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New periodic-chaotic attractors 
in slow-fast Duffing system with 
periodic parametric excitation
Xianghong Li1, Yongjun Shen   2, Jian-Qiao Sun3 & Shaopu Yang2

A new type of responses called as periodic-chaotic motion is found by numerical simulations in a Duffing 
oscillator with a slowly periodically parametric excitation. The periodic-chaotic motion is an attractor, 
and simultaneously possesses the feature of periodic and chaotic oscillations, which is a new addition to 
the rich nonlinear motions of the Duffing system including equlibria, periodic responses, quasi-periodic 
oscillations and chaos. In the current slow-fast Duffing system, we find three new attractors in the form 
of periodic-chaotic motions. These are called the fixed-point chaotic attractor, the fixed-point strange 
nonchaotic attractor, and the critical behavior with the maximum Lyapunov exponent fluctuating 
around zero. The system periodically switches between one attractor with a fixed single-well potential 
and the other with time-varying two-well potentials in every period of excitation. This behavior is 
apparently the mechanism to generate the periodic-chaotic motion.

Chaos is a typical motion in nonlinear systems, which is characterized by the unpredictable behavior and extreme 
sensitivity to initial conditions1. Because of the broad-band and noise-like spectrum, chaotic motions are useful 
in various engineering applications, such as secure communication, image encryption, random bit generation, 
radar and sonar systems2–5. On the other hand, chaos should be avoided in order to separate periodic motion 
from chaos by applying small perturbations6. Among chaotic systems, the Duffing oscillator has played a very 
important role and was the first chaotic system observed experimentally7. The Duffing oscillator with single-well, 
two-well and three-well potentials had been extensively studied analytically and numerically in engineering, 
physics, electronics, neurology, biology and other fields8–18. The Duffing systems subject to different external 
excitations were investigated19,20, where the necessary conditions for chaos based on both homoclinic and het-
eroclinic bifurcations were obtained. A Duffing system subject to two external excitations was discussed, and 
parametric threshold values for chaos were identified in21. The Duffing equation with damping and external 
excitations was also investigated, and the criteria of existence of chaos were found in22. The rich dynamical behav-
iors and bifurcations of the Duffing equation with parametric and external excitation were reported in23.

Strange nonchaotic attractors (SNAs) are geometrically complicated, exhibit no sensitive dependence on ini-
tial conditions and possess non-positive Lyapunov exponent24–30. Grebogi et al.24 found that quasi-periodically 
driven dynamical systems admitted SNAs in parameter regions of positive Lebesgue measure. Many other studies 
on SNAs in quasi-periodically driven systems were later reported31–35. On the other hand, the SNA in dynamical 
system without quasi-periodic excitation is becoming more and more attractive. Although the SNA in an autono-
mous four-dimensional mapping was reported in36, the accurate calculation of the maximum Lyapunov exponent 
was not confirmed37. Recently, the SNA was observed in a periodically driven nonlinear three degree-of-freedom 
vibro-impact system with symmetric two-sided rigid constraints38,39. We should point out to our best knowl-
edge that the dynamic responses involving both chaotic and nonchaotic characteristics are not available in the 
literature.

In this paper, we consider the Duffing system with periodically slowly time-varying stiffness, which exhibits 
this chaotic and nonchaotic switching dynamics, and is called the periodic-chaotic motion. The rest of the paper 
is organized as follows.

The System and its Complexity
Consider the Duffing system with periodical parametric excitation
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where b is the damping coefficient, and a and ω are the amplitude and frequency of the excitation. The stiffness is 
periodically time-varying. It is positive in one half period and negative in the other half. Hence, the equilibrium 
state (0, 0) is stable in one half period and unstable in the other half. Furthermore, the non-zero equilibrium states 
exist for the first half period when acosωt >0 and move on the x-axis in the region [− a a, ]. These character-
istics are the reason for highly complex and unusual dynamic responses of the system, including the new phe-
nomenon of periodic-chaotic motions.

