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Novel functions for the transcription factor E2F4 in development and disease
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ABSTRACT
The E2F family of transcription factors is a key determinant of cell proliferation in response to extra- and
intra-cellular signals. Within this family, E2F4 is a transcriptional repressor whose activity is critical to
engage and maintain cell cycle arrest in G0/G1 in conjunction with members of the retinoblastoma (RB)
family. However, recent observations challenge this paradigm and indicate that E2F4 has a multitude of
functions in cells besides this cell cycle regulatory role, including in embryonic and adult stem cells, during
regenerative processes, and in cancer. Some of these new functions are independent of the RB family and
involve direct activation of target genes. Here we review the canonical functions of E2F4 and discuss
recent evidence expanding the role of this transcription factor, with a focus on cell fate decisions in tissue
homeostasis and regeneration.
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Introduction

The balance and function of diverse cell types in embryonic and
adult tissues universally depend upon the ability of precursor
cells to proliferate, commit to a differentiation program, and
withdraw from the cell cycle. The molecular mechanisms that
regulate and link these processes remain incompletely under-
stood, but accumulating evidence in the past 3 decades has
demonstrated a central role for the RB/E2F pathway (Fig. 1).1-3

E2F4 is a critical molecule in the RB/E2F pathway. Although
E2F4 has been extensively studied as a repressor of cell cycle
genes, here we present the novel perspective that E2F4 regulates
diverse gene expression programs in cell fate decisions. We dis-
cuss possible mechanisms that support these new roles, as well
as the implications of these roles for disease research, including
regenerative medicine and cancer. Note that although E2F5 is
structurally very similar and may function in similar contexts,
we focus this review on E2F4 because it is highly conserved
across evolution and featured in many recent studies.

The canonical model of E2F4

E2F4 belongs to the E2F family of transcription factors – 7
“classical” E2Fs (E2F1, E2F2, E2F3a, E2F3b, E2F4, E2F5, E2F6)
that bind DNA with an essential dimerization partner protein
(DP1-4); as well as 2 “atypical” E2Fs (E2F7 and E2F8) that
function in a DP-independent manner.4,5 The classical E2Fs,
with the exception of E2F6, physically interact with the RB
family proteins (RB, p130, and p107) at the transactivation
domain, and in some cases make contacts with the C-terminus
of RB and p107 at the DP dimerization domain (Fig. 2).6,7

E2F4 associates with all 3 RB family proteins under physiologi-
cal conditions, while E2F1-3 preferentially associate with RB,

and E2F5 preferentially associates with p130.8,9 Interactions
with the RB family at the transactivation domain prevent the
recruitment of transcriptional machinery, inhibiting E2F activ-
ity. These tightly regulated interactions ensure that cell cycle
genes are expressed at the appropriate cell cycle stages (Fig. 1).

Although E2F4 and E2F5 have a transcriptional activation
domain, they are less important for gene activation in the canon-
ical model of cell cycle progression. This is because they both
lack a nuclear localization signal and are thought to rely on the
RB family proteins for their nuclear translocation (Fig. 2), and
to be sequestered in the cytoplasm in cycling cells (Fig. 1). Spe-
cifically, E2F4 export is mediated by 2 nuclear export signals
(NES) that are recognized by the nuclear export receptor CRM1
(Fig. 2). Forced expression of CRM1 can prevent p16INK4a-
induced cell cycle arrest in G1, an E2F4/5- dependent process.10

Thus, E2F1-3 are classically categorized as the “activator E2Fs,”
responsible for triggering cell cycle entry, while E2F4-5 are
“repressors” that prevent uncontrolled proliferation.8,9

E2F4 can also function in non-cycling cells as part of the
DREAM complex, which generally consists of DP1, RBL2
(p130), E2F4, and the MuvB core proteins (RBBP4, LIN9,
LIN37, LIN52, LIN54) (Fig. 1). p107, but not RB, can sub-
stitute for p130 in this complex. This complex is conserved
in flies (dREAM) and presumably in C. elegans (DRM).11-13

