs17018689 2 80373740 0.043 0.071 0.19 0.99

LRP1B rs186045033 2 141638598 LDLC 0.20 3.3 3 1025 — 0.87
rs185095358 2 141631133 0.20 3.3 3 1025 — 0.87
rs144464547 2 141580213 SGOT 20.69 5.2 3 1025 — 0.91

CSNK1G3 5_123001857 5 123001857 HbA1C 21.09 3.0 3 1025 — 0.81
5_122978454 5 122978454 21.09 3.0 3 1025 — 0.89
rs79451111 5 122983696 TG 1.19 3.8 3 1025 — 0.52
rs6868518 5 122838766 BUN 0.021 0.069 0.31 1.00

ASTN2 rs564508867 9 119135159 FBG 20.69 1.0 3 1024 — 0.73
rs888401 9 119207606 Albumin 20.028 0.028 0.19 1.00

T-BIL 0.024 0.054
NEO1 15_73481424 15 73481424 SGOT 0.58 1.2 3 1025 — 0.85

rs146077526 15 73424172 0.32 2.4 3 1024 — 0.93
15_73587033 15 73587033 Creatinine 0.72 8.6 3 1025 — 0.69

rs8039418 15 73441432 BUN 0.035 0.0023 0.41 0.99
UA 0.019 0.053

NOTE.—Multiple linear regressions were conducted for the iSAFE peak region (iSAFE� 0.1) in each of the five genes across 16 metabolic-related traits. The SNP with an iSAFE
score is the SNP of the highest iSAFE for a given candidate gene. The listed traits are albumin (g/dl), low-density lipoprotein cholesterol (LDLC, g/dl), serum level of aspartate
aminotransferase (SGOT, U/l), hemoglobin A1c (HbA1C, %), triglyceride (TG, mg/dl), blood urea nitrogen (BUN, mg/dl), fasting blood glucose (FBG, mg/dl), total bilirubin (T-
BIL, mg/dl), creatinine (mg/dl), and uric acid (UA, mg/dl). “Chr” represents chromosome. “Reg. cof.” represents regression coefficient. “Imp.” represents imputation posterior
probability.

FIG. 5. Multiple linear regression analyses of metabolic-related traits for five selection-candidate genes in the Taiwanese Han population. For each
trait, significant variants (highlighted in red) were identified based on a LD-based clumping method (Purcell et al. 2007) within the selection-
targeted region (colored in dark gray). The plots for the remaining metabolic traits are presented in supplementary figure S7, Supplementary
Material online.
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transaminase (SGOT) (P¼ 3.3� 10�5 and 5.2� 10�5, re-
spectively). We also found SNPs at the iSAFE-score peak re-
gion of CSNK1G3 that are associated with hemoglobin A1c
(HbA1C) and triglyceride (TG) (P¼ 3.0� 10�5 and
3.8� 10�5, respectively). Moreover, ASTN2 was found to be
associated with fasting blood glucose (FBG) (P¼ 1.0� 10�4),
whereas NEO1 was associated with SGOT and serum creati-
nine (P¼ 1.2� 10�5 and 8.6� 10�5, respectively). However,
we did not detect strong associations for any of the SNPs
within the top-iSAFE scores in each gene. Table 3 also
presents the results for the single top-iSAFE SNP in each
gene for the traits that show weak associations. The detailed
results of all tested phenotypes and SNPs are provided in
supplementary table S3, Supplementary Material online.

Discussion

Admixed Genetic Ancestries of the Taiwanese Han
Population-specific genetic diversity accumulated along hu-
man migration trajectories could shape the genetic basis of
diseases differently among populations (Chen et al. 2012;
Corona et al. 2013; Wall et al. 2019). Although the genetic
structure of the Han people in China has been investigated
extensively in recent years (Wen et al. 2004; Xue et al. 2008;
Chen et al. 2009; Xu et al. 2009; Zhao et al. 2015; Chiang et al.
2018), studies focusing on genetic ancestry of the Han pop-
ulations outside China and the level of admixture with other
ethnic groups, particularly on the island of Taiwan, are limited
(Chen et al. 2016). In the present study, we first characterized
the genetic ancestry of individual genomes and identified four
major ancestries as well as subtle genetic structure within the
Taiwanese Han. Our results are consistent with the findings of
Chen et al. (2016), who utilized a smaller number of popula-
tions to identify four major ancestries and suggested that 80%
of Taiwanese Han people are genetically closer to the
Southern Han Chinese than to the Northern Han Chinese.
However, the geographic patterns of these ancestries were
not thoroughly discussed in their analysis. Although our in-
ferred pattern of ancestries is also in good agreement with the
previous studies that analyzed the Pan-Asia and HGDP data
sets separately (Li et al. 2008; Abdulla et al. 2009), by analyzing
the combined data, we were able to gain a better overview of
the geographic distributions of these ancestries; consequently,
they can be referred to as the Southeastern (blue), Northern
(yellow), Island Southeast Asian (ISEA; pink), and Japonic
(green) ancestries. Notably, we identified considerable pro-
portions of ISEA ancestry (also carried by many Austronesian-
speaking populations in high proportions) in most individuals
of Taiwanese Han (average 15%, range 0.1–62%). The mixed
ancestries observed in the Taiwanese Han could be attributed
to either population mixture or shared ancestry before the
divergence of descendent populations. We therefore applied
the F3 tests to detect signatures of population mixture.
Consequently, our results showed that the ISEA ancestry in
the Taiwanese Han was the outcome of population mixtures
rather than shared ancestry, and the admixture event likely
occurred before the Taiwanese Han ancestors migrated to
Taiwan (fig. 2A). If the admixture occurred only after the

Han people migrated to Taiwan, then the observed results
would only be seen in the Taiwanese Han. However, similar F3

outcomes were found in the Chinese Han (supplementary fig.
S2, Supplementary Material online), supporting that admix-
ture occurred prior to migration to Taiwan. Moreover, signa-
tures of population admixture were also detected between
the ancestors of Taiwanese Han and the Ami Austronesian-
speaking population using the F4 test; significant positive F4

values were observed when most Sino-Tibetan speaking pop-
ulations were individually included in the analysis, except for
the Chinese Singapore and Chinese Cantonese (table 1).
These two populations appear to be genetically closest to
the Taiwanese Han among all other Sino-Tibetan speaking
populations (fig. 1B), which is consistent with the hypothesis
of population mixture before the ancestors of Taiwanese Han
migrated to Taiwan.

