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A B S T R A C T   

Malondialdehyde (MDA; 1,3-propanedial, OHC-CH2-CHO) is one of the most frequently measured biomarkers of 
oxidative stress in plasma and serum. L-Arginine (Arg) is the substrate of nitric oxide synthases (NOS), which 
convert L-arginine to nitric oxide (NO) and L-citrulline. The Arg/NO pathway comprises several members, 
including the endogenous NOS-activity inhibitor asymmetric dimethylarginine (ADMA) and its major metabolite 
dimethyl amine (DMA), and nitrite and nitrate, the major NO metabolites. Reliable measurement of MDA and 
members of the Arg/NO pathway in plasma, serum, urine and in other biological samples, such as saliva and 
cerebrospinal fluid, is highly challenging both for analytical and pre-analytical reasons. In our group, we use 
validated gas chromatography-mass spectrometry (GC–MS) and gas chromatography-tandem mass spectrometry 
(GC–MS/MS) methods for the quantitative determination in clinical studies of MDA as a biomarker of oxidative 
stress, and various Arg/NO metabolites that describe the status of this pathway. Here, the importance of pre- 
analytical issues, which has emerged from the use of GC–MS and GC–MS/MS in clinico-pharmacological 
studies, is discussed. Paradigmatically, two studies on the long-term oral administration of L-arginine dihydro-
chloride to patients suffering from peripheral arterial occlusive disease (PAOD) or coronary artery disease (CAD) 
were considered. Pre-analytical issues that were addressed include blood sampling, plasma or serum storage, 
study design (notably in long-term studies), and the alternative of measuring MDA in human urine.   

Introduction 

Oxidative stress and malondialdehyde 

Reactive oxygen species (ROS), such as the superoxide radical 
monoanion (O2

− •) and the non-radical peroxide dianion (O2
2− ) can be 

produced both by enzymatic and non-enzymatic chemical reduction of 
the electrically uncharged diradical molecule, molecular oxygen (O2

••). 
ROS are highly reactive and attack various classes of biomolecules, 

notably of lipids, in their vicinity. This complex phenomenon is widely 
known as “oxidative stress” or “oxidant stress”. Malondialdehyde (MDA) 
is a relatively stable product of lipid peroxidation. Major sources of MDA 
are polyunsaturated fatty acids (PUFAs), such as arachidonic acid (AA) 
(Scheme 1). 

Searching PubMed (http://www.ncbi.nlm.nih.gov/pubmed; 17 
November 2022) using the search term “oxidative stress” resulted in 
293,578 articles, or 36,754 articles using the search term “oxidative 
stress malondialdehyde”, and 3,996 articles using the term “oxidative 

Abbreviations: AA, arachidonic acid; ADMA, asymmetric dimethylarginine; Arg, L-arginine; BHT, butylated hydroxytoluene; BMD, Becker muscular dystrophy; 
CAD, coronary artery disease; CID, collision-induced dissociation; COX, cyclooxygenase; CV, coefficient of variation; DDAH, dimethylarginine dimethylaminohy-
drolase; DMA, dimethyl amine; EBC, exhaled breath condensate. ECNICI, electron-capture negative-ion chemical ionization; GC–MS, gas chromatography-mass 
spectrometry; GC–MS/MS, gas chromatography-tandem mass spectrometry; GSH, glutathione; GSSG, glutathione disulfide; HbO2, oxyhemoglobin; HNE, 4-hy-
droxy-2-nonenal; HPLC, high-performance liquid chromatography; LC-MS/MS, liquid chromatography-tandem mass spectrometry; M, molecular mass; MDA, 
malondialdehyde; MMA, monomethylarginine; MS, mass spectrometry; MW, molecular weight; m/z, mass-to charge ratio; NO, nitric oxide; NOS, nitric oxide syn-
thase; PAOD, peripheral arterial occlusive disease; PFB, pentafluorobenzyl; PFB-Br, pentafluorobenzyl bromide; PFP, pentafluoropropionyl; PFPA, penta-
fluoropropionic anhydride; PG, prostaglandin; PRMT, protein arginine methyltransferase; PUFAs, polyunsaturated fatty acids; Q, quadrupole; QC, quality control; 
ROS, reactive oxygen species; RSD, relative standard deviation; RTR, renal transplant recipients; SD, standard deviation; SEM, standard error of the mean; SIM, 
selected-ion monitoring; SRM, selected-reaction monitoring; T2DM, type 2 diabetes mellitus; TBA, thiobarbituric acid; TBARS, thiobarbituric acid-reactive sub-
stances; Tx, thromboxane; TxA2, thromboxane A2; TxB2, thromboxane B2. 

* Address: Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, D-30625 Hannover, Germany. 
E-mail address: tsikas.dimitros@mh-hannover.de.  

Contents lists available at ScienceDirect 

Journal of Mass Spectrometry and  
Advances in the Clinical Lab 

journal homepage: www.sciencedirect.com/journal/journal-of-mass- 

spectrometry-and-advances-in-the-clinical-lab 

https://doi.org/10.1016/j.jmsacl.2023.08.001 
Received 27 January 2023; Received in revised form 1 August 2023; Accepted 3 August 2023   

http://www.ncbi.nlm.nih.gov/pubmed
mailto:tsikas.dimitros@mh-hannover.de
www.sciencedirect.com/science/journal/2667145X
https://www.sciencedirect.com/journal/journal-of-mass-spectrometry-and-advances-in-the-clinical-lab
https://www.sciencedirect.com/journal/journal-of-mass-spectrometry-and-advances-in-the-clinical-lab
https://doi.org/10.1016/j.jmsacl.2023.08.001
https://doi.org/10.1016/j.jmsacl.2023.08.001
https://doi.org/10.1016/j.jmsacl.2023.08.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmsacl.2023.08.001&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal of Mass Spectrometry and Advances in the Clinical Lab 30 (2023) 10–24

11

stress isoprostane”; isoprostanes are a class of oxidative stress bio-
markers that are isomeric to prostaglandins (PG). The particular reac-
tion of ROS with lipids is generally known as “lipid peroxidation”. MDA 
is a generally accepted and widely used biomarker of oxidative stress, 
notably of lipid peroxidation [1]. Oxidative stress is considered to be 
central to human life. 

Chemistry and origin of biological malondialdehyde 

Malondialdehyde (MDA) also known as malonaldehyde (1,3-pro-
panedial, OHC-CH2-CHO; C3H4O2; MW, 72.06; CAS 542-78-9; Pub-
Chem, 10964) is a solid compound. The most characteristic features of 
MDA are the two carbonyl functions and its CH-acidity in aqueous so-
lution (pKa, 4.46 [2,3]). These properties have been utilized for the 
measurement of MDA in biological samples [1,4]. 

