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Simple Summary: The family Cleridae is a cosmopolitan group with approximately 4000 species
and 320 genera. Within the family, the phylogenetic relationships among the subfamilies, and the
timing of divergence, remain not yet fully resolved. Mitochondrial genomes have been widely
used to reconstruct phylogenies of various insect groups, but never introduced to Cleridae until
now. In this study, we newly generated 18 complete or nearly complete mitochondrial genomes,
which are conserved in the organization and structure, as well as exhibit typical high A+T-bias and a
preference of nucleotides A and G over T and C, as other insects. Further based on these sequences,
a phylogeny of this family is reconstructed of different datasets by both maximum likelihood (ML)
and Bayesian inference (BI) methods. The results are congruent and support the monophylies of the
family and each subfamily, and the subfamilial relationships are recovered as Korynetinae + (Tillinae
+ (Clerinae + Hydnocerinae)). Moreover, a molecular clock analysis estimated the divergence time
of Korynetinae from others no later than 160.18Mya (95% HPD: 158.18–162.06Mya). The current
study presents the first mitochondrial genome-based phylogeny of Cleridae, which provides new
evidence in reconstructing the phylogenetic relationships among the subfamilies and understanding
the mitochondrial features of this family.

Abstract: The predaceous beetle family Cleridae includes a large and widely distributed rapid radia-
tion, which is vital for the ecosystem. Despite its important role, a number of problems remain to be
solved regarding the phylogenetic inter-relationships, the timing of divergence, and the mitochon-
drial biology. Mitochondrial genomes have been widely used to reconstruct phylogenies of various
insect groups, but never introduced to Cleridae until now. Here, we generated 18 mitochondrial
genomes to address these issues, which are all novel to the family. In addition to phylogenomic anal-
ysis, we have leveraged our new sources to study the mitochondrial biology in terms of nucleotide
composition, codon usage and substitutional rate, to understand how these vital cellular compo-
nents may have contributed to the divergence of the Cleridae. Our results recovered Korynetinae
sister to the remaining clerids, and the calde of Clerinae+Hydnocerinae is indicated more related to
Tillinae. A time-calibrated phylogeny estimated the earliest divergence time of Cleridae was soon
after the origin of the family, not later than 160.18 Mya (95% HPD: 158.18–162.07 Mya) during the
mid-Jurassic. This is the first mitochondrial genome-based phylogenetic study of the Cleridae that
covers nearly all subfamily members, which provides an alternative evidence for reconstructing the
phylogenetic relationships.

Keywords: mitochondrial genome; phylogeny; divergence-time estimation; genome biology; Cleridae

1. Introduction

Cleridae Latreille, 1802, commonly known as checkered beetles, contains a cosmopoli-
tan group (except for the Antarctic) with approximately 4000 species and 320 genera [1–4].
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Most checkered beetles occur on plants and tree trunks, both larvae and adults are evidently
predators on other insects, especially wood-infesting beetles and their larvae [4].

Although the taxonomic work can be traced to Linnaeus [5], the systematics of Cleridae
has been in a hot debate in the history. Many scholars have made their contributions to this
issue, including Spinola [6,7], Lacordaire [8], Schenkling [9,10], Gahan [11], Chapin [12] and
Böving and Craighead [13]. The eight subfamilies system proposed by Crowson [14] has
been widely accepted until recently, which is largely based on the classification of the latter
two works. Later, Winkler [15–17] established another two subfamilies and proposed a
system of neutral terms as an interim measure to show relatedness among higher taxa, but
none of his concepts were followed. The morphology-based classification of Kolibáč [18,19]
reduced the number of the subfamilies into four by employing Transformation Series
Analysis method, including Tillinae, Hydnocerinae, Clerinae and Korynetinae, which was
followed by Leschen [20]. On the contrary, Opitz [1,21] erected another three subfamilies
and recognized a total of 12 subfamilies, but no one agreed with his concept. More recently,
a molecular phylogeny based on four gene markers was constructed by Gunter et al. [3],
who proposed another subfamily, Epiclininae (separated from Clerinae), and meanwhile
suggested Thaneroclerinae be reassigned to Cleridae. However, the latter was retained as a
separate family by Gimmel et al. [22] as conducted by Kolibáč [19], on basis of a four-gene
based phylogeny. In a most recent work [23], Hydnocerinae was downgraded to be a tribe
of Clerinae.