Repression of cell cycle genes in G0 (quiescence, senescence,
and differentiated states) may be achieved by recruiting
chromatin-modifying factors such as HDAC1 and Sin3B,
although how these factors interact with RB or the DREAM
complex is still not fully understood.14 In general, the rela-
tive contributions of DREAM-bound E2F4 versus RB-bound
E2F4 complexes in establishing and maintaining quiescence
remain unclear.
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A deeper look at the literature, however, challenges the
canonical role of E2F4 as a repressor of cell cycle genes. Indeed,
E2F4 is not required for G0/G1 arrest in all cell types. For
instance, E2f4¡/¡;E2f5¡/¡ mouse embryonic fibroblasts can still
undergo cell cycle arrest following serum deprivation,15 and
E2F4 is only peripherally involved in the G1/S checkpoint in
non-mammalian systems (see below). Here we will examine
the non-canonical roles of E2F4 and discuss the importance of
these roles for disease research and stem cell biology.

The role of E2F4 in the development of different
model organisms

E2F4 is highly conserved, and in some organisms represents the
only E2F homolog: although ancestral E2F activity consists of
one member each of E2F1/2/3/6, E2F4/5, and E2F7/8, many
organisms do not have an E2F7/8 homolog and/or an activating

E2F.16 While this observation highlights the importance of
E2F4, loss of E2F4 function in model organisms does not nega-
tively impact viability per se, but rather the development of
diverse tissue types.

Caenorhabditis elegans. C. elegans have 2 E2F genes
(efl-1 and efl-2), one DP gene (dpl-1), and one RB gene (lin-
35). EFL-1 resembles E2F4 and E2F5 most strongly in its DP
dimerization domain and its lack of a nuclear localization
signal. EFL-1, DPL-1, and LIN-35 can form a ternary com-
plex,17 and genes commonly bound by the 3 proteins across
all tissues are enriched for cell cycle-related processes. How-
ever, the individual proteins also have tissue-specific targets,
and EFL-1 is also required to antagonize Ras signaling dur-
ing vulval development,17 to establish polarity for proper
morphogenesis in embryos,18 and to regulate X chromosome
genes in germ cells (Fig. 3).19 Importantly, loss of EFL-1
does not affect cell cycle progression in all cell types.17,20 In

Figure 1. Schematic representation of the canonical RB/E2F pathway in cell cycle progression. In G1, cells can either enter S phase or exit the cell cycle into G0. Entry into
S phase requires activation of transcriptional programs controlled by E2F activity. Binding of repressive complexes involving RB and E2F family members to the promoters
of cell cycle genes silences their transcription in both G0 and G1. Repressive RB/E2F complexes consist of an RB family member, either E2F4 or E2F5, and additional chro-
matin modification and remodeling factors, including histone deacetylases (HDACs). In G0, repressive complexes generally contain p130 and the MuvB core complex
(DREAM complex), whereas p107 predominates in G1. When cells enter S phase, Cyclin-CDK activity is upregulated and phosphorylates RB family proteins, promoting the
dissociation of repressive RB/E2F complexes, and releasing “activator” E2Fs to upregulate the expression of cell cycle genes with histone acetyltransferases (HATs) and
other chromatin-modifying factors.