Biological MDA in lipids, including unsaturated fatty acids, such as 
AA, was first detected using a thiobarbituric acid (TBA) reagent [1,4,5]. 
Formation of MDA in large amounts was observed by incubating 
platelets with AA. Acetylsalicylic acid and indomethacin inhibited the 
formation of MDA, suggesting involvement of cyclooxygenase (COX) 
[6,7]. In humans, ingestion of aspirin (acetylsalicylic acid) inhibited the 
formation of thromboxane B2 (TxB2), the stable metabolite of throm-
boxane A2 (TxA2), as well as the formation of MDA [8]. Further exper-
iments have shown that in human platelets, TxA2 synthesis is associated 
with formation of glutathione disulfide (GSSG), MDA and 12-hydroxy- 
5,8,10-heptadecatrienoic acid [8–11]. Recombinant COX-1 and COX-2 
were found to oxidize AA to MDA, 12-hydroxy-5,8,10-heptadecatrienoic 
acid and 15(S)-8-iso-prostaglandin F2α (15(S)-8-iso-PGF2α; for simplicity 
8-iso-PGF2α) in addition to other PGs and TxA2 [12]. Interestingly, 
glutathione (GSH) was found to promote concomitant COX-catalyzed 
conversion of AA to MDA and 8-iso-PGF2α [12]. These aspects of 
MDA, and of 4-hydroxy-2-nonenal (HNE), have been reviewed previ-
ously in greater detail [1,13,14]. In plasma and urine, MDA occurs both 
in a free form and conjugated to biomolecules, including certain amino 
acids, notably lysine and serine [15–18]. 

The L-arginine/nitric oxide pathway 

L-Arginine (Arg) is the substrate for the nitric oxide synthase (NOS) 
family. NOS isoforms convert Arg to nitric oxide (NO) and L-citrulline 

(Scheme 2). NO is a signaling gaseous molecule. It is a potent vasodilator 
and inhibitor of platelet aggregation. In biological fluids, such as blood, 
NO is practically not detectable. NO is oxidized to nitrite and nitrate. In 
plasma, serum, urine and other biological samples, the minor and major 
NO metabolites, i.e., nitrite and nitrate, respectively, serve as surrogates 
for local and whole body synthesis of NO [19]. The NOS activity is 
regulated by mono- and di-methylated Arg analogs, notably mono-
methylarginine (MMA) and asymmetric dimethylarginine (ADMA). 
MMA and ADMA are endogenous metabolites of Arg; they are formed by 
post-translational methylation of Arg residues in numerous proteins and 
subsequent regular proteolysis (Scheme 2). MMA and ADMA circulate in 
blood and are excreted in the urine, both unchanged and after hydrolysis 
by dimethylarginine diaminohydrolase (DDAH) to monomethylamine 
and dimethylamine (DMA), respectively. The status of the Arg/NO 
pathway in health and disease and in various conditions, such as phys-
ical exercise and pharmacological treatment can be characterized by 
measuring representative members in biological samples. They include 
nitrite and nitrate (measures of NOS activity), Arg (measure of substrate 
bioavailability), ADMA (measure of inhibition state of NOS activity), 
and DMA (measure of ADMA metabolism) [19,20]. 

A search in PubMed (http://www.ncbi.nlm.nih.gov/pubmed; 17 
November 2022) using the search term “nitric oxide” resulted in 
189,136 articles, or 36,371 articles using the search term “nitric oxide 
arginine”, and 7,559 articles using the term “nitric oxide nitrite nitrate”. 
These numbers indicate that the Arg/NO pathway is of particular 
research interest. 

Analytical chemistry of malondialdehyde – general aspects 

For recent reviews on MDA analysis in biological samples, see Refs. 
[1,21]. The most frequently used analytical methods for MDA are based 
on its reaction with thiobarbituric acid (TBA). The so-called thio-
barbituric acid-reactive substances (TBARS) assay has been used for the 
assessment of lipid peroxidation [22] by spectrophotometry [23] or 
fluorimetry [24]. Because of a lack of specificity of these batch assays, 
they were improved by coupling with high-performance liquid chro-
matography (HPLC) [25–28]. 

In liquid chromatography tandem mass spectrometry (LC-MS/MS), 
3-nitrophenyl hydrazine was used for the derivatization of MDA and its 
measurement in human plasma [29]. HPLC, LC-MS/MS, gas 
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Scheme 1. Simplified schematic of 
malondialdehyde (MDA) formation from 
the polyunsaturated arachidonic acid. In 
theory, peroxidation of arachidonic acid to 
form MDA can occur on three methylene 
groups between non-conjugated double 
bonds as indicated for arachidonic acid. 
Arrows indicate the C atoms, which are 
attacked by molecular oxygen, an O2

••-spe-
cies. Vertical lines through the double 
bonds indicate the double bonds, which are 
broken/opened by this attack. Adapted 
from Ref. [1].   
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chromatography-mass spectrometry (GC–MS) and gas chromatography- 
tandem mass spectrometry (GC–MS/MS) methods for MDA are specific 
and more sensitive than batch TBARS assays. They are useful both for 
free and adducted MDA [30,31]. 

A unique GC–MS-based analytical method for MDA utilizes the C-H 
acidity of the methylene H atoms in aqueous solution [2,3]. Penta-
fluorobenzyl (PFB) bromide (PFB-Br) alkylates MDA on its central C 
atom to form the MDA-(PFB)2 derivative, thereby leaving both alde-
hydic groups intact [32]. GC–MS and GC–MS/MS are useful for the 
quantitative measurement of free MDA in various biological samples 
[12,32,33]. 

Mass spectrometry in clinical chemistry and laboratories 

Mass spectrometry (MS)-based analytical methods have found little 
application in classical clinical chemistry laboratories thus far, although 
these techniques are widely used in clinical studies since several de-
cades. MS-based techniques, especially LC-MS/MS, are increasingly 
implemented in clinical laboratories [34]. This is also reflected by a 
recent search in the PubMed (http://www.ncbi.nlm.nih.gov/pubmed; 
17 November 2022) which resulted in 3,231 articles using the search 
term “clinical chemistry gc-ms” (since 1971) and 4,645 articles using the 
search term “clinical chemistry lc-ms” (since 1982). 

GC–MS and GC–MS/MS in clinical studies 

In our group, we routinely use GC–MS and GC–MS/MS methods to 
measure various classes of analytes in biological samples. For the mea-
surement of MDA and for several members of the Arg/NO pathway in 
clinical studies, fully validated stable-isotope dilution GC–MS and 
GC–MS/MS methods were developed and used (Scheme 3). The most 
widely used derivatization reagent in these methods is 2,3,4,5,6-penta-
fluorobenzyl bromide (PFB-Br) [35]. PFB-Br is used in our group for the 
derivatization and measurement of several classes of endogenous me-
tabolites including MDA [32], nitrite and nitrate [36], creatinine [37], 
carboxylic acids including prostaglandins and thromboxane [38], and 
biogenic amines including histamine [39]. Amino acids including Arg 
and its metabolites ADMA are measured by GC–MS and GC–MS/MS after 
derivatization with 2 M HCl in methanol to prepare their methyl esters 
followed by pentafluoropropionic anhydride (PFPA) to form their 

pentafluoropropionic (PFP) derivatives [40]. In situ prepared trideu-
teromethyl ester of amino acids are used as internal standards [41]. 
Urinary and plasma DMA are analyzed by GC–MS after extractive 
derivatization with pentafluorobenzoyl chloride [42,43]. 