Except the differences in higher classification, the phylogenetic relationships within
the Cleridae are relatively incongruent. The subfamilial relationships are recovered as Ko-
rynetinae + (Hydnocerinae + Clerinae + Tillinae) [19] or Thaneroclerinae +((Tillinae + (Ko-
rynetinae + Epiclininae) +(Hydnocerinae + Clerinae))) on the morphological evidence [23],
or (Korynetinae + Epiclininae) + ((Thaneroclerinae + Tillinae) + (Hydnocerinae + Clerinae))
if fossil evidence added [23], or Tillinae + ((Thaneroclerinae + Korynetinae + Epiclininae) +
(Hydnocerinae + Clerinae)) [3] or Tillinae + ((Korynetinae + Epiclininae) + (Hydnocerinae +
Clerinae)) [24,25] on the molecular data. It was argued that, the morphology-based analyses
are weighted towards the characters used as taxonomic discriminators between lineages
and do not provide an unbiased assessment of the phylognetic relationships [3]. Although
some molecular phylogenies were attempted, they were all reconstructed on basis of short
nucleotide fragments of mitochondrial cox1, cytb, 12S and 16S rRNAs as well as nuclear 18S
and 28S rRNAs [3,23,25–27], which may do not contain enough phylogenetic information.

On a more macro-scale, some groups within Cleridae are also interesting for their
contribution to the fossil records, and debate continues over when this group first ap-
peared. Even the timing of the emergence of clerid beetles is still debate, with the oldest
unambiguous fossil appeared in the Middle Jurassic. A robust timing of the emergence of
clerids via phylogeny would be an independent way to test any of these hypotheses, which
has profound consequences for our interpretation of the origin and evolution of Cleridae.
A number of previous attempts have been made to combine fossil data with molecular
evidence in the Coleoptera and gain reliable estimates for the emergence of major clades
in this order [28–31]. Particularly, a detailed time-scaled phylogeny of the superfamily
Cleroidea was inferred by Kolibáč [25] most recently, and the origin and divergence time of
Cleridae was dated. However, the divergence-time of the clerid subfamilies needs to be
reassessed, due to inconsistent results in different studies [25,28–31].

The paucity of phylogenomic-scale datasets available to address phylogeny prevents
large-scale analysis of the Cleridae. Analysis using complete mitochondrial data provides
an alternative means of addressing this issue. Mitochondrial genomes contain a range
of useful information for phylogenetic investigations, as well as for understanding the
basic biology of the organisms that contain them. Their mix of well-conserved and more
variable regions render them perfect for understanding the inter-relationships of organism
at a range of scales. Furthermore, the crucial roles of mitochondria in providing energy to
the cell often means that changes at the genetic level are influenced by the environments
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inhabited by their species [32]. This direct reflection of evolutionary pressures mean that
mitochondrial genome sequences provide a unique window into the biology of the species.

The mitochondrial genome (mitogenome) has been widely used to construct the
phylogeny of a number of insect groups [33–40]; however, no studies were carried out
on the Cleridae due to a lack of mitochondrial resources. To date, only one complete
mitochondrial genome is available in the GenBank [41]. Alongside raw sequence data for
phylogenetic comparison, complete mitochondrial genome also present a range of data
for other investigations. The mitochondrial biological features, such as compositional bias,
codon usage, and substitutional rate variation in mitochondrial genomes provide critical
information for molecular evolution [42–45]. Moreover, phylogenomic analysis with all
the 37 mitochondrial genes included has result in improved nodal confidence as compared
with single- or multi-locus phylogenetics [33,43,46] but much remains left to be to be tested
using such a dataset.