Using F3, Chiang et al. (2018) also identified significant
signatures of population mixture between the Sichuan and
Guangdong people (who live in Southwestern and
Southeastern China, respectively) with the Ami and Atayal
populations of Taiwan, which is in concordance with our
hypothesis. Our results are also in a good agreement with
the findings of McColl et al. (2018). By analyzing ancient hu-
man genomes, they revealed evidence of admixture and sug-
gested that, during the demographic expansion from EA into
Southeast Asia about 4,000 years ago, the EA framers did not
simply replace the previous occupants. However, our results
do not reject the possibility of recent admixture between the
Taiwanese Han and indigenous populations on the island of
Taiwan. Indeed, the wide range of individual variations in the
proportion of Austronesian ancestry (0.1–62%) observed in
the Taiwanese Han may be better attributed to recent ad-
mixture (McVean 2009). In the population tree inferred by
fineSTRUCTURE, we observed 1 (from 500 individuals) of the
Taiwanese Han grouped closer to the Dusun population, who
are genetically closer to the indigenous populations of Taiwan
than to the Sino-Tibetan populations (Mörseburg et al. 2016;
Yew et al. 2018).

We also tested for signatures of population mixture be-
tween the Southeastern (blue) and Northern (yellow) ances-
tries in the Chinese Han by using the Hmong people to
represent the blue ancestry and detected significant results
in many Northern populations who carry high proportions of
yellow ancestry (fig. 2B). A North-to-South cline of genetic
structure has been well documented in the Chinese Han
people (Wen et al. 2004; Zhang et al. 2007; Xue et al. 2008;
Chen et al. 2009; Xu et al. 2009; Zhao et al. 2015; Chiang et al.
2018). Our results suggest that ancient population admix-
tures between the Northern and Southern populations in
China may have played a role in shaping the North-to-
South cline in the Han population.

Within the island of Taiwan, the genetic structure differs
greatly between the Taiwanese Han and the two indigenous
populations (Ami and Atayal), who carry very high propor-
tions of ISEA ancestry (pink). These differences have been
previously shown by Abdulla et al. (2009). The distinct pat-
terns of genetic structure between the Taiwanese Han and
indigenous populations imply that the genetic basis
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underlying disease susceptibility could vary between them.
The current WG genotyping bead-arrays used in the
Taiwan Biobank are mainly customized for genotyping indi-
viduals of Han ancestry. It is therefore of great importance to
incorporate genetic diversity of all Taiwanese indigenous pop-
ulations when designing SNP arrays to uncover genetic var-
iants that underlie disease susceptibility in the Taiwanese
indigenous people.

Candidate Genes Targeted by Natural Selection
We searched for signatures of selection in the Taiwanese Han
population by scanning for genetic loci that displayed unusu-
ally long haplotype lengths using iHS and identified 16 SNP
clusters (including EDAR whose iHS score was used as the
cutoff value; see fig. 3). Among them, only EDAR, the HLA
gene family, and ASTN2 were previously reported as candi-
date genes favored by selection in human populations (Sabeti
et al. 2007; Scheinfeldt et al. 2012). The rest of the SNP clusters
were novel findings from our study. Since the sample size of
our data is large (n¼ 14,401), the statistical power of iHS was
substantially enhanced for detecting selection signatures. We
next applied iSAFE statistics to verify these candidate loci.
Consequently, we were able to link selection signals to five
particular genes and conducted association analyses to fur-
ther examine their possible effects on phenotypes.

Although metabolic-related traits and genotyping data of
the Taiwanese Han curated by the Taiwan Biobank have been
applied to conduct various association analyses, most have
focused on identifying variants associated with certain disease
cohorts while using the Taiwan Biobank samples as a control
(Chung et al. 2017; Nfor et al. 2018; Lin et al. 2019). In the
present study, association analyses were conducted only
based on the Taiwan Biobank healthy individuals. However,
we did not detect any significant association between the 16
metabolic-related traits and the selection-favored haplotypes
(represented by the top-iSAFE SNPs). KudaravalLi et al. (2008)
also found no significant association between expression
quantitative trait loci (eQTLs) and the selection-favored allele
that underlies recent positive selection at the lactase gene
(Bersaglieri et al. 2004; Tishkoff et al. 2007). They observed
significant association between eQTLs and jiHSj scores in the
Yoruba population but not for the non-African populations.
Ambiguous evidence of linking selection signals with QTLs
possibly reflects the complex nature of QTLs that are gov-
erned jointly by genetic and environmental factors (Mackay
et al. 2009). Nonetheless, we attempted to explore the possi-
ble functional effects of each selection-candidate gene by ex-
amining significant associations (among the 16 metabolic-
related traits) with the SNPs located within the selection-
targeted region (defined by the peak of iSAFE signals, see
fig. 5 and table 3). The significant association results in our
analyses should not be treated as a direct consequence of
selection because these identified SNPs are imputed and not
in strong LD with the selected haplotypes. Rather, it can be
treated as the possible effects of each candidate gene on the
individuals’ phenotypes.