GC–MS and GC–MS/MS measurement of biological malondialdehyde as 
pentafluorobenzyl derivative 

We developed GC–MS and GC–MS/MS methods which are based on 
the derivatization of MDA with PFB-Br. It utilizes the C-H-acidity (pKa, 
4.46) of the methylene group of MDA [2,3]. The carbanions of MDA 
react with PFB-Br to form a dipentafluorobenzyl derivative (Scheme 4). 
This derivatization reaction occurs in aqueous acetone at 50 ◦C and can 
take place in all biological samples and tissue suspensions in buffers 
(aqueous phase-acetone, 1:4, v/v). [1,3-2H2]MDA (d2-MDA) is used as 
the internal standard for biological MDA (d0-MDA). MDA labelled with 
2H on position C2 is not useful as internal standard in this method 
because of 2H/1H exchange. 

Under very similar derivatization conditions, inorganic nitrite and 
inorganic nitrate react with PFB-Br to form PFB-NO2 and PFB-ONO2, 
respectively [36] (Scheme 5). Commercially available nitrite and nitrate 
labelled with 15N are used as internal standards for biological nitrite and 
nitrate, respectively. Commercially available nitrite and nitrate labelled 
with 18O are less useful as internal standards because of 18O/16O 
exchange. 

Fig. 1 shows GC–MS spectra of synthetic d0-MDA-(PFB)2 and d2- 
MDA-(PFB)2 in the electron capture negative-ion chemical ionization 
(ECNICI) mode by scanning the first quadrupole (Q1). The most intense 
corresponding mass fragments are m/z 251 and m/z 253 due to loss of a 
PFB radical (181 Th) from the derivatives. 

Product ion mass spectra of the MDA derivatives were generated 
consecutively by selecting on the first quadrupole Q1 m/z 251 for d0- 
MDA-(PFB)2 and m/z 253 for d2-MDA-(PFB)2. These ions were subjected 
to collision-induced dissociation (CID) in the second quadrupole Q2 of 
the mass spectrometer using argon as the collision gas. The generated 
product ions were selected by scanning the third quadrupole Q3 of the 
GC–MS/MS apparatus and reconstructed to obtain the GC–MS/MS mass 
spectra (not shown). The most characteristic product ions were m/z 175 
for d0-MDA-(PFB)2 and m/z 177 for d2-MDA-(PFB)2, indicating that 
derivatization, ECNICI and CID did not affect the aldehyde groups [32]. 

Scheme 2. Simplified schematic of a 
small part of the L-arginine/nitric oxide 
pathway. Free L-arginine is converted by 
nitric oxide synthase (NOS) to L-citrul-
line and nitric oxide (NO) using molec-
ular oxygen (O2) and various cofactors 
(not shown). NO is autoxidized to nitrite; 
oxyhemoglobin (HbO2) oxidizes NO to 
nitrate. Nitrite and nitrate are intercon-
vertible through redox reactions. NOS 
activity is inhibited by asymmetric 
dimethylarginine (ADMA), which is 
generated by asymmetric dimethylation 
of arginine residues in proteins by pro-
tein arginine methyltransferase (PRMT) 
and subsequent proteolysis. ADMA is 
hydrolyzed to L-citrulline and dimethyl-
amine (DMA) by dimethylarginine dia-
minohydrolase (DDAH).   
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Quantitative GC–MS analyses of MDA are performed by selected-ion 
monitoring (SIM) of m/z 251 for d0-MDA-(PFB)2 and m/z 253 for d2- 
MDA-(PFB)2. When using a single quadrupole GC–MS apparatus, the 
quadrupole is alternately scanned between two pairs of voltages to let 
pass the ions m/z 251 for d0-MDA-(PFB)2 and m/z 253 for d2-MDA- 
(PFB)2. Quantitative GC–MS/MS analyses of MDA are performed by 
selected-reaction monitoring (SRM) of the mass transitions m/z 251 to 
m/z 175 for d0-MDA-(PFB)2 and m/z 253 to m/z 177 for d2-MDA-(PFB)2. 
Representative GC–MS and GC–MS/MS chromatograms from analyses of 
MDA in human plasma are shown in Fig. 2. 

Fig. 2A shows that there are many ions with m/z 251 and m/z 253, 
but only the baseline-separated ions eluting at 10.57 min and 10.58 min 
are due to d0-MDA-(PFB)2 and d2-MDA-(PFB)2, respectively. Fig. 2B 
shows only two peaks from the mass transitions m/z 251 to m/z 175 and 
m/z 253 to m/z 177 eluting each at 10.58 min. The chromatograms of 
Fig. 2 impressively demonstrate the superiority of GC–MS/MS over 

GC–MS: it minimizes potential interferences by unknown substances. 
Yet, comparison of GC–MS (SIM mode) and GC–MS/MS (SRM mode) 
indicate that they deliver closely comparable MDA concentrations in 
human biological samples in a wide concentration range [32] (Fig. 3). 
These methods have provided important information on the analytical 
chemistry and biology of MDA in clinical studies (see next Section). 

Aim of the present work 

The high reliability of the measurement of biological MDA and 
several members of the Arg/NO pathway by GC–MS and GC–MS/MS 
enables a critical evaluation and identification of potential sources of 
pre-analytical shortcomings that may have been overseen in the past in 
published clinical, pharmacological, epidemiological and sport- 
medicinal studies. This is the primary goal of the present investiga-
tion. The present work also attempts to evaluate whether the study 
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design may represent an issue for consideration in planning future 
studies to minimize distortion of in vivo reality. 

Application of GC–MS and GC–MS/MS methods in two clinical 
studies 

The peripheral arterial occlusive disease (PAOD) and the coronary 
artery disease (CAD) studies have been published previously in detail 
[32,44–47]. The data reported in these publications and in the present 
work were taken in part from these publications and in part from the 
PhD theses by Jessica Lachmuth [48] and Sabine Rothmann [49]. A 
detailed description of these studies including patients’ characteriza-
tion, drug supplementation, sampling, GC–MS and GC–MS/MS, results 
(Tables S1–S8) and statistical analyses is provided in the Supplement to 
this work. These two clinical studies were paradigmatically used in the 
present work to discuss pre-analytical and analytical factors in the 

GC–MS-based analysis primarily of biological MDA. 