In the present study, we sequenced mitochondrial genomes from 18 species of Cleridae.
We used these novel genomes to investigate both the phylogenetic relationships within
Cleridae and general biological features of this group. The results will improve our under-
standing of the phylogeny, divergence time and mitochondrial biology within Cleridae.

2. Materials and Methods
2.1. Sampling and DNA Extraction

Adult specimens of 18 clerid species (Table 1) were collected and preserved in 100%
ethanol at −20 ◦C before molecular experiments. The specimens were identified following
Yang [47]. Total genomic DNAs were extracted using a DNeasy Blood& Tissue kit (QIAGEN,
Beijing, China), according to the manufacturer’s instructions. DNAs were stored at −20 ◦C
for long-term storage and further molecular analyses, each species of which was attached
with a voucher number and deposited in the Museum of Hebei University, Baoding,
China (MHBU).

Table 1. Taxonomic information and GenBank accession numbers of mitochondrial genomes used in
the study.

Species
ID

Family/
Subfamily Species Depository/

Voucher No.
Locality/

Collection Information
Geographic
Coordinates GenBank No.

1 Cleridae/
Clerinae Clerus sp. MHBU,

2CA0214
China, Beijing: Mentougou,

Xiaolongmen, V-12-2018
115◦27′4.22′′ E,
39◦58′36.87′′ N MZ464014

2 Clerus dealbatus MHBU,
CAN0129

China, Shaanxi: Yangxian,
Youdeng, VI-24-2017

107◦22′30.72′′ E,
33◦27′7.80′′ N MZ490582

3 Xenorthrius
discoidalis

MHBU,
CAN0019

China, Gansu: Tianshui,
Maiji, Dangchuan,

Fangmatan, VIII-9-2018

106◦6′48.37′′ E,
34◦25′3.38′′ N MZ490583

4 Opilo grahami MHBU,
CAN0176

China, Yunnan: Jingdong,
Ailaoshan, Xujiaba,

VIII-17-2013

101◦1′14.74′′ E,
24◦31′15.90′′ N MZ488575

5 Clerus
klapperichi

MHBU,
2CA0167

China, Zhejiang:
Tianmushan, Xianrending,

V-6-2018

119◦26′43.64′′ E,
30◦20′43.87′′ N MZ475053

6 Omadius sp. MHBU,
2CA0218

China, Xizang: Nyingchi,
Medôg, VIII-14-2016,

95◦20′30.47′′ E,
29◦19′55.29′′ N MZ490580

7 Trichodes sp. MHBU,
CAN0128

China, Shaanxi: Yangxian,
Youdengvill., VI-24-2017

107◦22′30.95′′ E,
33◦27′7.72′′ N MZ490584

8 Pieleus
irregularis

MHBU,
2CA0165

China, Zhejiang:
Tianmushan, Xianrending,

V-6-2018

119◦26′43.64′′ E,
30◦20′43.87′′ N MZ488576

9 Cleridae/
Hydnocerinae

Callimerus
chinensis

MHBU,
CAN0173

China, Yunnan: Lancang,
Donghe, Shangbanggan,

XI-18-2017

100◦04′06.01′′ E,
55◦44′09′′ N MZ464016
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Table 1. Cont.

Species
ID

Family/
Subfamily Species Depository/

Voucher No.
Locality/

Collection Information
Geographic
Coordinates GenBank No.