We identified five candidate genes targeted by natural se-
lection. CTNNA2 encodes a-N-catenin, a cytoskeleton protein

that links cadherin adhesion receptor with actin cytoskeleton
and plays an important role in the stability of dendritic spines.
In the absence of a-N-catenin, spine heads are abnormally
motile (Abe et al. 2004). Several studies have shown that
CTNNA2 variants are associated with schizophrenia and
pachygyria (Mexal et al. 2008; Chu and Liu 2010; Schaffer
et al. 2018) as well as excitement seeking and impulsive
behaviors (Terracciano et al. 2011; Ehlers et al. 2016).
Although highly expressed in the brain, CTNNA2 is also
expressed considerably in the testis (Fagerberg et al. 2014).
However, little is known about its function in the testis. Since
the actin cytoskeleton is important for the regulation of
sperm motility, sperm capacitation, and acrosome reaction
(Breitbart et al. 2005; Breitbart and Finkelstein 2018; Gervasi
et al. 2018), it is possible that natural selection acted on
CTNNA2 to increase male reproductive success and may be
accompanied with negative side effects such as increased
susceptibility to neurological disorders. In addition, some
studies have suggested that serum albumin contributes to
the production of seminal plasma albumin for maintaining
sperm quality and morphology (Orlando et al. 1988; Elzanaty
et al. 2007; Moura and Memili 2016). In the present study, the
significant association identified between the CTNNA2
selection-targeted region and serum albumin level (table 3)
supports the possible role of CTNNA2 in male reproduction.
We further retrieved data of correlation estimates between
the top-ranked SNPs in iSAFE scores and tissue-specific gene
expression levels from the database of the Genotype-Tissue
Expression (GTEx) project (release V8). The top-iSAFE SNP
(rs17018689) of CTNNA2 appears to have a significant effect
on gene expression in the thyroid (m¼ 1 where m is defined
as the posterior probability that the effect exists in each study;
Han and Eskin 2012). Its possible role in disease susceptibility
requires future investigation (supplementary fig. S8A,
Supplementary Material online; also see supplementary table
S5, Supplementary Material online, for the remaining top-
ranked iSAFE SNPs).

LRP1B encodes a member of the low-density lipoprotein
receptor family, which is also a large family of cell-surface
receptors. The function of LRP1B is related to LDL particle
receptor activity and calcium ion binding (Liu et al. 2000).
Diseases or complex traits associated with LRPB1 variants
include childhood obesity, Alzheimer’s disease, various types
of cancer, and age of menarche (Speliotes et al. 2010; Chen
et al. 2019; Kichaev et al. 2019; Lee 2019). Poledne et al. (2016)
identified a positive correlation between non-high-density li-
poprotein cholesterol concentrations and proportions of
phagocytic macrophages in adipose tissue and hypothesized
that the observed pattern is the consequence of evolutionary
adaptation. They suggested that macrophage polarization in
human visceral adipose tissue is related to fatty acid metab-
olism and that individuals with higher phagocytic activity of
macrophages could provide selection advantages for survival
against infectious diseases (Poledne et al. 2016, 2019; Poledne
and Zicha 2018). From our results, we found that the
selection-targeted region of LRP1B was indeed associated
with serum LDL levels (table 3). Our findings are supportive
of the hypothesis proposed by Poledne et al.; moreover,
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LRP1B was also found to be associated with the age of men-
arche (Kichaev et al. 2019). Gluckman and Hanson (2006a,
2006b) suggested that, in a stressful environment, female
individuals who mature early have higher reproductive suc-
cess than individuals who mature later, whereas the advan-
tages are reversed in a stable environment, whereby late
maturation could result in better health, longer reproductive
life, and potentially more offspring. Therefore, selection sig-
natures identified in LRP1B may also be the result of selection
for reproductive success in females.

CSNK1G3 encodes a serine/threonine kinase that phos-
phorylates caseins and other acidic proteins. This gene was
found to be associated with bone density, leukocyte count,
LDL cholesterol, and diastolic blood pressure (Giri et al. 2019;
Kichaev et al. 2019; Morris et al. 2019). Signatures of artificial
selection on CSNK1G3 have been identified in Jersey cattle
(Kim et al. 2015). A subsequent study identified a significant
association between CSNK1G3 variants and the content of
major proteins in bovine milk including four casein proteins
(Buitenhuis et al. 2016). Therefore, it is possible that natural
selection also acted on CSNK1G3 in humans for altering the
protein content in breast milk. In our study, we detected
significant associations with serum triglyceride concentration
and hemoglobin A1c percentage at the selection-targeted
region of CSNK1G3, implying the possible effects of selection
on glucose and lipid metabolism, which also affects bone
metabolism (Cipriani et al. 2020). The eQTL results from
the GTEx database showed significant associations between
the top-iSAFE SNP (rs6868518) of CSNK1G3 and gene expres-
sion in the mammary tissue of breast (m¼ 0.95) and in many
other tissues such as the ovary (m¼ 0.93), several cerebral
tissues (m> 0.9), liver (m¼ 1.0), and pancreas (m¼ 0.99; see
supplementary fig. S8B, Supplementary Material online).