Discussion of pre-analytical factors in clinical studies 

General aspects 

With respect to the various aspects of clinical trials, the reader may 
find information at https://en.wikipedia.org/wiki/Clinical_trial 
(uploaded on 9 November 2022) and in the references cited therein. 
Clinical trials are designed to answer specific questions for instance 
about biomedical interventions by drugs or dietary supplements. Clin-
ical trials are conducted upon approval by health authority/ethics 
committee. Clinical trials can vary in size with respect to the number of 
treated subjects, the involved research centers and the study duration. 
Research subjects are recruited according to inclusion and exclusion 
criteria. The clinical study design aims to ensure the scientific validity 
and reproducibility of the results. In the so-called interventional study, 
the investigators give the research subjects a certain dose drug (for 

Scheme 4. Simplified schematic of the derivatization of malondialdehyde 
(MDA) with pentafluorobenzyl (PFB) bromide in aqueous acetone to form the 
2,2-dipentafluorobenzyl derivative (MDA-(PFB)2). A volume ratio of 1:4 for 
biological sample (e.g., 100 µL)-to-acetone (e.g., 400 µL) is required for a ho-
mogenous phase and solubilization of PFB-Br (e.g., 10 µL pure PFB-Br) [32]. 

Scheme 5. Simplified schematic of the derivatization of nitrite and nitrate with 
pentafluorobenzyl (PFB) bromide in aqueous acetone to form the nitro- 
pentafluorobenzyl derivative (PFB-NO2) and nitric ester-pentafluorobenzyl 
derivative (PFB-ONO2). A volume ratio of 1:4 for biological sample (e.g., 
100 µL)-to-acetone (e.g., 400 µL) is required for a homogenous phase and sol-
ubilization of PFB-Br (e.g., 10 µL pure PFB-Br) [36]. 

D. Tsikas                                                                                                                                                                                                                                          

https://en.wikipedia.org/wiki/Clinical_trial


Journal of Mass Spectrometry and Advances in the Clinical Lab 30 (2023) 10–24

15

instance L-arginine) or placebo (for instance mannitol) for a previously 
defined period (for instance 12 or 24 weeks). Prior to start the treatment, 
i.e., at baseline, participants are investigated clinically to gain the 
biomedical measures such as blood pressure. In addition, blood, urine 
and possibly other biological samples are collected for the measurement 
of biochemical parameters. At the end of the study, researchers perform 
clinical investigations and collect biological samples for measuring 
biochemical parameters. After completion of the study, investigators 
compare by using proper statistical methods the clinical and 

biochemical outcomes from treated subjects with those receiving the 
placebo. The investigators assess how the subjects’ health changed in the 
groups due to the treatment. 

Clinical trials need to be carefully prepared both with respect to 
biomedical and biochemical aspects. The focus of the present work are 
biochemical aspects. Measurement of many different biochemical pa-
rameters may require different specific procedures. 

A more general issue is the time plan of the laboratory measure-
ments. Should the biological samples be analyzed immediately after 

Fig. 1. GC–MS mass spectra in the electron 
capture negative-ion chemical ionization 
(ECNICI) mode of (A) unlabeled MDA (d0-MDA) 
and of (B) [1,3-2H2] MDA (d2-MDA) as their di- 
pentafluorobenzyl derivatives. d0-MDA-(PFB)2 
produces the anion with the mass-to-charge (m/ 
z) 251. d2-MDA-(PFB)2 produces the anion with 
m/z 253. The GC–MS mass spectra were gener-
ated by scanning the first quadrupole (Q1) in the 
m/z range 50–600. The triple stage quadrupole 
(TSQ) GC–MS/MS instrument model TSQ 7000 
(ThermoFisher) was used. Methane was used as 
the reactant gas. Adopted from Ref. [32].   
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their collection at baseline and at the end of the study? In this case, 
biochemical parameters would be analyzed at least two times, i.e., at the 
beginning (baseline) and at the end of the study. Would then the 
analytical results measured at two different time points be reliably 
comparable? How to proceed further, if the concentrations of 
biochemical parameters in the verum and placebo differ statistically? 
Should the study be stopped? 

Alternatively, should the biological samples be analyzed simulta-
neously once at the end of study? In this case, the biological samples 
would differ in age, and questions may arise. Do the concentrations of 
labile analytes decrease stronger in the older samples compared to the 
younger samples? 2) Do the concentrations of analytes increase stronger 
in the older samples compared to the younger samples because of arti-
ficial formation during storage? 

Should such aspects be included in the study design of clinical trials? 

Specific aspects of MDA analysis 

Plasma, serum and tissue are the most frequently analyzed biological 
samples for MDA. Blood sampling including anti-coagulation and he-
molysis, conditions for sample storage including temperature and time, 
and artificial formation of MDA, notably in long-term clinical studies, 
are well-recognized pre-analytical factors that may compromise mea-
surement of MDA. A more recently recognized, in the past rarely 
considered MDA-specific issue concerns the study-design, even in 
placebo-controlled studies [1,50]. These factors are discussed separately 
below. 

Blood sampling – type of anti-coagulation and hemolysis 
Anti-coagulation and hemolysis are two major well-recognized pre- 

analytical factors for many endogenous substances and drugs in plasma 
and serum [51–56]. Commercially available vacutainers used to draw 
blood may be contaminated to varying degrees with the analytes to be 
measured. The content of MDA in monovettes we used in blood sampling 
in clinical studies including the PAOD and CAD studies was measured to 
be 5–10 nM, i.e., neglectable, except for the citrate monovettes (Fig. 4). 
Not contaminating MDA but rather coagulation/anti-coagulation- 
specific factors are responsible for differences in reported plasma and 
serum samples. Blood-sampling induced hemolysis, is likely to include 
ex vivo peroxidation of free and esterified PUFAs from red blood cells 
and COX-1-induced peroxidation of arachidonic acid in platelets. At 
baseline, we found an inverse correlation between plasma MDA and 
plasma potassium concentrations of healthy young men, without visible 
hemolysis [57]. Considerable differences for MDA concentrations were 
measured in freshly prepared serum and plasma (EDTA, heparin) from 
blood of a healthy subject. The lowest MDA concentrations were 
measured in the serum samples (Fig. 4) [32]. 

The MDA concentration measured by GC–MS/MS in plasma samples 
of healthy young volunteers who ingested placebo, aspirin (acetylsali-
cylic acid, ASA) or paracetamol was found to correlate with the 

Fig. 2. Typical GC–MS chromatograms from quantitative analyses of unlabeled 
MDA (d0-MDA) in a 100-µL human plasma aliquot by GC–MS (A) and GC–MS/ 
MS (B). d2-MDA was used as the internal standard. In GC–MS, selected-ion 
monitoring (SIM) of m/z 251 and m/z 253 was performed. In GC–MS/MS, 
selected-reaction monitoring (SRM) of the transitions m/z 251 to m/z 175 and 
m/z 253 to m/z 177 was performed. Adapted from Ref. [32]. 
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oxyhemoglobin (HbO2) plasma concentration, albeit to a varying extent. 
The lowest variation in HbO2 and MDA concentrations was seen in the 
volunteers treated with paracetamol (acetaminophen) (Fig. 5). The 
highest plasma HbO2 levels were measured in plasma of volunteers who 
ingested acetylsalicylic acid. Fig. 5 suggests that estimation of 
hemolysis-induced formation of MDA would very difficult. During the 
observation period of 4 h, no appreciable changes in plasma MDA 
concentration was seen in the volunteers including those who ingested 
aspirin (Fig. 5 and Ref. [32]). This is in line with the observation that in 
humans MDA and TxA2 inhibition by ingested aspirin (600 mg) requires 
considerable time to occur (Ref. [8]). 