10 Callimerus
inbasalis

MHBU,
2CA0173

China, Yunnan: Puer,
Lancang, VII-5-2017

99◦56′2.49′′ E,
22◦33′33.22′′ N MZ464017

11 Callimerus sp. MHBU,
2CA0166

China, Hunan: Shaoyang,
Chengbu, Dankou, Taiping,

V-6-2018

110◦14′52.64′′ E,
26◦21′25.14′′ N MZ488577

12 Callimerus
nigroapicalis

MHBU,
CAN0183

China, Hainan: Ledong,
Jiangfengling, IV-10-2019

108◦54′32.99′′ E,
18◦43′49.69′′ N MZ475052

13 Neohydnus
sinensis

MHBU,
2CA0035

China, Guangxi: Wuming,
Damingshan, V-21-2011

108◦20′33.57′′ E,
23◦31′45.78′′ N MZ464019

14 Neohydnus
jiuzhaigouensis

MHBU,
CAN0226

China, Hubei: Shennongjia,
Tiechanghe, VI-25-2019

110◦46′15.17′′ E,
31◦39′51.54′′ N MZ464018

15 Cleridae/
Korynetinae

Tenerus
flavicollis

MHBU,
2CA0146 China, Yunnan: IV-29-2010 102◦55′40.02′′ E,

25◦0′3.18′′ N MZ488578

16 Tenerus hilleri MHBU,
2CA0172

China, Sichuan: Pengzhou,
Danjingshan, VI-7-2019,

103◦50′21.24′′ E,
31◦5′9.99′′ N MZ488579

17 Cleridae/
Tillinae Tillus nitidus MHBU,

2CA0216
China, Shaanxi: Zhouzhi,
Louguantai, VI-25-2008

108◦19′58.28′′ E,
34◦3′49.19′′ N MZ490581

18 Cladiscus
yunnanus

MHBU,
2CA0079

China, Yunnan:
Xishuangbanna, Tropical

Botanical Garden, VI-2-2015

101◦16′44.26′′ E,
21◦55′20.83′′ N MZ464015

Out-
group

Melyridae/
Dasytinae

Dasytinae sp.
Psilothrix sp.

JX412765
JX412801

2.2. DNA Sequencing and Assembly

Whole mitochondrial genome sequencing was performed using an Illumina Novaseq
6000 platform (Illumina, Alameda, CA, USA) with 150 bp paired end reads at BerryGe-
nomics, Beijing, China. The sequence reads were first filtered following Zhou et al. [48]
and then the remaining high-quality reads were assembled using IDBA-UD [46] under a
98% similarity threshold and k values of a minimum of 40 and a maximum of 160 bp. The
gene cox1 was amplified by polymerase chain reaction (PCR) using universal primers as
“reference sequences” to target mitochondrial scaffolds by IDBA-UD [49] to acquire the
best-fit, which is under at least 98% similarity. The PCR cycling conditions comprised a pre-
denaturation at 94 ◦C for 5 min and 35 cycles of denaturation at 94 ◦C for 50 s, annealing at
48 ◦C for 45 s and elongation at 72 ◦C for 8 min at the end of all cycles. Geneious 2019.2 [50]
software was used to manually map the clean readings on the obtained mitochondrial
scaffolds to check the accuracy of the assembly.

2.3. Sequence Annotation and Analyses

Gene annotation was carried out by Geneious 2019.2 [50] software and the MITOS2
webserver (Available at http://mitos2.bioinf.uni-leipzig.de/index.py (accessed on 1 Feb.
2021) [51]. The circular map of the mitochondrial genome was produced using a vi-
sualization tool OrganellarGenomeDRAW (http://ogdraw.mpimp-golm.mpg.de/index.
shtml (accessed on 3 April 2021) [52]. Base composition, component skew, codon usage,
and relative synonymous codon usage (RSCU) were analyzed by PhyloSuitev1.2.2 [53].
DnaSPv5.10.01 [54] was used to estimate the nucleotide diversity (Pi) in a sliding win-
dow analysis (a sliding window of 200 bp and a step size of 20 bp) and non-synonymous
(Ka)/synonymous (Ks) substitution rates among the 13 protein-coding genes (PCGs). The
genetic distances were computed using MEGA 7.0 [55] with the Kimura-2-parameter
model. Substitution saturation of each codon position of PCGs was measured based
on Xia’s test [56] implemented in DAMBE program v6.4.81 [57]. SymTest v2.0.47 with
Bowker’s matching pair symmetry test [58] was used to analyze the differences of hetero-
geneous sequences in the datasets, and the heat maps were generated according to the
inferred p-values. The tandem repeats finder program (http://tandem.bu.edu/trf/trf.html