ASTN2 is known to be highly expressed in the adult brain
and involved in glial-guided neuronal migration at develop-
mental stages (Wilson et al. 2010). ASTN2 variants were found
to be associated with various neurological disorders including
Alzheimer’s disease, autism-spectrum disorders (ASD), schizo-
phrenia, bipolar, intellectual disability, and attention-deficit/
hyperactivity disorder (Lesch et al. 2008; Vrijenhoek et al.
2008; Glessner et al. 2009; Lionel et al. 2014; Wang et al.
2015). Signatures of adaptive evolution at ASTN2 have been
previously identified in South Asians, the Khomani San
hunter-gatherers of southern Africa, and three Ethiopian pop-
ulations (Scheinfeldt et al. 2012; Tekola-Ayele et al. 2015;
Racimo et al. 2017). However, its biological role underlying
adaptive evolution remains unclear. Although the function of
ASTN2 has been well characterized in the brain, this gene is
also highly expressed in the prostate and testis (Fagerberg
et al. 2014). From the GTEx eQTL data, the top-iSAFE SNPs
of ASTN2 indeed showed a significant effect on gene expres-
sion in the testis (P< 5.4� 10�5). In our study, we detected a
significant association between the selection-targeted region
of ASTN2 and the level of FBG, supporting its possible role in
glucose metabolism.

Finally, NEO1 (a member of the immunoglobulin gene su-
perfamily) encodes neogenin, a multi-functional membrane
receptor that regulates cell adhesion in diverse developmental

processes including cortical interneuron migration and axon
guidance (Matsunaga and Ch�edotal 2004; Matsunaga et al.
2006; Hagihara et al. 2011). Recessive functional polymor-
phisms in NEO1 were found to be associated with cardiac
disease and ASD (McInnes et al. 2010; Siu et al. 2016; Nolte
et al. 2017; van Esch et al. 2018). Moreover, Polimanti and
Gelernter (2017) noted that many ASD common risk alleles
were enriched for genomic signatures of positive selection
due to enhanced cognitive ability. Therefore, selection may
have acted on NEO1 for the same reason. In addition, several
studies have reported abnormal regulations in SGOT and
creatine among ASD children (Giulivi et al. 2010; Schulze
et al. 2016). In our study, we indeed identified significant
associations between the selection-targeted region of NEO1
with the levels of SGOT and serum creatine, supporting its
possible role in ASD susceptibility. The eQTL data of GTEx
further revealed correlations between the top-iSAFE SNP
(rs8039418) and gene expression in sun-exposed skin
(m¼ 0.94) and muscularis esophagus (m¼ 1.0; see supple-
mentary fig. S8C, Supplementary Material online).

In summary, all five candidate genes identified in our study
appear to have pleiotropic effects and connections to various
disease susceptibilities. Each selection-targeted region also
showed significant associations with at least one
metabolism-related trait, suggesting that evolutionary adap-
tation could have a profound impact on human health. One
evident example is the HLA-B*5801 allele, which carries the
top candidate SNP (rs9262558), identified in this study
(jiHSj¼7.51; see table 2). This allele has been reported to be
significantly associated with increased risk for nasopharyngeal
carcinoma in the Taiwanese Han (Hildesheim et al. 2002). In
future studies, it would be intriguing to design and conduct
experiments to identify each causal variant targeted by selec-
tion and the underlying molecular mechanism based on the
list of top candidate variants provided in our study (supple-
mentary table S1, Supplementary Material online).

Materials and Methods

Taiwan Biobank: WG Genotyping and Sequencing
Data for the Taiwanese Han People
The Taiwan Biobank (https://www.twbiobank.org.tw/new_
web_en/index.php) is a nationwide research database that
collects genomic/epigenomic data together with various phe-
notypic/clinical profiles for each participant (Chen et al.
2016). We obtained the WG SNP genotyping data of 15,990
Taiwanese Han people from this database. All individuals
were self-reported as Han people based on their parents’
ancestries. Each individual was genotyped using the custom-
ized Affymetrix Axiom genotyping array plate (TWB chip)
with a total of 653,291 SNPs. In addition, we retrieved the
WG sequencing data from the Taiwan Biobank for a subset of
individuals (n¼ 791) whose genomes were both genotyped
and sequenced. The WG sequencing data was generated
based on the Illumina HiSeq platform with an average cover-
age of 30�. Approval of this research project was received
from institutional review boards of both the Ethics and
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Governance Council of National Yang-Ming University and
Taiwan Biobank.

Merging with Three Public Data Sets
In order to maximize the number of Asian ethnic groups that
could be analyzed, three additional public data sets were re-
trieved for merging with the WG SNP genotyping data from
the Taiwan Biobank: 1) HGDP containing 1,043 individuals
from 51 worldwide populations and yielding�650k SNPs (Li
et al. 2008); 2) HUGO Pan-Asia Consortium containing 1,928
individuals of 71 Asian populations from China, India,
Indonesia, Japan, Malaysia, the Philippines, Singapore, South
Korea, Taiwan, and Thailand and yielding a considerably small
number of SNPs (�55k SNPs) (Abdulla et al. 2009); and 3)
Southeast Asia data set containing 700k SNPs from a total of
130 individuals from Burmese, Vietnamese, and six
Austronesian populations (a partial data set from
Mörseburg et al. [2016]).