Examples of the system response are shown in Fig. 1, where the bifurcations of y with respect to ω with 
a = 6.25 and b = 0.3. When ω = 0.7 and ω = 0.1355, chaotic attractors exist as shown in the phase plane plots of 
Fig. 2(a,b). Their maximum Lyapunov exponents change from 0.1 to less than 0.02 presented in Fig. 3(a,b).

These examples clearly show the rich dynamics of the system and imply the difficulty to study it analytically. 
For this reason, the paper mainly presents a series of numerical investigations of the system.

Fixed-point Chaos
As a special case of periodic-chaotic motions, we consider a new phenomenon of fixed-point chaotic motion. For 
ω  1, Eq. (1) may become a slow-fast system with two time scales. When the parameters are taken as ω = .0 076, 

= .a 6 2575 and = .b 0 3, two chaotic attractors coexist. The phase diagrams of the chaos starting from two initial 
points (0.1, 0.1) and (−0.1, −0.1) are shown in Fig. 4(a,b). When a changes to 6.25 while other parameters are 
kept the same, the two coexisting fixed-point chaotic attractors merge. The phase diagram, time history, and 
maximum Lyapunov exponent of the resulting attractor are presented in Fig. 5(a–c). The maximum Lyapunov 
exponents of these attractors are positive and indicate that they are indeed chaotic.

These attractors, however, are different from the classic chaos. The “randomness” of these attractors is not 
obvious. The trajectories in Figs 4 and 5 seem to be anchored at the fixed point (0, 0), which attracts in one half of 
the period when acosωt < 0 and expels in the other half when acosωt > 0. The time history of x in Fig. 5(d) clearly 
shows the pattern. This is the reason that we call this phenomenon as the fixed-point chaos.

To further study the mechanism of the fixed-point chaos, we examine the bifurcation behavior of the slow-fast 
system. For ω  1, the periodic excitation ω=f a tcos  changes slowly between − a a[ , ]. We treat f approxi-
mately as a contant and use it as a bifurcation parameter of the following autonomous system
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Figure 6(a) presents the bifurcation diagram of Eq. (2) for b = 0.3, where the equilibrium (0, 0), is always stable 
for <f 0, and unstable for >f 0, expressed by solid and dash red lines respectively. The solid black line repre-
sents the stable equilibria ± f( , 0) for >f 0. Therefore, pitchfork bifurcation happens at =f 0 denoted as PF.

We take Fig. 4(a) as an example to explain the mechanism of the fixed-point chaos. Map the time history of 
x(t) in Fig. 4(a) as the function of = . .f t6 2575 cos(0 076 ), called transformation diagram, and overlap the results 
with Fig. 6(a). Figure 6(b) shows the changing pattern of the regular motion and chaos. To the left of point A, the 
trajectory may stay at the quiescence state (QS). To the right of point A, the trajectory is drawn by the upper stable 
branch and jumps to point B so as to form spiking state (SP). Thus, Point A is a turning point from the quiescence 
state (QS) to the spiking state (SP).

With the increase of the excitation, the system may have the SP state around the stable branch. Because the 
equilibrium on the upper branch is stable, the oscillation amplitude of the SP state is gradually damped. When 
the excitation reaches the maximum amplitude 6.2575, i.e. point C shown in Fig. 6(b), the trajectory may change 
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Figure 1.  Bifurcation diagram with respect to excitation frequency ω. a = 6.25, b = 0.3.
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Figure 2.  Phase diagrams of chaotic attractors for (a) ω = 0.7 and (b) ω = 0.1355.
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Figure 3.  The maximum Lyapunov exponents of chaotic attractors for (a) ω = 0.7 and (b) ω = 0.1355.
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direction and move on the same stable branch to stay on the QS with the decrease of the excitation. When tra-
jectory arrives at the bifurcation point PF, it may be attracted by the left stable point, and begins to approach the 
stable equilibrium point (0, 0). The minimum of the excitation with amplitude −6.2575 is denoted as point D. 
At this point, the trajectory turns around to move back to point A after passing the equilibrium (0, 0). Then, the 
equilibrium (0, 0) becomes unstable and expels the system toward points A and C. The randomness shown in the 
collection of trajectories is most likely due to the fact that when the system is attracted to the stable equilibrium 
(0, 0), the response variables x and y are non-zero and very small. In digital computations or experiments, such 
small numbers are practically random. Hence, the trajectories leaving the equilibrium (0, 0) all have different 
initial conditions for each period. The sensitivity to initial conditions shown in this system is clearly a property 
of chaos. This phenomenon is also common in slow-fast systems with switches between different attractors of 
the fast subsystem. Although the motion of the system in every period is regular, the totality of the responses 
constitutes a chaotic motion.