Figure 2. Structure of human E2F4. E2F4 is 413 amino acids long and contains a DNA binding domain (15-86), a dimerization domain that allows it to form heterodimers
with a DP family protein (86-195), a transactivation domain (337-413), and within this, a pocket protein binding domain (PPBD, 390-407) that allows interactions with the
RB family proteins. E2F4 shares these domains with the “activator” E2Fs and with E2F5. Yet unlike the “activator” E2Fs, E2F4 lacks a nuclear localization signal and shares
with E2F5 a bipartite nuclear export signal (61-70, 91-100). E2F4 is thought to rely on the RB family proteins for nuclear localization, although post-translational modifica-
tions (such as phosphorylation sites, shown above with candidate kinases) and additional cofactors (shown below, with their interaction sites) may regulate E2F4 activity
and cellular localization as well.
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addition, EFL-1 and DPL-1, but not LIN-35, function in the
germline to upregulate genes involved in oogenesis and fer-
tility.21 Thus, EFL-1 may repress cell cycle genes in C. ele-
gans, but may also function as a general transcription factor
outside the canonical RB/E2F pathway in the development
of different tissues.

Schmidtea mediterranea. Planaria have the simplest ver-
sion of the RB/E2F pathway: a single RB homolog (Smed-
Rb) that resembles p130 and p107, a single DP (Smed-Dp),
and a single E2F (Smed-E2f4-1). Although knockdown of
Smed-E2F4-1 temporarily increases cell division, consistent
with its repressor function, knockdown animals eventually
show slower stem cell proliferation, as well as phenotypes
indicative of stem cell loss (Fig. 3). Whether these pheno-
types are due to changes in apoptosis, differentiation, or
proliferation has not been studied, although Smed-Rb is pri-
marily involved in self-renewal and Smed-E2F4-1 may share
this role as well.16

Drosophila melanogaster. Flies have 2 E2F genes
(de2f1 and de2f2), one DP gene (ddp), and 2 RB-like genes
(rbf1 and rbf2). dE2F1 and dE2F2 function respectively
as an activator and a repressor of transcription, and are
considered the fly equivalents of E2F1 and E2F4. RBF1
interacts with both E2Fs, while RBF2 only interacts with
dE2F2.22 Like in mammalian systems, dE2F1 and dE2F2
play antagonistic roles in cell cycle regulation, and co-
expression of dE2F2 and RBF2 in vivo slows cell cycle pro-
gression.22,23 However, neither loss nor overexpression of
dE2F2 alone has much effect on cell cycle stages or the
expression of cell cycle genes. Instead, loss of dE2F2 can
sometimes result in female sterility due to defects in cho-
rion development,24 while overexpression of dE2F2 results
in a rough eye phenotype (Fig. 3).23 Strikingly, loss of

dE2F2 also leads to the de-repression of many genes
involved in oogenesis, sex specification, and male courtship
behavior.12,25-27 Additional assays in future fly studies may
therefore reveal novel phenotypes in these areas.

Mus musculus. E2f4¡/¡ mice are smaller than wild-type
mice and have defects in multiple tissues and organs, including
blood, bone, skin, intestinal tissue, visual system, and reproduc-
tive system (Fig. 3).28-32 The majority of E2f4¡/¡ mice die
within the first few weeks of life from defects in craniofacial
structure that increase their susceptibility to bacterial infec-
tions.28 In addition, E2f4¡/¡ mice are largely sterile, even when
bred to normal mice.28,29

Although the mechanisms behind most of these defects are
not well studied, evidence overwhelmingly suggests a context-
dependent role for E2F4 in different cell types rather than a
more general role in the cell cycle. For example, E2F4 has a cell
cycle-independent role in regulating sonic hedgehog (Shh) in
the ventral telencephalon, which controls the self-renewal of
neural precursor cells.30 In addition, very recent studies show
that E2F4 can upregulate genes involved in the development of
cilia in multiciliated cells, in a complex with DP, Multicilin,
and GEMC1.33,34 Consistently, loss of E2F4 prevents the
appearance of ciliated cells in the airway epithelium35 and the
male reproductive system,32 ultimately leading to the bacterial
infections and sterility in E2f4¡/¡ mice. Interestingly, loss of
E2F4 also precedes the downregulation of genes involved in
endocytosis and water channel transport in the testes.32 Explor-
ing whether E2F4 directly activates these genes may provide
further evidence for E2F4 as a general transcription factor
rather than a repressor of cell cycle genes. As discussed above,
the E2F4-containing complexes (with RB or DREAM, and pos-
sibly others) that mediate these different functions in vivo are
still poorly understood.