Quality Control for the WG Genotyping and
Sequencing Data
We performed several quality control (QC) steps to detect
problematic individuals and SNPs for each of the data sets
according to Anderson et al. (2010). First, we inspected the
homozygosity rate of the X chromosome in each individual to
check for discordance with the ascertained sex. Second, as low
DNA quality or concentration affects call rate and genotype
accuracy, we assessed missing call rate per individual by
counting the number of missing SNPs for each individual.
We also checked genome-wide heterozygosity rate per indi-
vidual because excessive or reduced heterozygosity rate may
be due to sample contamination or inbreeding, respectively.
Individuals who had a missing call rate over 0.03 or hetero-
zygosity rate deviating 63 standard deviations from the pop-
ulation mean were removed. Lastly, we detected and
removed closely related individuals by estimating pairwise
identical-by-descent for all pairs of individuals (identical-by-
descent > 0.1875, within third-degree relatives). Particularly,
for the WG sequencing data, we also calculated the discor-
dance rates of the polymorphic sites that were both se-
quenced and genotyped and subsequently filtered out
individuals with discordance rate larger than 0.1%
(Rasmussen-Torvik et al. 2017; Adelson et al. 2019). For per-
SNP QC, we discarded SNPs with genotyping missing rates
higher than 0.03. To identify SNPs caused by genotyping error,
we also tested Hardy–Weinberg equilibrium (HWE) and ex-
cluded SNPs with significant departures from HWE at
P� 10�50. A small number of SNPs with very strong depar-
ture from HWE are more likely caused by genotyping errors
rather than any evolutionary forces (e.g., selection, see
Anderson et al. 2010; Laurie et al. 2010). All the QC steps
were conducted using PLINK v1.9 (Purcell et al. 2007; Chang,
Chow, et al. 2015).

Inferring Genetic Ancestries
We employed a model-based approach to infer ancestries of
individual genomes using ADMIXTURE (version 1.23).
ADMIXTURE takes a maximum likelihood approach to

estimate allele frequencies of SNPs in K ancestral populations
and ancestry proportions for all individual genomes (Q)
(Alexander et al. 2009). A CVE was applied to determine
the optimum number of hypothetical ancestral populations
(K) that gives the lowest prediction error among all K values.
ADMIXTURE was first performed for a combined data set by
merging the Pan-Asia and HGDP data sets for a total of 19,290
intersected SNPs in 2,304 people from 99 Asian populations
after exclusion of non-Asian populations. We also performed
several additional runs of ADMIXTURE for inferring ancestry
proportions of all 14,401 individual genomes from the Taiwan
Biobank by excluding the Pan-Asia data set from the analysis
but including the Southeast Asia data set. This was done in
order to increase the number of SNPs to be analyzed while
retaining some Maritime Southeast Asia populations for in-
ferring Austronesian ancestry. As a result, the combined data
set contains 1,120 individuals from 56 populations for a total
of 101,955 SNPs (in addition to the 14,401 samples from the
Taiwan Biobank). Before running ADMIXTURE, we pruned
out SNPs with strong LD (r2 > 0.8) using sliding window
analysis (window size 50 SNPs and step size of ten SNPs).

Detecting Signatures of Admixture Using the F3 and F4

Population Tests
We performed multiple runs of the F3 and F4 statistics to test
whether the Taiwanese Han population was admixed with
the Austronesian ancestry. For a given locus, the F3 statistic,
F3(X; Y, W), is defined as the product of allele-frequency differ-
ences between population X and Y and between population
X and W and is scaled by binomial variance in allele frequency
of X, where X is the recipient population (Taiwanese Han) and
Y (Ami or Atayal) and W (popi) are the two donor popula-
tions. Ami and Atayal represent the Austronesian speaking
populations and popi was selected from the remaining Asian
populations of our combined data set with Pan-Asia and
HGDP. In the case of no population mixture, the expected
value of F3 is positive, whereas a significant negative value for
F3(X; Y, W) indicates that the ancestors of population X ex-
perienced a history of population mixture with the popula-
tions close to Y and W (Reich et al. 2009). We also repeated
the F3 tests by assuming F3(Chinese Han; Ami, popi) and
F3(Chinese Han; Chinese Hmong, popi) where Chinese
Hmong (CN-HM) represents the Southeastern ancestry.
The F4 statistic is also defined in terms of correlations of
allele-frequency (p) differences, but involving four popula-
tions (A, B, C, and D) as F4(A, B; C, D) ¼ E([pA � pB][pC �
pD]) where the four populations are related by the unrooted
population tree ((A, B), (C, D)) with the expected value ¼ 0.
By assigning a divergent outgroup population as A (i.e., no
admixture into C or D), a significant negative F4 value implies
gene flow between B and D, whereas gene flow between B
and C could result in a positive F4 value (Reich et al. 2009;
Patterson et al. 2012). The F4 test was conducted by assuming
F4(Yoruba, Ami; popi, Taiwanese Han) where popi was taken
from the other Sino-Tibetan speaking populations. Each test
statistic was averaged over all SNPs and the variance was
measured using a Block Jackknife. The F3 and F4 tests were
performed by running “qp3Pop” and “qpDstat,” respectively,
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implemented in ADMIXTOOLS version 5.1 (Patterson et al.
2012).

Detecting Fine-Scale Genetic Structure within the
Taiwanese Han Population
We further applied fineSTRCTURE (version 4.1.0) to investi-
gate subtle genetic structure within the Taiwanese Han and
related populations by analyzing the combined data set that
includes 500 individuals from the Taiwan Biobank (WG gen-
otyping data), 17 Eastern Asian populations from the HGDP,
and eight Southeast populations from the data set of
Mörseburg et al. (2016). Since linked SNPs on a given genomic
region shared the same gene genealogy, patterns of LD are
expected to reflect a shared history between closely related
populations. FineSTRCTURE exploits LD information be-
tween close markers and is proven to be useful for identifying
subtle population structure (Lawson et al. 2012). The pro-
gram first constructed a pairwise coancestry matrix between
all sampled individuals. The matrix stores frequencies of DNA
segments that are shared between individuals. This
“chromosome painting” step took a Hidden Markov Model
to identify the recombination breakpoints and the individuals
(donors) for which each chunk has the most recent common
ancestor. The constructed coancestry matrix was further used
to infer population structure and the assignment of individ-
uals to each population based on a likelihood approach via
the Markov chain Monte Carlo algorithm for searching opti-
mal parameter values. The required parameter settings for
expectation maximization (EM) process were based on the
default settings including: number of EM iterations ¼ 10,
minimum number of SNPs for EM estimation ¼ 10,000,
and fraction of genome ¼ fraction of individuals (to use for
EM estimation) ¼ 0.1, while setting the starting value for Ne

(effective population size) as 5 (e.g., “s1args:-in -iM –emfile-
sonly -n 5”).