Minimization of ex vivo coagulation/anti-coagulation-dependent 
formation of MDA can by achieved by using COX inhibitors such as 
acetylsalicylic acid or indomethacin to block enzymatic formation of 
MDA [6,7,58]. The use of butylated hydroxytoluene (BHT) at high 
concentrations has also been described especially in TBA assays [59]. In 
our studies, we do not use COX inhibitors or BHT in plasma or urine to 
suppress MDA formation. 

A difficulty remains, nevertheless. Optimum measurement of 
endogenous analytes such as MDA [1], nitrite and nitrate [19] or DMA 
[43] in serum or plasma may require different types of anti-coagulation 
and the commercially available vacutainers/monovettes may be differ-
ently contaminated with the analytes. Circulating DMA concentration in 
healthy young women was determined to be 1.4 ± 0.2 µM in serum, 1.7 

± 0.12 µM in lithium heparin plasma, and 9.8 ± 1.4 µM in EDTA plasma 
[43]. DMA was identified as an abundant contaminant in EDTA vacu-
tainer tubes (9.3 ± 1.9 nmol/monovettes), with serum and lithium 
heparin vacutainers being contaminated with considerably smaller 
amounts of DMA (0.4 ± 0.01 and 0.9 ± 0.01 nmol/monovettes, 
respectively) [43]. Thus, serum would be recommended as the most 
appropriate matrix for measuring DMA in human blood. Analyte- 
specific blood sampling could be a solution, but would complicate 
clinical studies. 

Sample storage and time point of analysis 
Formation of MDA during storage of human plasma in the absence 

and in presence of externally added anti-oxidants has been reported 
[44,47,59,60,61]. Artefactual formation of free non-conjugated MDA in 
collected urine samples seems not be relevant when measured by GC–MS 
or GC–MS/MS [44,47]. In many clinical studies, urine is collected by 
spontaneous micturition without information of the urine volume and 
the period of collection. 

Many analytes measured in blood, plasma, serum and urine are also 
present in the laboratory air and may represent potential contributors to 
those being analyzed in study samples. There is evidence that atmo-
spheric nitrogen oxides (NOx) including nitrite and nitrate can entry into 
biological samples being analyzed by physical adsorption during sample 
working up [62]. Atmospheric NOx are also absorbed by the derivati-
zation reagent PFB-Br, and the use of commercially available 1-mL 
containing flasks of PFB-Br is recommended [62]. MDA is also present 
in the exhaled air [63] and in sputum [64] and could contribute to MDA 
in the study samples. Conditions known to influence the extent of 
contribution of environmental NOx are kind and temperature of the 
biological sample, as well as the time of exposition of the sample to the 
laboratory air [62]. We are not aware whether these issues also apply to 
MDA. Precautions should be taken to minimize such effects, especially 
during sample aliquoting and spiking with a stable-isotope labeled in-
ternal standard such as d2-MDA for subsequent GC–MS analysis [32]. 
During aliquoting and spiking of thawed (preferentially in ice bath) 
biological samples, they should be treated individually or in very small 
groups, and be kept immediately closed to minimize external MDA entry 
into the samples. Such a procedure is labor-intensive and costs time but 
saves analytical reliability. 

When is the best time to analyze MDA in biological samples collected 
in long-term clinical studies, in which samples collected at the end of the 
study are much younger than those collected at baseline? The results of 
the PAOD and CAD studies indicate that the time point of GC–MS/MS 
measurement of MDA in plasma, but not urine, may be a major concern 
[1,32,44–49]. The most likely explanation for the observations is arti-
ficial formation of MDA in stored plasma, which is a lipid-rich biological 
sample. Whether MDA is continuously formed during storage at the 
frozen state or during the thawing process is unknown. It seems to be a 
diverging but saturable effect [50], yet abundant enough to cause 
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statistically significant differences in the concentrations of MDA in 
plasma at baseline and at the end of the studies. That this effect occurred 
both in the placebo and in the verum groups of the PAOD and CAD 
studies lets conclude that higher MDA concentrations in the older 
plasma samples is not an effect of the administered drug, i.e., L-arginine, 
but higher artificial MDA formation. 

Commonly, samples collected at baseline and at the end of clinical 
studies are analyzed at the end of the studies. We also follow this pro-
cedure in our clinical studies. This proceeding allows performing GC–MS 
and GC–MS/MS analyses under closely comparable experimental con-
ditions for GC–MS and GC–MS/MS apparatus, laboratory and personnel 
for all study samples. The time needed to measure all study samples is by 
far much shorter than the length of the study. In the case of MDA 
measurement in plasma samples collected in long-term clinical studies, 
this strategy would most likely generate insignificant results. 

A serious alternative would be to analyze MDA in plasma/serum 
samples at two time points: 1) after complete collection of the baseline 
samples; and 2) after complete collection of the samples at the end of the 
study. Care should be taken that samples are collected closely in time, 
both at baseline and at the end of the study. In this case, difficulties may 
arise from differences at the time points with respect to experimental 
conditions including GC–MS or GC–MS/MS apparatus (e.g., tuning, GC 
column changing), laboratory (e.g., preparation and standardization of 
the internal standard; different charges of PFB-Br) and possibly 
personnel. Care should also be taken with respect to these issues. 

It is worthy of mention, that in the vast majority of the reported 
clinical studies involving MDA measurement in plasma or serum no 
information is report with respect to the storage conditions and the age 
of the samples during analysis. Yet, this information must be provided. 
Reporting detailed protocols including times and periods of sample 
collection, conditions of sample storage and final analysis ensures sci-
entific visibility. 

Study design issues 
When is the best time point(s) for the analysis of MDA in collected 

plasma or serum samples especially in long-term clinical studies? Needs 
this issue to be included in the study design? The most commonly used 
practice is measurement of analytes in samples collected at baseline and 
after completion of the whole study. It is believed that this ensures very 
similar analytical conditions for sample work up and instrumental 
analysis. This is likely true for analytes that are stable under the sample 
storage conditions and are not artificially formed during storage. 