Figure 3. Summary of the developmental phenotypes associated with loss of E2F4 function in worms, flies and mice. Loss of E2F4 results in defects in multiple tissues of
(A) C. elegans, (B) S. mediterranea, (C) D. melanogaster, and (D) M. musculus (see text). A number of these phenotypes have been attributed to cell cycle-independent or
RB family-independent changes in gene expression and cell fate specification, suggesting that E2F4 may play context-dependent roles.
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E2F4 in rapidly cycling cells and cancer

Although E2F4 is categorized as the major repressor of cell
cycle progression, loss of E2F4 in the cycling stem and progeni-
tor populations of multiple tissue types actually decreases pro-
liferation and DNA replication. This phenomenon is best
observed in intestinal tissue, as E2f4¡/¡ mice exhibit a reduced
or absent crypt region and poorly developed villi (although it is
possible these defects are secondary to developmental
defects).32 Accordingly, knockdown of E2F4 in human intesti-
nal epithelial cells (HIECs), a cell culture model of the intestinal
crypt, leads to decreased proliferation and a downregulation of
direct E2F targets.36-38 E2F4 even seems to supplant E2F1 as
the primary activator E2F in this tissue type, as nuclear E2F4 is
strongly expressed in the proliferative zone of the intestinal
crypt, whereas E2F1 expression is diffuse and does not depend
on the phases of the cell cycle.36 Similar pro-proliferative effects
for E2F4 have also been observed in blood cells39 and in the
developing epidermis.40,41 Whether E2F4 directly activates cell
cycle genes in these contexts is not well characterized.

In cancers, E2F4 appears to act primarily as an oncogene,
which is more consistent with its non-canonical role in pro-
proliferative cells than with its canonical, repressive role in the
cell cycle. Prostate tumors42 and breast cancers43,44 express
E2F4 at higher levels than surrounding normal tissue, and its
nuclear expression in breast cancer strongly correlates with
poor prognosis. High levels of E2F4 are also present in a mouse
model of skin cancer, and overexpression of E2F4 in epidermis,
particularly in conjunction with DP1, results in skin tumors.40

It is tempting to speculate that E2F4 might drive aberrant cell
cycle progression in these contexts by switching from a repres-
sor to an activator at the promoters of cell cycle genes. How-
ever, E2F4 can directly repress apoptotic genes,45 and therefore
E2F4 might also promote tumor growth by protecting cancer
cells more efficiently against cell death.

Indeed, another fascinating pro-tumorigenic role of E2F4 is
that it is co-opted by some tumors to escape cell death follow-
ing DNA damage. Cancer cells generally lack a G1/S check-
point and are unable to undergo G1 arrest during DNA
damage. Instead, compromised cells arrest in G2 by upregulat-
ing E2F4 and p130, and turning on a mechanism that involves
repression of G2/M genes by E2F4-p130.46-48 In some tumors,
E2F4-p130 also binds to and represses genes involved in DNA
damage repair, such as RAD51 and BRCA1 (in homologous
recombination)46,49,50 and XPC (in nucleotide excision
repair),51 possibly allowing genomically unstable cells to sur-
vive. Knockdown of E2F4 in these contexts prevents G2 arrest
and sensitizes cancer cells to irradiation-induced apoptosis.