Detecting Genomic Signatures of Positive Selection by
iHS
To detect genetic signatures of recent positive selection in the
Taiwanese Han population, we used the iHS, a LD-based
method that can capture candidate loci of unusually long
blocks of shared haplotypes across the genome (Voight
et al. 2006). iHS summarizes the differences in extended hap-
lotype homozygosity between ancestral and derived alleles.
Under adaptive evolution, a selection-favored allele would
increase its frequency in a population within a shorter time
than a neutral allele of the same frequency. Consequently,
selected alleles and their neighboring SNPs would remain
linked and leave a longer block of haplotype homozygosity
than neutral alleles, since recombination events do not have
enough time to break down LD (Sabeti et al. 2002; Voight
et al. 2006). iHS was calculated using the rehh v2.0 package
(Gautier and Vitalis 2012) implemented in R. The ancestral
and derived alleles for each SNP were determined parsimo-
niously by comparing with their orthologous sites in chim-
panzee, gorilla, and orangutan, if the genetic information was
available in the UCSC Genome Browser (https://genome.ucsc.
edu/index.html). The inference algorithm was written in PERL

according to Fitch (1971). Some SNPs were excluded from the
analysis if their ancestral states could not be determined or if
their allele frequencies are �0.01 (Voight et al. 2006).
Haplotype information was inferred by Eagle (v2.3.2) (Loh
et al. 2016) for the WG SNP genotyping data of all 14,401
individuals from the Taiwan Biobank. The genetic map used
for calculating iHS was downloaded from the International
HapMap Project – phase 3 (https://www.sanger.ac.uk/resour-
ces/downloads/human/hapmap3.html). A genetic region was
considered as a candidate SNP region targeted by selection if
at least three extreme markers were identified with their jiHSj
values higher than the threshold and �10 SNPs of top 1%
jiHSj values within a 500-kb region. The threshold was set at
the highest jiHSj score of the EDAR gene, a well-studied gene
targeted by recent positive selection in the Han population
(Sabeti et al. 2007; Grossman et al. 2010; Kamberov et al.
2013).

Characterizing Gene Genealogies for Identifying
Selection-Favored Genes/Variants
To further confirm the candidate region detected by jiHSj, we
also employed iSAFE (integrated selection of allele favored by
evolution) statistic to characterize the shape of genealogy for
each candidate region and pinpoint the possible gene/variant
targeted by selection (Akbari et al. 2018). iSAFE is a sliding-

window-based SAFE statistic, which is defined as: SAFE eð Þ ¼
/�j
ffiffiffiffiffiffiffiffiffiffi

fð1�fÞ
p for a given mutation (e), where / is the fraction of

derived-allele counts for all the carriers of mutation e relative
to all derived-allele counts (including carriers and noncar-
riers), j is the fraction of distinct haplotypes among the
carriers relative to the total number of distinct haplotypes,
and f(e) is the allele frequency of mutation e. Carriers of the
selection-favored mutation should have a high / and low j
(fewer distinct haplotypes) compared with noncarriers,
resulting in a higher SAFE score compared with the SAFE
score for a neutral mutation. For a given candidate region
targeted by selection, the entire region was further divided
into multiple windows and the SAFE score was computed for
each SNP in a given window. Next, the SAFE scores of all
variants over all windows were weighted and combined to
assign an iSAFE score to each variant in the large region. The
variants that ranked highest in the iSAFE scores were then
considered as top candidates of the causal mutation favored
by selection (Akbari et al. 2018). The iSAFE analysis was con-
ducted for each candidate region identified by jiHSj where
the sequences were extracted from the WG sequencing data
for a total of 772 individuals from the Taiwan Biobank. The
ancestral and derived states for each polymorphic site were
determined parsimoniously as described above. The pairwise
estimates of LD based on the squared correlation coefficient
(r2) were conducted using PLINK and the maps of LD were
plotted using the “LDheatmap” package (Shin et al. 2006)
implemented in R.
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Association Analyses for Detecting Functional Effects
of the Identified Loci Targeted by Selection
We performed statistical association analyses to detect any
functional effects for a given identified candidate loci targeted
by selection across 16 metabolic-related traits from the
Taiwan Biobank (https://www.twbiobank.org.tw/new_web_
en/). These traits can be broadly categorized into three classes:
1) kidney/diabetic: blood urine nitrogen (BUN), serum creat-
inine (CREA), serum uric acid (UA), fasting glucose (FG), and
HbA1c; 2) cardiovascular: high-density lipoprotein choles-
terol, LDLC, total cholesterol (TC), TG, diastolic blood pres-
sure (DBP), and systolic blood pressure (SBP, cardiac); and 3)
liver function: serum albumin level (ALB), total bilirubin
(tBIL), gamma glutamyl transpeptidase (c-GT), serum level
of glutamic-pyruvic transaminase (SGPT), and SGOT. Since
these measurements are continuous variables, we assumed a
multiple linear regression model where the independent var-
iable is the genotype, coded as 0, 1, or 2, corresponding to the
number of copies of minor allele carried by an individual, and
the dependent variable is each of the 16 traits. The covariates
in the model included age, sex, body mass index, as well as the
results of PC1–8 in the principal component analysis across
all individuals to account for any hidden genetic structure. All
measurements were normalized before conducting regression
analysis according to Yeo and Johnson (2000) using the
method implemented in the R package “bestNormalize”
(Peterson and Cavanaugh 2020). The regression analyses
were conducted using the imputed WG SNP genotyping
data. Haplotype imputation was performed using SHAPEIT2
and IMPUTE2 based on the 1,000 genome haplotype refer-
ence panel (phase 3) (Howie et al. 2009; Delaneau et al. 2013;
O’Connell et al. 2014). We also applied a LD-based clumping
procedure to report significant SNPs for a given candidate
region targeted by selection. The clumping procedure first
takes SNPs that are significant at P� 10�4 as index SNPs.
The threshold was set to correct for the number of identified
candidate loci multiplied by the number of traits. A clump
was formed by including all other “clumped” SNPs that
passed the second significance threshold (P� 0.01) within a
250-kb distance from the index SNP and are in LD with the
index SNP (r2 � 0.5) (Purcell et al. 2007).