http://mitos2.bioinf.uni-leipzig.de/index.py
http://ogdraw.mpimp-golm.mpg.de/index.shtml
http://ogdraw.mpimp-golm.mpg.de/index.shtml
http://tandem.bu.edu/trf/trf.html
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(accessed on 1 April 2021) was used to predict the tandem repeat elements in the A+T-rich
region [59].

2.4. Phylogenetic Analyses

Mitochondrial genomes of 18 species representing all four subfamilies of Cleridae
were selected, which are all novel in this family (Table 1). The one sequence available
in the GenBank was not included in the analyses due to possible misidentification [41].
Two species of Dasytinae in Melyridae sensu lato were chosen as the outgroups [60,61]. To
test the impact of the third codon position of the PCGs and gene combination types on
the phylogenetic analysis, four datasets were concatenated: (i) the first and second codon
positions of 13 PCGs (PCG12); (ii) all three codon positions of PCGs (PCG); (iii) all PCGs
and rRNAs (PCGrRNA); (iv) all PCGs, rRNAs and tRNAs (PCGRNA).

Alignment of PCGs, tRNAs and rRNAs was performed by using Mafftv7.313 [62] in
PhyloSuite v1.2.2 (alignment strategy: auto) [53]. Intergeneric gaps and ambiguous sites
were removed using Gblocks v 0.91b [63], and individual alignments were concatenated
using PhyloSuite. All matrices were analyzed using maximum likelihood (ML) with IQ-
TREE v1.6.12 [64] on the dedicated webserver (Available at http://iqtree.cibiv.univie.ac.
at/ (accessed on 10 June 2021) and Bayesian inference (BI) with MrBayesv3.2.6 [65] on
CIPRES web server (Available at https://www.phylo.org/ (accessed on 25 May 2021)
or MrBayesv3.2.6 [65] in PhyloSuite, respectively. A 1000 replicate bootstrapping was
performed for ML analyses using the “ultrafast” option [66] implemented in IQ-TREE, with
the SH-alerts test used to assess branch supporting values. The best model (Tables S1 and S2)
was inferred by Partition-Finder (v2.1.1) [67]. Four simultaneous Markov chain Monte
Carlo (MCMC) runs of 1 million generations twice, with trees sampled every one thousand
generations, and the first 25% of 1 million generations twice, with trees sampled every one
thousand generations, and the first 25% of steps were discarded as burn-in. Stationarity
was considered to be reached when the average standard deviation of split frequencies
was below 0.01. Trees produced from all analyses were visualized and edited using iTOL
(https://itol.embl.de (accessed on 1 July 2021) [68].

2.5. Divergence Time Estimate

Divergence times among subfamilies were estimated using the nucleotide sequences
of 13 PCGs with a relaxed clock log normal model in BEAST1.10.4 [69,70]. We adopted
the Calibrated Yule model for the prior tree, and used the GTR+I+G for concatenation by
Phylosuite v1.2.2. For estimating divergence time calibration, Protoclerus korynetoides, the
oldest reported fossil of Cleridae from the Middle Jurassic in NE China (mean value of
normal prior distribution c.160.2 Mya, SD = 1.0) [71] was used to assign age calibration.
The final Markov chain was run twice for each 1 × 108 generations, sampling every
10,000 generations with the first 25% of generations discarded as burn-in, after confirming
the convergence of chains with Tracer v.1.7.2 [72]. The effective sample size of the majority
of parameters was >200. We summarized the subsamples trees in a maximum clade
credibility tree with mean heights using Tree Annotator v1.10.4, and then the mean heights
and 95% highest probability density (95%HPD) were displayed in Figtree v1.4.3 [73].