Mechanisms of E2F4 activity

The versatility of E2F4 is intriguing, but makes sense given that
E2F4 is widely expressed and binds diverse targets, including
enhancer regions and regions without an E2F consensus
sequence.52 Indeed, the role of E2F4 in the differentiation of
multiple tissues has been attributed to its direct regulation of
non-cell cycle genes such as PPARG (during adipogenesis),53

and deup1 (in centriole amplification and cilia develop-
ment).33,34 Furthermore, E2F4 may guide the differentiation of

pluripotent stem cells by directly repressing pluripotency fac-
tors such as Sox2 in conjunction with RB and p130.54,55 Nota-
bly, while DREAM represses targets in G0 that are involved in
centrosome function, mRNA processing, and metabolism,56 it
also represses developmental genes in proliferating cells to pro-
mote cell cycle progression in flies,57 and to allow expansion of
precursor cells in mammalian bone development.58 The repres-
sion of diverse targets in different cell cycle phases suggests a
more general role for E2F4 in cell fate specification rather than
simply as a regulator of the G0 and G1/S phases. As our knowl-
edge of E2F4 targets is still limited to ChIP-Seq data from a
handful of studies33,52,59 and from well established ENCODE
lines, it will be important to obtain ChIP-Seq datasets from addi-
tional cell types (e.g. differentiating adipocytes) to test this idea.

In addition, what allows E2F4 to regulate different gene pro-
grams in different cell types is not well understood. In vitro and
ChIP experiments have shown that cofactors may influence the
binding motif preferences of the individual E2Fs, directing E2F4
to different binding sites52,60 and may also determine whether
E2F4 functions as a repressor or an activator. For instance, while
the nuclear localization of E2F4 in G0 and G1 depends on p130
and p107, these interactions inhibit the E2F4 transactivation
domain, allowing the formation of a purely repressive complex
(Fig. 2). In contexts where the RB family proteins are inactive,
E2F4 might function primarily as an activator, likely with a co-
activator that allows it to translocate into the nucleus or increases
its nuclear retention (for example by masking the NES). Consis-
tently, E2F4 drives proliferation in stem and progenitor cells and
in cancer cells, which are rapidly cycling and in which the RB
family proteins are inactive or mutated. In one striking example,
the proliferative cells of the intestinal crypt express cytoplasmic,
inactive RB family proteins, while E2F4 is largely nuclear.36 Simi-
larly, in fetal liver where E2F4 drives erythropoiesis, the majority
of E2F4 binding activity consists of a “free” form of E2F4 that
does not associate with the RB family proteins, with other E2Fs
expressed at a low level or not at all.39

Thus far, very few RB family-independent cofactors and
their contributions to E2F4 activity have been defined. These
include HCF-1, in early G1,61 and necdin, with which E2F4
represses target genes during adipocyte differentiation
(Fig. 2).53 Alternatively, E2F4 can also inhibit adipocyte differ-
entiation in an RB family-independent manner, although the
cofactors involved in this process are not known.62 Even less is
known about cofactors that allow E2F4 to localize to the
nucleus and function as an activator in RB family-inactive, rap-
idly cycling cells. Candidates include HCF-1, which also associ-
ates with E2F4 in S phase;61 GCN5 and TRRAP, which recruit
histone acetyltransferases to drive E2F-dependent transactiva-
tion;63 and Multicilin and GEMC1, which guide E2F4 to acti-
vate genes required for centriole biogenesis. (Fig. 2)33,34 In
addition, DP-3 and DP-2 can both promote nuclear localiza-
tion of E2F4 and E2F5 in an RB family-independent manner,
as well as cell cycle progression.64-66 DP-2 associates with E2F4
in embryonic stem cells,67 and perhaps E2F4 prefers to hetero-
dimerize with DP-2 or DP-3 (instead of DP-1) in cycling cells
(Fig. 2).

Finally, other mechanisms for RB family-independent trans-
port may include association with subcellular structures, such
as kinetochores (as in cardiomyocyte proliferation),68 and
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differential phosphorylation. For instance, ERK1/2-mediated
phosphorylation of E2F4 on serines S244 and S384 promotes
its nuclear localization in proliferating intestinal cells.38 Phos-
phorylation of E2F4 on threonines T261 and T263 by p38MAPK

allows it to bind and activate cell cycle genes during cell cycle
re-entry of neurons (Fig. 2).69 Improvements in affinity purifi-
cation and mass spectrometry might allow more cofactors and
post-translational modifications to be identified in different tis-
sue-specific contexts.