Profiling the Degree of Functional Importance for
Candidate Variants Targeted by Selection
We also employed a method called CADD to profile the
degree of functional importance for all the identified candi-
date variants favored by selection (Kircher et al. 2014;
Rentzsch et al. 2019). CADD applies a linear kernel support
vector machine trained to discriminate 14.7 million high-
frequency (fixed or nearly fixed) human derived alleles (likely
benign/neutral alleles) from 8.6 million simulated human
variants that were assigned various annotations based on
their genomic positions (some of them likely to be deleteri-
ous). The rationale of CADD is to contrast the annotations of
fixed or nearly fixed human derived alleles with those of sim-
ulated variants. CADD is a “meta-annotation” tool that inte-
grates information from many functional annotations into a

single phred-scaled score (C score). C score was assigned for
each variant and permuted with the scores of all possible
human single-nucleotide variants (and short insertions–dele-
tions). The C score represents its score rank relative to all 8.6
billion possible variants, ranging from 1 to 99. The higher the
C score, the more a variant is predicted to be deleterious. For
example, a C score of 20 means the rank of “deleteriousness”
(functional importance) is among the top 1% of all scores (i.e.,
C¼ 10 � [�log 0.01] ¼ 20).

Data Availability
Raw data were generated at Taiwan Biobank (https://
www.twbiobank.org.tw/new_web_en/about-export.php).
Derived data supporting the findings of this study are avail-
able from the corresponding author on request.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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Craig DW, Romanos J, Heine M, Meyer J, et al. 2008. Molecular
genetics of adult ADHD: converging evidence from genome-wide
association and extended pedigree linkage studies. J Neural Transm.
115(11):1573–1585.

Li JZ, Absher DM, Tang H, Southwick AM, Casto AM, Ramachandran S,
Cann HM, Barsh GS, Feldman M, Cavalli-Sforza LL, et al. 2008.
Worldwide human relationships inferred from genome-wide pat-
terns of variation. Science 319(5866):1100–1104.

Lin W-Y, Chan C-C, Liu Y-L, Yang AC, Tsai S-J, Kuo P-H. 2019. Performing
different kinds of physical exercise differentially attenuates the ge-
netic effects on obesity measures: evidence from 18,424 Taiwan
Biobank participants. PLoS Genet. 15(8):e1008277.

Lionel AC, Tammimies K, Vaags AK, Rosenfeld JA, Ahn JW, Merico D,
Noor A, Runke CK, Pillalamarri VK, Carter MT, et al. 2014. Disruption
of the ASTN2/TRIM32 locus at 9q33.1 is a risk factor in males for
autism spectrum disorders, ADHD and other neurodevelopmental
phenotypes. Hum Mol Genet. 23(10):2752–2768.

Lipson M, Loh P-R, Patterson N, Moorjani P, Ko Y-C, Stoneking M, Berger
B, Reich D. 2014. Reconstructing Austronesian population history in
Island Southeast Asia. Nat Commun. 5(1):4689.

Liu CX, Musco S, Lisitsina NM, Forgacs E, Minna JD, Lisitsyn NA. 2000.
LRP-DIT, a putative endocytic receptor gene, is frequently inacti-
vated in non-small cell lung cancer cell lines. Cancer Res.
60(7):1961–1967.

Loh P-R, Palamara PF, Price AL. 2016. Fast and accurate long-range
phasing in a UK Biobank cohort. Nat Genet. 48(7):811–816.

Mackay TFC, Stone EA, Ayroles JF. 2009. The genetics of quantitative
traits: challenges and prospects. Nat Rev Genet. 10(8):565–577.

Marnetto D, P€arna K, L€all K, Molinaro L, Montinaro F, Haller T, Metspalu
M, M€agi R, Fischer K, Pagani L. 2020. Ancestry deconvolution and
partial polygenic score can improve susceptibility predictions in re-
cently admixed individuals. Nat Commun. 11(1):1628.

Matsunaga E, Ch�edotal A. 2004. Repulsive guidance molecule/neogenin:
a novel ligand-receptor system playing multiple roles in neural de-
velopment. Dev Growth Differ. 46(6):481–486.

Matsunaga E, Nakamura H, Ch�edotal A. 2006. Repulsive guidance mol-
ecule plays multiple roles in neuronal differentiation and axon guid-
ance. J Neurosci. 26(22):6082–6088.

McColl H, Racimo F, Vinner L, Demeter F, Gakuhari T, Moreno-Mayar JV,
van Driem G, Gram Wilken U, Seguin-Orlando A, Castro Cdlf, et al.
2018. The prehistoric peopling of Southeast Asia. Science
361(6397):88–91.