In the two placebo-controlled CAD and PAOD studies, we investi-
gated biological and biochemical effects of L-arginine supplementation 
(3 g/d for 3 or 6 months) or placebo supplementation (3 g/d mannitol 
for 3 or 6 months). In these studies, we measured MDA concentrations in 

plasma samples collected at baseline and after treatment (3 and 6 
months, respectively) at the end of each study. Thus, baseline and after- 
treatment plasma samples differed by 3 and 6 months on the time point 
of analysis. In both studies, we observed considerably lower MDA con-
centrations in the plasma samples collected after 3 or 6 months than in 
the samples collected at the beginning [44,47]. In contrast, the MDA 
concentrations in the urine samples collected in parallel did not differ at 
baseline and after the end the studies. These observations, strongly 
suggest that storage time is a major concern in plasma but not in urine 
samples in long-term studies and needs to be considered in the study 
design. On the other hand, in short-term clinical studies, storage period 
of plasma samples for MDA measurement is not an issue [57]. Fig. 6 
shows that the plasma MDA concentration did not change over time 
during exercise in young volunteers who ingested NaCl (placebo) or 
NaNO3 (verum). It is noticeable that the concentration of MDA in the 
heparinized plasma samples of the healthy young volunteers is in the 
range of only 0.2–0.6 µM, i.e., considerably lower than in the elderly 
PAOD and CAD patients (see Table 1) [32,44–49]. 

Quality control 
In the framework of clinical studies, we implemented quality control 

(QC) systems for endogenous analytes including metabolites of the Arg/ 
NO pathway [19], MDA and 8-iso-PGF2α [65]. Such QC systems are 
useful to determine the accuracy and the precision by which endogenous 
substances were measured in biological samples at the time points of 
analysis [19]. Yet, they are not useful to correct for artificial formation 
of analytes such as MDA during long storage periods. 

An example for a QC system for MDA in human plasma is shown in 
Fig. 7. We used a pooled citrated plasma donated by a healthy young 
donor, which was frozen aliquoted (100 µL) at − 80 ◦C. Prior to freezing, 
MDA was measured in 18 aliquots. The baseline MDA concentration in 
these samples (QC 0) was determined to be 70.4 nM with a coefficient of 
variation (CV) of 7.7%. Study samples and QC samples (n = 2 to 6) were 
analyzed in parallel within 8 working days (QC 1 to 8). In the QC 
samples, the concentration of MDA was measured with a precision (CV) 
of 2.3 to 13.3% and with a bias of − 3 to 29%. The MDA plasma con-
centration in the study samples [66] was determined to be (median with 
interquartile range) 150 [115–194] nM. 

Reference values and intervals 

Oxidative stress and lipid peroxidation are generally believed to be 
involved in numerous human diseases [67,68]. Yet, reliable quantitative 
measurement of MDA in plasma and serum samples is highly chal-
lenging. Despite the many attempts to define reference intervals and the 
plethora of reported data on MDA [69], no reference intervals were 

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

Exercise

P
la

sm
a

M
D

A
(µ

M
)

NaCl group

P = 0.5682

VP: 3, 4, 7, 8, 10, 13, 14, 17 (A2)

1 2 3 4 5 6 7
0.0

0.2

0.4

0.6

0.8

Exercise

P
la

sm
a

M
D

A
(µ

M
)

NaNO3 group
P = 0.1151

VP: 1, 2, 5, 6, 9, 11, 12, 15, 16 (B2)

Fig. 6. Malondialdehyde (MDA) concentrations in heparinized plasma samples of the volunteering persons (VP) of the NaCl (A2) and NaNO3 (B2) groups at the seven 
individual time points of exercise after supplementation (see Scheme 2). Data in (A2) and (B2) are shown as median with 95% confidence interval. Adapted from [57] 
(part of the supplementary Fig. S3 in [57]). Exercise numbers correspond to a period of about 60 min in total. 

D. Tsikas                                                                                                                                                                                                                                          



Journal of Mass Spectrometry and Advances in the Clinical Lab 30 (2023) 10–24

19

established for MDA plasma and serum or for MDA in exhaled breath 
condensate (EBC) [63]. 

Circadian rhythmicity 

Similarly, circadian rhythmicity is also generally assumed to be 
associated with oxidative stress and to have implications for human 
health and disease. Yet, there discrepant reports [70–75]. Wilking and 
colleagues concluded in their review that „We believe that for a more 
efficacious management of diseases that have both circadian rhythm and 
oxidative stress components in their pathogenesis, targeting both sys-
tems in tandem would be far more successful” [70]. The most efficient 
and generally followed strategy to overcome variation of a potential 
circadian rhythmicity of MDA formation in clinical studies would be 
sampling of biological samples at fixed day or night times. 

MDA in diseases 

Table 1 summarizes reported MDA concentrations in human plasma, 
serum and red blood cells in health and disease. In freshly collected EBC 
and bronchoalveolar liquid (BAL) samples of healthy young humans, we 
have measured MDA concentrations of the order of 50 nM by GC–MS/ 
MS (unpublished data). Discrepant data were reported with respect to 
the subjects age, gender, smoking and alcohol consumption (Table 1) 
[69,76–82]. 

MDA is considered to be associated with many diseases, including 
Alzheimer and Parkinson and diabetes [83,84]. Yet, there considerable 
discrepancies as well [68,85–89]. 

Oxidative stress is commonly associated with kidney disease. By 
means of GC–MS/MS [32] and a commercially available TBARS assay 
we found no transrenal MDA concentration differences after reperfusion 
[90]. Urinary MDA concentrations as measured by the TBARS assay 
were similar in kidney recipients and healthy controls [90]. Oxidative 
damage in clinical ischemia/reperfusion injury has been questioned 
[91,92]. 

A recent prospective cohort study showed that post-transplantation 
plasma MDA (as measured by a non-commercially fluorimetric TBARS 
assay after extraction with n-butanol) is associated with cardiovascular 
mortality in renal transplant recipients (RTR) [93]. In that study, the 
median circulating baseline MDA concentration was 5.4 µM in 604 RTR. 
It is noticeable that the association between plasma MDA concentration 
and the risk for cardiovascular mortality was stronger in RTR with 
relatively lower plasma ascorbic acid concentrations [93]. 

We measured by GC–MS the excretion rate of MDA in urine samples 
of healthy donors before (pre) and after donation (post) of a kidney and 
in RTR of previously described cohorts [93,94]. Median MDA excretion 
rate expressed as µmol/24 h or corrected by creatinine excretion 
decreased statistically significantly due to donation of a kidney by about 
30 % (Fig. 8). Median MDA excretion in the urine of RTR was 1.6–1.9 
times higher compared to that of the healthy donors prior to kidney 
donation. These results suggest that urinary MDA may be useful as a 
measure of oxidative stress. Whether urinary MDA indicates whole-body 
oxidative stress, or rather local oxidative stress in the kidney remains to 
be investigated. 

MDA and anti-oxidants supplementation 

Many clinical studies investigated the effects of anti-oxidant sup-
plementation in health and disease [95–113]. Use anti-oxidants include 
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Table 1 
Reported MDA concentrations in serum, plasma and red blood cells in health and disease.  