Conclusions

A better understanding of the non-canonical roles and mecha-
nisms for E2F4 will greatly benefit many fields, including stem
cell and cancer biology. First, studying the repressor function of
E2F4 in terminally differentiated cell types, and identifying addi-
tional non-canonical targets, may shed more light on the mecha-
nisms that control cell cycle arrest and differentiation. In
embryonic stem cells, for instance, RB mediates differentiation at
least in part by direct repression of pluripotency genes.54,55,70 As
E2F4 directly represses Sox2,55 it may also silence other pluripo-
tency genes in conjunction with RB to establish proper cell fate
(Fig. 4).

Second, the activator role of E2F4 in rapidly proliferating
cell types might be important for improving the function of
adult stem cells during regeneration. Indeed, E2F4 drives the
proliferation of cardiomyocytes, which declines drastically
during early embryonic development as nuclear E2F4 expres-
sion decreases. Importantly, the cell cycle re-entry of adult
cardiomyocytes in both normal mice and in a mouse model
of myocardial infarction requires an increase in nuclear
E2F4.68 In addition, neuronal regeneration and recovery of

mobility in zebrafish following spinal cord injury requires an
increase in E2F4 activity.71 Understanding these roles might
shed light on how to reverse the effects of age-related and
neurodegenerative diseases.

Finally, the role of E2F4 in undifferentiated embryonic
stem cells (ESCs) and cancer cells remains to be explored. As
ESCs and cancer cells are similar in cell cycle structure,
research on E2F4 in ESCs might inform research in cancer
biology, and vice versa. Although E2f4¡/¡ ESCs grow nor-
mally in physiological conditions,28,29 E2F4 binds to »6000
promoters in ESCs, despite the absence of a G1/S check-
point,67 and represents »95% of E2F DNA binding activity
in ESCs.28 One idea is that E2F4 is poised to regulate the
expression of developmental genes during differentiation
(Fig. 4). Additionally, ESCs resemble cancer cells in their
DNA damage response, and thus E2F4 may mediate G2/M
arrest or repress DNA damage repair genes in both cell types
through similar mechanisms (Fig. 4). Finally, an intriguing
hypothesis is that E2F4 might directly control the cell cycle
of ESCs by activating the expression of cell cycle genes in an
RB family-independent manner (Fig. 4). Indeed, E2F4 co-
binds promoters in ESCs with Myc, a strong transcriptional
activator that is critical for ESC self-renewal and cell cycle
entry.67,72 Thus, understanding the non-canonical functions
of E2F4 will likely reveal novel insights into pluripotency
and differentiation, which might in turn guide the develop-
ment of strategies to block the expansion of cancer cells.
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Figure 4. Potential mechanisms of action of E2F4 in stem cells. In addition to its canonical role as a repressor of cell cycle progression in G0/G1, E2F4 may have at least 3
different functions as a general transcription factor in adult stem cells and embryonic stem cells (ESCs). First, E2F4 may regulate developmental genes to establish cell
fate during differentiation, either as a repressor in conjunction with RB to prevent the expression of aberrant transcripts, or as an activator to directly drive cellular differ-
entiation. Second, rapidly cycling cells largely lack a G1/S checkpoint and may utilize E2F4 to undergo arrest in G2 in response to cellular stress, during which E2F4
represses genes involved in G2/M progression and DNA damage repair. Third, E2F4 may switch from a repressor to an activator of cell cycle genes to support heightened
metabolic requirements. While the first 2 cases may involve formation of complexes containing E2F4 and a RB family member, the third may not require RB family pro-
teins, which would inhibit E2F4 transcriptional activity. In addition, all 3 cases may involve additional cofactors that facilitate E2F4 translocation into the nucleus and
binding to target genes.
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