McInnes LA, Nakamine A, Pilorge M, Brandt T, Jim�enez Gonz�alez P,
Fallas M, Manghi ER, Edelmann L, Glessner J, Hakonarson H, et al.
2010. A large-scale survey of the novel 15q24 microdeletion syn-
drome in autism spectrum disorders identifies an atypical deletion
that narrows the critical region. Mol Autism. 1(1):5.

McVean G. 2009. A genealogical interpretation of principal components
analysis. PLoS Genet. 5(10):e1000686.

Mexal S, Berger R, Pearce L, Barton A, Logel J, Adams CE, Ross RG,
Freedman R, Leonard S. 2008. Regulation of a novel aN-catenin
splice variant in schizophrenic smokers. Am J Med Genet.
147B(6):759–768.

Morris JA, Kemp JP, Youlten SE, Laurent L, Logan JG, Chai RC, Vulpescu
NA, Forgetta V, Kleinman A, Mohanty ST, et al. 2019. An atlas of
genetic influences on osteoporosis in humans and mice. Nat Genet.
51(2):258–266.

Mörseburg A, Pagani L, Ricaut F-X, Yngvadottir B, Harney E, Castillo C,
Hoogervorst T, Ant~ao T, Kusuma P, Brucato N, et al. 2016. Multi-
layered population structure in Island Southeast Asians. Eur J Hum
Genet. 24(11):1605–1611.

Moura AA, Memili E. 2016. Functional aspects of seminal plasma and
sperm proteins and their potential as molecular markers of fertility.
Anim Reprod. 13(3):191–199.

Nfor ON, Wu M-F, Lee C-T, Wang L, Liu W-H, Tantoh DM, Hsu S-Y, Lee
K-J, Ho C-C, Debnath T, et al. 2018. Body mass index modulates the
association between CDKAL1 rs10946398 variant and type 2 diabe-
tes among Taiwanese women. Sci Rep. 8:13235.

Nolte IM, Munoz ML, Tragante V, Amare AT, Jansen R, Vaez A, von der
Heyde B, Avery CL, Bis JC, Dierckx B, et al. 2017. Genetic loci asso-
ciated with heart rate variability and their effects on cardiac disease
risk. Nat Commun. 8(1):15805.

O’Connell J, Gurdasani D, Delaneau O, Pirastu N, Ulivi S, Cocca M, Traglia
M, Huang J, Huffman JE, Rudan I, et al. 2014. A general approach for
haplotype phasing across the full spectrum of relatedness. PLoS
Genet. 10(4):e1004234.

Orlando C, Casano R, Forti G, Barni T, Vannelli GB, Balboni GC, Serio M.
1988. Immunologically reactive albumin-like protein in human testis
and seminal plasma. J Reprod Fertil. 83(2):687–692.

Patterson N, Moorjani P, Luo Y, Mallick S, Rohland N, Zhan Y,
Genschoreck T, Webster T, Reich D. 2012. Ancient admixture in
human history. Genetics 192(3):1065–1093.

Peterson RA, Cavanaugh JE. 2020. Ordered quantile normalization: a
semiparametric transformation built for the cross-validation era. J
Appl Stat. 47:2312–2327.

Poledne R, Kralova Lesna I, Kralova A, Fronek J, Cejkova S. 2016. The
relationship between non-HDL cholesterol and macrophage pheno-
types in human adipose tissue. J Lipid Res. 57(10):1899–1905.

Poledne R, Malinska H, Kubatova H, Fronek J, Thieme F, Kauerova S,
Kralova Lesna I. 2019. Polarization of macrophages in human adipose
tissue is related to the fatty acid spectrum in membrane phospho-
lipids. Nutrients 12(1):8–13.

Poledne R, Zicha J. 2018. Human genome evolution and development of
cardiovascular risk factors through natural selection. Physiol Res.
67(2):155–163.

Polimanti R, Gelernter J. 2017. Widespread signatures of positive selec-
tion in common risk alleles associated to autism spectrum disorder.
PLoS Genet. 13(2):e1006618.

Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D,
Maller J, Sklar P, de Bakker PIW, Daly MJ, et al. 2007. PLINK: a tool set
for whole-genome association and population-based linkage analy-
ses. Am J Hum Genet. 81(3):559–575.

Lo et al. . doi:10.1093/molbev/msaa276 MBE

4164



Racimo F, Marnetto D, Huerta-S�anchez E. 2017. Signatures of archaic
adaptive introgression in present-day human populations. Mol Biol
Evol. 34:296–317.

Rasmussen-Torvik LJ, Almoguera B, Doheny KF, Freimuth RR, Gordon AS,
Hakonarson H, Hawkins JB, Husami A, Ivacic LC, Kullo IJ, et al. 2017.
Concordance between research sequencing and clinical pharmacoge-
netic genotyping in the eMERGE-PGx Study. J Mol Diagn.
19(4):561–566.

Reich D, Thangaraj K, Patterson N, Price AL, Singh L. 2009.
Reconstructing Indian population history. Nature
461(7263):489–494.

Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. 2019. CADD:
predicting the deleteriousness of variants throughout the human
genome. Nucleic Acids Res. 47(D1):D886–D894.

Sabeti PC, Reich DE, Higgins JM, Levine HZP, Richter DJ, Schaffner SF,
Gabriel SB, Platko JV, Patterson NJ, McDonald GJ, et al. 2002.
Detecting recent positive selection in the human genome from
haplotype structure. Nature 419(6909):832–837.

Sabeti PC, Varilly P, Fry B, Lohmueller J, Hostetter E, Cotsapas C, Xie X,
Byrne EH, McCarroll SA, Gaudet R, et al. 2007. Genome-wide detec-
tion and characterization of positive selection in human popula-
tions. Nature 449(7164):913–918.

Schaffer AE, Breuss MW, Caglayan AO, Al-Sanaa N, Al-Abdulwahed HY,
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