The fixed-point chaos is a bursting oscillation such that the SP state is coupled with the QS. This is typical with 
the slow-fast system. The hysteresis loop in the x-f plane in Fig. 6(b), indicating the memory effect of the system, 
usually exists in the slow-fast system40.

The mechanism for the big fixed-point chaos in Fig. 5 is similar to that in Fig. 4. The difference is that the 
trajectory randomly visits the left and right branches in Fig. 5(a), as indicated by the time histories in Fig. 5(b). 
The randomness is again due to the smallness of the system response when it leaves the stable equilibrium (0, 0).

Fixed-point Strange Nonchaotic Attractor
As the excitation frequency decreases, the fixed-point chaos may turn into another attractor. Figure 7 presents the 
oscillation of Eq. (1) for parameters = .a 6 25, ω = .0 025, and = .b 0 268012. The phase diagram in Fig. 7(a), time 
history in Fig. 7(b), and Poincare section in Fig. 7(c) are similar to those of fixed-point chaos. However, the max-
imum Lyapunov exponent in Fig. 7(d) is not positive. Therefore, the response is nonchaotic. We would like to call 
it a strange nonchaotic attractor because the attractor is not periodic, quasi-periodic and chaotic. Strange noncha-
otic attractors are mostly reported in the systems subject to excitations with two incommensurate or irrational 
frequencies24–30. It should be pointed out that there is only one frequency involved in this system. Because this 
nonchaotic attractor periodically visits the fixed point, we call it the fixed-point strange nonchaotic attractor.

To further examine the effect of the excitation frequency, we rewrite Eq. (1) in an extended state space as
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Figure 4.  Two coexisting fixed-point chaotic attractors for = .a 6 2575 and ω = .0 076. (a) Initial point (0.1, 
0.1). (b) Initial point (−0.1, −0.1).
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where θ ω= t. The subsystem consisting of x and y is fast, and the system associated with θ is slow. The equilib-
rium (0, 0) of the fast subsystem is stable for θ <cos 0 and unstable for θ >cos 0. The eigenvalues are 

-4 -2 0 2 4
-4

-2

0

2

4

x
y

(a)

4 4.2 4.4 4.6 4.8 5

x 104

-4

-2

0

2

4

t

x

(b)

0 0.5 1 1.5 2 2.5 3

x 104

-0.01

-0.005

0

0.005

0.01

0.015

0.02

Time

Ly
ap

un
ov

 e
xp

on
en

ts

(c)

700 750 800 850 900 950
-5

0

5

t

x

700 750 800 850 900 950
-5

0

5

t

y

(d)

Figure 5.  Fixed-point chaos for ω= . = .a 6 25, 0 076. (a) Phase diagram. (b) Time history. (c) The maximum 
Lyapunov exponent. (d) Enlargement of time history.
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λ θ ω= − ± +b b a( 4 cos )/21,2
2 , and λRe( )1,2  determines the stability of the equilibrium (0, 0). Parameters b 

and ω may directly affect the real part of eigenvalues. Because ω is in denominator, the variation of ω may lead to 
a large change of the real part of the eigenvalues. For example, substituting the parameters of Figs 5(a) and 7(a) 
into λRe( ), we obtain λ = − .Re( ) 1 97chaos  and λ = − .Re( ) 5 36nonchaos . It is obvious that the attraction of the 
stable equilibrium (0, 0) for nonchaos is much larger than that of the chaos. The displacement range of the turning 
point A in nonchaos is not exceeding 2·10−9 as shown in Fig. 8(a), while the range of point A in chaos falls in the 
region (−0.000243, 0.0002443) as shown in Fig. 8(b). The increase of attraction of stable equilibrium (0, 0) makes 
the range of the initial points entering SP in nonchaos much less than that in chaos. Although the extreme sensi-
tivity to initial conditions exists in nonchaos presented in Fig. 8(a), the maximum Lyapunov exponent of whole 
trajectory is negative due to its local and transient property.

