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The vitamin A metabolite retinoic 
acid (RA) regulates gene transcrip-

tion by activating the nuclear receptors 
RAR and PPARβ/δ and their cognate 
lipid binding proteins CRABP-II, which 
delivers RA to RAR, and FABP5, which 
shuttles the hormone to PPARβ/δ. In 
preadipocytes, RA signals predomi-
nantly through CRABP-II and the RAR 
isotype RARγ to induce the expression of 
hallmark markers of preadipocytes Pref-
1, Sox9, and KLF2. RA thus maintains 
the preadipocyte phenotype and inhibits 
adipogenesis. In mature adipocytes, RA 
activates both of its receptors to upreg-
ulate expression of genes that enhance 
lipid oxidation, energy dissipation, and 
insulin responses. Consequently, RA 
potently protects mice from diet-induced 
obesity and insulin resistance by two 
distinct mechanisms: by counteracting 
adipogenesis, thereby moderating the 
formation of new fat cells, and by pro-
moting energy expenditure, thereby pre-
venting adipocyte hypertrophy.

The primary cells of adipose tissue, adi-
pocytes, coordinate energy homeostasis 
and serve as endocrine cells, giving rise 
to signaling cytokines that control mul-
tiple cellular functions. The adipose tissue 
begins to develop in late gestation but adi-
pocyte number dramatically expands after 
birth and continues to increase through 
puberty.1 Even in adult adipose tissue, 
about 10% of adipocytes turn over every 
year2 and adipogenesis can be induced 
by environmental cues such as consump-
tion of a high-fat diet.3-5 Proper adipo-
genesis throughout life is thus of critical 
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importance for maintaining health, and 
malformation or dysfunction of adipo-
cytes underlie the development of various 
pathologies, including obesity and type 2 
diabetes. Adipocytes are generated from 
mesenchymal stem cells by a two-step 
process entailing commitment of stem 
cells to the adipocytes lineage, followed by 
terminal differentiation of adipocyte pro-
genitors, preadipocytes, into mature fat 
cells.6 The second step can be triggered by 
adipogenic signals including insulin, glu-
cocorticoid receptor agonists and agents 
that elevate cellular cAMP levels.7,8 These 
signaling molecules modulate the expres-
sion of numerous genes, thereby inducing 
differentiation and allowing adipogenesis 
to proceed9,10 (reviewed in ref. 11).

Of special note among regulatory fac-
tors involved in adipocyte biology is the 
transcriptionally active metabolite of vita-
min A retinoic acid (RA). The biological 
activities of this hormone originate from 
its ability to activate several members of 
the nuclear receptor family of transcrip-
tion factors: the classical RA receptors 
RARα, RARβ and RARγ12 and the per-
oxisome proliferator activated receptor 
β/δ (PPARβ/δ).13-17 The partitioning of 
RA between its receptors is regulated by 
two intracellular lipid-binding proteins 
that deliver it from sites of synthesis in 
the cytosol to cognate receptors in the 
nucleus, cellular RA binding protein II 
(CRABP-II) transports RA to RARs and 
fatty acid binding protein type 5 (FABP5) 
shuttles it to PPARβ/δ. The spectrum of 
genes whose expression is regulated by 
RA and, accordingly, cellular responses 
to the hormone are thus determined by 
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preadipocytes, is cleaved by ADAM17 to 
produce an extracellular form that acti-
vates ERK signaling, leading to induction 
of SOX9.42-44 In turn, SOX9 impedes adi-
pogenesis by repressing the expression of 
C/EBPβ and C/EBPδ.45-48

Mice fed a high fat/high sucrose 
(HFHS) diet and treated with RA dis-
play a lower weight, lower adipose tissue 
mass, and lower adipocyte size as com-
pared with animals fed a HFHS diet in 
the absence of administration of RA.13 
RA treatment also blunts diet-induced 
elevation in levels of plasma cholesterol 
and plasma triglycerides. These effects 
emanate in part from increased expres-
sion of adipose and muscle proteins that 
enhance lipid oxidation and energy dis-
sipation and that promote insulin sig-
naling. However, the data also showed 
that adipose tissue of RA-treated mice 
contains fewer mature, lipid-containing, 
adipocytes, and displays a higher expres-
sion level of the preadipocyte marker 
Pref-1.39 The data thus establish that RA 
contributes to maintenance of preadipo-
cytes and inhibits adipocyte differentia-
tion in vivo. CRABP-II+/− mice, in which 
RA signaling through the CRABP-II/
RAR pathway is reduced, were used to 
further examine whether inhibition of 
adipogenesis by RA contributes to its abil-
ity to protect animals from diet-induced 
obesity. Expression levels of adipocyte 
markers in WT and CRABP-II+/− mice 
were similar. Hence, in agreement with 
the report that many of the activities of 
RA in mature adipocytes are mediated by 
the FABP5/PPAβ/δ path,13 adipocytes of 
CRABP-II+/− mice retain normal pheno-
type. In contrast, the levels of expression 
of Pref-1, SOX9, and KLF2 were markedly 
lower in adipose tissue of CRABP-II+/− vs. 
WT mice. These observations further 
support the identification of these genes 
as direct targets for the RA-activated 
CRABP-II/RAR path, and they indicate 
that the preadipocyte content of adipose 
tissue of CRABP-II+/− mice is lower than 
that of WT animals. These findings sug-
gest that these mice are be prone to excess 
adipogenesis and thus that they may dis-
play a propensity for enhanced adiposity. 
Indeed, CRABP-II+/− mice fed a HFHS 
diet gained more weight than WT ani-
mals although they displayed a lower food 

energy dissipation, e.g., UCP3, and lipoly-
sis, e.g., hormone sensitive lipase.13,28,29 In 
vivo, administration of RA induces the 
expression of lipid- and sugar-processing 
PPARβ/δ target genes in adipose tissue 
and liver, and it recapitulates the reported 
activity of PPARβ/δ in increasing skeletal 
muscle mitochondrial content.30 Taken 
together with the ~0.5 °C higher body 
temperature of mice treated with RA,13 
these observations indicate that induction 
of weight loss by RA is associated with 
enhanced energy utilization.