Health/disease Matrix Anticoagulation Method MDA concentration Reference 

Health Serum 
PlasmaPlasma 

none 
HeparinEDTA 

GC–MS/MS 0.42 µM (n = 18) 
0.49 µM (n = 18) 
2.76 µM (n = 18) 

[32] 

DiabetesHealth PlasmaPlasma Not reportedNot reported Batch TBARSBHT  
(5 µM), butanol 

0.44 µM (n = 20) 
0.47 µM (n = 14) 

[61] 

Health PlasmaSerum EDTA 
Heparin 
Citratenone 

HPLC-UV 0.26 µM (n = 13) 
1.27 µM (n = 13) 
0.89 µM (n = 13) 
1.16 µM (n = 13) 

[74] 

Health Plasma EDTA HPLC-UV 0.4–1.3 µM males (n = 107) 
0.3–1.2 µM females (n = 106) 
0.66 µM sm (n = 92) vs 0.60 µM nsm (n = 122)a 

[74] 

Diabetes (T2DM)Health SerumRBC Heparin (?) TBARS Serum: 0.4 µM healthy vs. 0.4 µM diabetic 
RBC: 0.4 µM healthy vs. 0.8 µM diabetic b 

[87] 

Diabetes (T2DM)Normal glucose tolerance Plasma unknown Batch TBARS 1.0 µM (n = 93) 
1.0 µM (n = 96) 

[92] 

Diabetes Serum None HPLC-UV 0.75/1.05 µM healthy/diabetes 1st trimester 
0.72/1.08 µM healthy/diabetes 2nd trimester 
0.79/0.82 µM healthy/diabetes 3rd trimester 

[83]  

a Sm, smokers; nsm, nonsmokers. 
b RBC, red blood cells. 
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vitamin E (α-tocopherol), ω-3 fatty acids (EPA and DHA) and N-ace-
tylcysteine (NAC). PUFAs supplementation seems to increase MDA for-
mation, most likely due to the elevation of the circulating EPA 
concentration in the patients supplemented with ω-3 fatty acids rather 
than due to elevation of oxidative stress [102]. In the case of the 
circulating isoprostanes as biomarkers of oxidative stress, a normaliza-
tion to their precursors in plasma/serum lipids have been discussed 
[103]. Yet, such a standardization is problematic mainly because of the 
definition of a proper lipid. This difficulty applies much more to MDA, 
which have many precursors. In contrast, normalization of 3-nitro-tyro-
sine to its precursor tyrosine has been established [104]. 

In a clinico-pharmacological study, Iranian rheumatoid patients 
received NAC (2 × 600 mg/day) or placebo in addition to the basic 
therapy [105]. The mean serum MDA concentration in the placebo 
group of the study was 2.2 µM at baseline and 2.2 µM after 12 weeks, 
indicating no effects of NAC on oxidative stress [105] (Fig. 9). In 

contrast, the mean serum MDA concentration in the NAC group was 4.2 
µM at baseline, but only 1.5 µM after 12 weeks, suggesting a strong 
decrease of oxidative stress upon NAC treatment (Fig. 9). These serum 
MDA concentrations are within the wide-ranges reported in the litera-
ture for healthy and ill subjects using various methodologies, including 
assays based on TBARS assays and GC–MS [1,68]. However, the baseline 
serum MDA concentrations were almost two times higher in the NAC 
group compared to the placebo group [105]. The issues mentioned 
above for MDA also apply to nitrite + nitrate (NOx) measured in the 
study [105] (Fig. 9). It arises the question whether studies with greatly 
differing baseline values of MDA, NOx and other biochemical parame-
ters in the placebo and verum groups should be terminated prior to start 
the planned supplementation if they are primary outcome parameters of 
the study [50] as originally designed [105]. 

In case of supplementing chemically reactive anti-oxidants such as 
NAC, which are known to react with carbonylic compounds including 
MDA [106], their potential interference with MDA assays needs to be 
investigated pre-analytically at relevant concentrations for NAC and its 
major metabolites L-cysteine and GSH. 

Metformin (a dimethylated biguanide) is a pleiotropic drug and to 
exert anti-oxidative effects [107]. Metformin (1 to 2 g/d for 12 weeks) 
has been tested in combination with astaxanthin (a carotenoid) in pa-
tients suffering from type 2 diabetes mellitus [108]. Plasma MDA was 
measured by a TBARS assay as reported in Ref. [107] to be of the order 
of 18 µM, which is an extraordinarily high concentration, and was found 
not to change [108]. 

In a clinico-pharmacokinetic study, we investigated the effects of 
metformin supplementation (3 × 500 mg/d) for six weeks to Becker 
muscular dystrophy (BMD) patients [109,110]. In that study, we also 
measured MDA in serum and urine samples by GC–MS [32]. Metformin 
supplementation decreased mean serum MDA concentration by 21% 
(from 0.99 µM at baseline to 0.78 µM after six weeks), while creatinine- 
corrected MDA urinary excretion was about 0.2 µmol MDA/mmol 
creatinine and did not change at all [111]. To our knowledge, urinary 
MDA is rarely measured and its clinical significance is unexplored. In the 
BMD study, MDA excretion correlated inversely with the creatinine 
excretion [111]. Previously, we found a close positive correlation be-
tween the urinary excretion rates of MDA and nitrite [112]. This 
observation and the association of circulating and urinary MDA have not 
been investigated in depth thus far. As free MDA (pKa, 4.5) and nitrite 
(pKa, 3.6) are of comparable size largely negatively charged in human 
urine (pH range, 5.5 to 7.8), renal transport systems for anions, possibly 
also involving carbonic anhydrases [113], are likely to be involved in 
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the excretion/reabsorption of MDA and nitrite in the kidneys (see 
Ref. [93]). 