3. Results
3.1. Phylogenetic Analyses

Heterogeneity of nucleotide divergence was examined under pairwise comparisons in
a multiple sequence alignment. The heterogeneous sequence divergence of PCG12 dataset
(Figure 1a) is much lower than that of the other three datasets (Figure 1b–d), indicating
that the third codon positions are more rate-heterogeneous than the first and second ones.
Furthermore, substitution of the three codon positions of PCGs are generally not saturated,
except for the third codon position (Figure 2a–c), suggesting more substitution in the third
codon positions than in the first and second codon positions.

http://iqtree.cibiv.univie.ac.at/
http://iqtree.cibiv.univie.ac.at/
https://www.phylo.org/
https://itol.embl.de
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Figure 1. Heterogeneous sequence divergence of mitochondrial genomes of Cleridae resulting from
pairwise comparison of four aligned datasets: (a) PCG12rRNA; (b) PCG; (c) PCGrRNA; (d) PCGRNA.
The dark colors indicate the higher randomized accordance, whereas the lighter colors indicate the
opposite. All taxa names are listed to the right of the heat map. Although cells specify p-values > 0.05,
indicating that corresponding pairs of nucleotide sequences do not violate the assumption of global
stationery and homogeneity conditions.

Analysis of the four datasets resulted in nearly identical and fully resolved topolo-
gies with high nodal support values under both ML and BI analyses Figures 2 and S3).
Compared with all others (Figure S1; BSs = 55–57, PPs = 0.752–0.831), the nodal support
values of Hydnocerinae (BS = 72, PP = 1) were improved by both ML and BI analyses of
the PCG12 dataset when the third codon positions were excluded (Figure 2d).

In all phylogenetic analyses, the monophyly of the family and each subfamily is well
supported (PPs = 1, BSs = 100) (Figures 2 and S3). Korynetinae is recovered next to the
remaining clerids with high support value (PPs = 1, BSs = 100). Hydnocerinae and Clerinae
are recovered as sister groups, which is greatly supported (PPs = 1, BSs = 100). The clade
of Hydnocerinae + Clerinae is sister to Tillinae, which is highly supported (PPs = 1, BSs =
100).
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3.2. Divergence-Time Estimation

The age estimates (average and 95% PHD) of each subfamily based on the topol-
ogy recovered from BEAST analysis were summarized in Figure 3. The BEAST analysis
indicated that the divergence events of Cleridae occurred during the mid-Jurassic and
mid-Cretaceous period.

The subfamily Korynetinae was divergent from all others soon after the origin of the
family during the mid-Jurassic, approximately at 160.18 Mya (95% HPD: 158.18–162.07 Mya).
After a period of evolution, the Tillinae split from the rest during the early Cretaceous, at
138.58 Mya (95% HPD: 123.00–147.69 Mya), and finally Clerinae and Hydnocerinae became
divided at 109.03 Mya (95% HPD: 92.80–123.02 Mya).

3.3. General Features of Mitochondrial Genome

The complete or nearly complete mitochondrial genomes of 18 clerid species were
successfully sequenced. It is a double-strand circular molecule, which is made up of
37 genes, including 13 PCGs, 22 tRNA genes, 2 rRNA genes, and an A+T-rich region (or
control region) (Figures S1 and S2), of which 14 genes (8 tRNAs, 4 PCGs and 2 rRNAs) were
transcribed on the minority strand (N-strand), whereas the rest (14 tRNAs and 9PCGs) on
the majority strand (J-strand).
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The complete mitogenomes of clerids range from 15,638 bp to 17,127 bp in size
(Table S3). The sizes of the control region vary greatly among different species (rang-
ing from 987bp to 2,401 bp), whereas the PCGs, tRNAs, and rRNAs show little variation in
length (Table S3).