In addition to its activities in mature 
adipocytes and muscle, RA is also closely 
involved in regulation of adipogenesis. 
Interestingly, it has been reported that 
RA induces commitment of embryonic 
stem cells to the adipocyte lineage31,32 
but potently blocks differentiation of pre-
adipocytes into mature adipose cells.33-35 
It has been suggested that induction of 
adipocyte commitment of stem cells by 
RA involves glycogen synthase kinase 3 
(GSK3)28 and that inhibition of adipocyte 
differentiation by the hormone involves 
Smad3.36-38 However, the identity of direct 
target genes that mediate these activities 
and the mechanisms by which the effects 
of RA on adipogenesis are propagated were 
unknown. Providing insight into some of 
these questions, our recent observations39 
showed that inhibition of adipocyte dif-
ferentiation by RA is mediated primarily 
by the RAR subtype RARγ and that, in 
preadipocytes, RARγ directly controls 
the expression of several genes that encode 
known inhibitors of adipogenesis. One of 
these is the Kruppel-like factor KLF2, a 
transcription factor that inhibits adipo-
genesis by suppressing the expression of 
the adipogenic factors PPARγ, C/EBPα, 
and SREBP1c.40,41 Interestingly, the data 
showed that, while suppressing the expres-
sion of these genes, KLF2 upregulates the 
expression of both CRABP-II and RARγ 
in preadipocyes. Hence, KLF2 par-
ticipates in a positive feedback loop that 
amplifies inhibition of adipocyte differen-
tiation by RA. Other RA-regulated genes 
that block differentiation of preadipocytes 
into mature fat cells are the preadipocyte 
marker Pref-1, its activator ADAM17, and 
its downstream effector, the transcrip-
tion factor SOX9. Pref-1, a plasma mem-
brane protein exclusively expressed in 

the relative expression levels of these 
binding proteins in specific cells; RA 
controls expression of RAR target genes 
in cells that display a high CRABP-II/
FABP5 ratio, but it regulates PPARβ/δ 
target genes in cells in which this ratio is 
low.15,16,18-22 In preadipocytes, RA signals 
predominantly through the CRABP-II/
RAR path. However, adipocyte differen-
tiation is accompanied by downregulation 
of CRABP-II and RARs and by upregula-
tion of FABP5 and PPARβ/δ, and conse-
quently, the alternative pathway is enabled 
and RA can activate both of its receptors 
in mature adipocytes.13,14

Various observations indicate that vita-
min A is closely involved in regulation 
of adipose tissue function. Hence, abla-
tion of retinol dehydrogenase 1 (rdh1) in 
mice, which results in alterations in vita-
min A homeostasis, leads to enhanced 
size and adiposity.23 Further, fibroblasts 
with reduced expression of cellular reti-
nol-binding protein I (CRBP-I) undergo 
adipocyte differentiation more readily 
than parental cells, and CRBP-I-null 
mice display increased adiposity.24 It was 
also reported that CRBP-III plays a role 
in lipid metabolism.25 Treatment of mice 
with RA at a pharmacological but non-
toxic dose (~3 mg/kg/d) was reported to 
result in weight loss and improved glu-
cose tolerance despite a larger food intake 
by treated animals.13 Additional reports 
showed that RA reduces adiposity in 
rodents.26-28 However, these latter stud-
ies utilized very high RA concentrations 
(10–100 mg/kg/d), raising the question 
of whether the observed weight loss may 
have originated from RA toxicity.

The ability of RA to induce weight 
loss in animals was traced, at least in 
part, to activities in mature adipocytes 
and in muscle, where the hormone signals 
through both RAR and PPARβ/δ. It has 
thus been reported that, in cultured adi-
pocytes, RA enhances energy expenditure 
by inducing the expression of PPARβ/δ 
target genes that trigger energy dissipa-
tion, e.g., uncoupling protein 1 (UCP1), 
promote fatty acid oxidation, e.g., alcohol 
dehydrogenase 9 and carnitine palmito-
yltransferase, and participate in insulin 
responses, e.g., GluT4, as well as by upreg-
ulating genes that are jointly controlled 
by RAR and PPARβ/δ and that promote 
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Figure 1. Mechanisms by which RA suppresses dietary-induced adiposity and insulin resistance. In preadipocytes, RA activates CRABP-II and RARγ to 
induce expression of Pref-1, ADAM17, Sox9, and KLF2, all of which contribute to inhibition of adipogenesis. In turn, KLF2 upregulates RARγ and CRABP-
II, thereby propagating a positive feedback loop that further potentiates RA-induced inhibition of adipocyte differentiation. In mature adipocytes, RA 
functions through both RAR and PPARβ/δ to induce the expression of genes that enhance energy expenditure and that promote insulin responses.
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