Summary and outlook 

Mass spectrometry is widely applied in clinical research is increas-
ingly implemented in clinical laboratories [34,114,115] because of its 
exclusive feature among analytical techniques to utilize a unique 
property of inorganic and organic material, i.e., its mass. Yet, good 
science needs good mass spectrometry [116] and deep knowledge of 
known and potential pitfalls in analytical processes and ways for their 
avoidance, especially when analyzing biological samples which are 
inherently complex and practically not suitable for direct analysis 
[50,56,104,116–120]. Crucial and at first glance paradoxical concerns 
refer to a series of pre-analytical factors that include sample collection 
and storage until sample work up. Non-identification and non- 
controlling of pre-analytical concerns are likely to distort the in vivo 
reality because of generation of highly questionable analytical results. 
Even storage of plasma samples at low temperatures for a considerable 
period for instance during an ongoing clinical study may result in arti-
ficial generation of analytes. This has been observed for MDA [61], the 
subject of the present work, in plasma samples, which are rich in lipids, 
potential origin of MDA. Artificial generation of MDA in urine has not 
been observed, suggesting urine as a serious alternative matrix to blood. 
Yet, plasma and serum are still the most frequently analyzed biological 
samples for MDA as a measure of lipid peroxidation [1]. In the present 
article, several pre-analytical issues affecting reliable quantitative 
determination of MDA by GC–MS after derivatization with penta-
fluorobenzyl bromide [32] within the frame work of clinical studies 
were discussed in detail, including examples from own research. They 
include blood sampling and anti-coagulation, sample aliquoting, stor-
age, thawing spiking with the internal standard d2-MDA, implementing 
a QC system for MDA and its measurement in human urine. Examples 
from reported clinical studies by other research groups were also pre-
sented and discussed. The greatest challenges in the analysis of MDA in 
human plasma and serum are still pre-analytical issues and largely in-
dependent of the analytical approach. Mass spectrometry in combina-
tion with chromatography (i.e., GC–MS, GC–MS/MS, and LC-MS/MS) is 
a guarantor of good analytics but cannot abstain from good pre- 
analytics. Clinical journals reporting results on oxidative studies and 
Arg/NO pathway should permit authors to describe in the work the 
analytical approaches used in the studies including the time points of 
sample collection, storage and analysis, for high transparency and 
comparability. The possibility that study design may improve analytical 
outcome was also addressed. 
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H.M. Princen, DALI-Study Group. No effects of atorvastatin (10 mg/d or 80 mg/d) 
on nitric oxide, prostacyclin, thromboxane and oxidative stress in type 2 diabetes 
mellitus patients of the DALI study, Pharmacol. Res. 94 (2015) 1–8. 

[97] A. Mezzetti, F. Cipollone, F. Cuccurullo, Oxidative stress and cardiovascular 
complications in diabetes: isoprostanes as new markers on an old paradigm, 
Cardiovasc. Res. 47 (2000) 475–488. 

[98] M. Kunisak, F. Umeda, T. Inoguchi, J. Watanabe, H. Nawata, Effects of vitamin E 
administration on platelet function in diabetes mellitus, Diabetes Res. 14 (1990) 
37–42. 

[99] S.K. Jain, R. McVie, T. Smith, Vitamin E supplementation restores glutathione and 
malondialdehyde to normal concentrations in erythrocytes of type 1 diabetic 
children, Diabetes Care 23 (2000) 1389–1394. 

[100] J.P. Allard, R. Kurian, E. Aghdassi, R. Muggli, D. Royall, Lipid peroxidation during 
n-3 fatty acid and vitamin E supplementation in humans, Lipids 32 (1997) 
535–541. 

[101] A.A. Kayacelebi, V.V. Pham, J. Willers, A. Hahn, D.O. Stichtenoth, J. Jordan, 
D. Tsikas, Plasma homoarginine (hArg) and asymmetric dimethylarginine 
(ADMA) in patients with rheumatoid arthritis: is homoarginine a cardiovascular 
corrective in rheumatoid arthritis, an anti-ADMA? Int. J. Cardiol. 176 (2014) 
1129–1131. 

[102] J. Willers, S. Fasse, N. Putschly, H. Zeidler, H.G. Pott, M. Bernateck, W. Demary, 
R. Hein, V.V. Pham, R. Stange, B. Uehleke, H.F. Weidemann, G. Hoese, 
R. Lichtinghagen, A. Hahn, Food Nutr. Sci. 2 (2011) 714–723. 

[103] B. Halliwell, C.Y.J. Lee, Using isoprostanes as biomarkers of oxidative stress: some 
rarely considered issues, Antioxid. Redox Signal. 13 (2010) 145–156, https://doi. 
org/10.1089/ars.2009.2934. 

[104] D. Tsikas, M.W. Duncan, Mass spectrometry and 3-nitrotyrosine: strategies, 
controversies, and our current perspective, Mass Spectrom. Rev. 33 (4) (2014) 
237–276. 

[105] K. Esalatmanesh, A. Jamali, R. Esalatmanesh, Z. Soleimani, A. Khabbazi, A. Malek 
Mahdavi, Effects of N-acetylcysteine supplementation on disease activity, 
oxidative stress, and inflammatory and metabolic parameters in rheumatoid 
arthritis patients: a randomized double-blind placebo-controlled trial, Amino 
Acids 54 (3) (2022) 433–440. 

[106] L. Włodek, The reaction of sulfhydryl groups with carbonyl compounds, Acta 
Biochim. Pol. 35 (1988) 307–317. 

[107] X. Hou, J. Song, X.N. Li, L. Zhang, X. Wang, L. Chen, Y.H. Shen, Metformin 
reduces intracellular reactive oxygen species levels by upregulating expression of 
the antioxidant thioredoxin via the AMPK-FOXO3 pathway, Biochem. Biophys. 
Res. Commun. 396 (2010) 199–205, https://doi.org/10.1016/j. 
bbrc.2010.04.017. 

[108] N. Roustaei Rad, A. Movahedian, A. Feizi, A. Aminorroaya, M.H. Aarabi, 
Antioxidant effects of astaxanthin and metformin combined therapy in type 2 
diabetes mellitus patients: a randomized double-blind controlled clinical trial, Res 
Pharma Sci 17 (2) (2022) 219. 

[109] P. Hafner, U. Bonati, B. Erne, M. Schmid, D. Rubino, U. Pohlman, T. Peters, 
E. Rutz, S. Frank, C. Neuhaus, S. Deuster, M. Gloor, O. Bieri, A. Fischmann, 
M. Sinnreich, N. Gueven, D. Fischer, M.D. Cordero, Improved muscle function in 
Duchenne Muscular Dystrophy through L-arginine and metformin: An 
investigator-initiated, open-label, single-center, proof-of-concept-study, PLoS One 
11 (1) (2016) e0147634. 

[110] P. Hafner, U. Bonati, D. Rubino, V. Gocheva, T. Zumbrunn, N. Gueven, D. Fischer, 
Treatment with L-citrulline and metformin in Duchenne muscular dystrophy: 
study protocol for a single-centre, randomised, placebo-controlled trial, Trials 17 
(2016) 389, https://doi.org/10.1186/s13063-016-1503-1. 

[111] E. Hanff, P. Hafner, A. Bollenbach, U. Bonati, A.A. Kayacelebi, D. Fischer, 
D. Tsikas, Effects of single and combined metformin and L-citrulline 
supplementation on L-arginine-related pathways in Becker muscular dystrophy 
patients: possible biochemical and clinical implications, Amino Acids 50 (2018) 
1391–1406, https://doi.org/10.1007/s00726-018-2614-7. 

[112] E. Hanff, M.F. Eisenga, B. Beckmann, S.J. Bakker, D. Tsikas, Simultaneous 
pentafluorobenzyl derivatization and GC-ECNICI-MS measurement of nitrite and 
malondialdehyde in human urine: Close positive correlation between these 
disparate oxidative stress biomarkers, J. Chromatogr. B 1043 (2017) 167–175. 

[113] K. Chobanyan-Jürgens, A. Schwarz, A. Böhmer, B. Beckmann, F.M. Gutzki, J. 
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