Because the equilibrium (0, 0) converges and diverges in every period, the maximum Lyapunov exponent 
oscillates with the same frequency as that of the frequency. What is the maximum Lyapunov exponent of the 
critical behavior between chaos and nonchaos? For = .a 6 249984719222, ω = .0 0365445, and = .b 0 268012, the 
maximum Lyapunov exponent is plotted in Fig. 9(a,b) over different time intervals. We find that the maximum 
Lyapunov exponent of the critical behavior between fixed-point chaos and nonchaos always oscillates around 
zero. Such a critical solution may exist in a range of the system parameters, not at a point.

Periodic-Chaotic Oscillations
The attractors we discussed so far are chaos, nonchaos and critical behavor according to their maximum 
Lyapnuov exponents being greater than zero, less than zero and oscillating around zero. These atrractors are very 
similar in many aspects including the phase diagram, time history, Poincare section and generation mechanism. 
The similarities can also be shown with the help of the transformation diagrams about the displacement x and 
periodical excitation in Fig. 10(a,b), that are the transformation diagrams of fixed-point chaos with respect to 
Figs 4 and 5. The transformation diagrams of the fixed-point strange nonchaotic attractor in Fig. 7 and critical 
behavior in Fig. 9 are shown in Fig. 10(c,d). These transformation diagrams indicate that every attractor possesses 
two different oscillations. One is periodic motion about the fixed equlibrium. The other is chaotic oscillation due 
to the time-varying equlibria, characterized by the “randomly” spiking oscillations with extreme sensitivity to 
initial conditions. So we will call these attractors as the peroidic-chaotic motion. When the chaotic oscillation is 
dominant, the maximum Lyapnuov exponent of the entire solution is greater than zero, and it is a chaos. If the 
periodic movement is much appparent, the maximum Lyapnuov exponent of whole solution is less than zero or 
oscillating periodically around zero. Hence, it is not a chaos.
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Figure 6.  Generation mechanism of fixed-point chaos. (a) Bifurcation diagram. (b) Overlapping the 
bifurcation diagram in (a) with the transformation diagram of Fig. 4(a).
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Conclusions
The periodic and chaotic motions have been found to coexist in the response of the Duffing system with 
time-varying linear terms over one period. Such a motion is a new phenomenon and can be an addition to the 
classic invariant sets to describe the complex dynamics of nonlinear systems. The periodic-chaotic motions such 
as chaos, nonchaos, and critical behavior are very similar in many aspects. It seems to be inadequate to use the 
maximum Lyapunov exponent alone to characterize these motions. Hence, the periodic-chaotic motions call for 
new methods to describe them.
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Figure 7.  Nonchaotic attractors for ω= . = .a 6 25, 0 025 and = .b 0 268012. (a) Phase diagram. (b) Time 
history. (c) Poincare section. (d) Lyapunov exponent.
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Figure 8.  Oscillation near turning point A under f = acosωt. (a) Fixed-point strange nonchaotic attractor for 
= .a 6 25, ω = .0 025, and = .b 0 268012. (b) Fixed-point chaotic attractor for ω= . = .a 6 25, 0 076, and 
= .b 0 3.
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Figure 9.  The maximum Lyapunov exponent of critical behavior between chaos and nonchaos for 
= .a 6 249984719222, ω = .0 0365445, and = .b 0 268012. (a) Time is 10000. (b) Time is 1400000.
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Data Availability
The simulation in the paper is based on the ode45 routine in Matlab, where the absolute and relative errors are 
10−5 and 10−10 respectively.
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