3.4. Nucleotide Composition

In the full genomes, the A+T contents range from 77.1% to 80%, those of the rRNAs
range from 81.2% to 83.4%, and those of the control region from 84.5% to 90.3% in Cleridae
(Table S3).

Comparison among the PCGs (Figure 4b, Table S4) shows that the average A+T content
of cox1 is the lowest (68.5%) in all clerids, followed by cox3 (72.5%) and cytb (73.5%), whereas
those of apt8 and nad6 are the highest (85.0% and 84.7%, respectively). Additionally, the
A+T contents of the third codon position of PCGs, ranging from 86.04% to 93.78%, are
much higher than those of the other two codon positions, which range from 68.19% to
72.42% (Figure 4a, Table S3). Moreover, the nucleotide skew analysis (Figure 4c,d, Table S5)
shows that the AT skews are positive for most species of Cleridae, whereas the GC skews
are all negative. The correlations of Cleridae’s mitogenomes were calculated between A+T
content versus AT skew (y = −0.0076x + 0.5923, R2 = 0.2771), and G+C content versus GC
skew (y = −0.0184x + 0.2618, R2 = 0.6213), respectively. Both of them showed negative
linear correlations, implying that the quantity of A+T becomes more equivalent with the
increase in A+T content, whereas G+C show a larger quantity gap with the increase in G+C
content.
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3.5. Codon Usage and Evolutionary Rates

In total, six initiation codons (ATA, ATT, ATG, ATC, TTG, GTG) were used in encoding
the PCGs of Cleridae, which are terminated with TAG or TAA codons or truncated T codons
(Table S6). Comparison of these codons among PCGs shows that atp6 always uses ATA,
and cox3 and cytb use ATG as start codons, respectively. For the stop codons, atp6, atp8, and
nad6 all use TAA, and nad4 uses T-, respectively. The most frequently used start codons are
ATT and ATA, and the stop codon is TAA.

Relative synonymous codon usage (RSCU) shows that all synonymous codons of
22 amino acids are present in Cleridae. Among these codons, UUA-Leu2 and UCU-Ser2 are
the first two frequently used codons, followed by CCU-Pro, GCU-Ala, and CGA-Arg (Table
S7). The RSCU values of the PCGs reveal that there is a higher frequency in the usage of AT
than that of GC in the third codon positions. In Cleridae (Table S8), Leu2, Ile, and Phe are
the most frequently encoded amino acids (over 10%), followed by Met, Ser2, and Asn.

We conducted pairwise non-synonymous (Ka) to synonymous (Ks) substitution ratio
(ω) analyses for Cleridae (Figure 5a), and found that the Ka/Ks of all PCGs are less than
1. Among the PCGs, cox2 has lowest value (ω = 0.134), whereas those of the nad family
genes (ω = 0.25 − 0.543) and atp8 (ω = 0.496) are higher. The pairwise genetic distance
calculation (Figure 5a) indicates that cox2 (0.149), cytb (0.15) and nad4l (0.152) are the lower
values, whereas atp8 (0.244), nad2 (0.244) and nad6 (0.259) are the three highest.

Sliding window analysis was implemented to study the nucleotide diversity of
13 PCGs exhibited in Figure 5b. Among the genes, nad6 (Pi = 0.26) has the highest variability,
followed by atp8 and nad2 (both Pi = 0.24); cox2, cytb, and nad4l (all Pi = 0.15) have the
lowest variability. This result is roughly congruent with that of the above pairwise genetic
distance calculation.
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4. Discussion
4.1. Phylogeny and Divergence-Time Estimation

Comparing all the topologies produced by different datasets by both ML and BI analy-
ses, the nodal support values were improved based on the PCG12 dataset when the third
codon positions were excluded. This may be a result of the high heterogeneity (Figure 1)
and saturated substitution (Figure 2c) of the third codon positions, which is relatively free
in evolution [74], and the change of nucleotide in this position rarely change the amino
acid product, consistent with their codon usage (Table S7). When the third codon positions
are highly heterogeneous or saturated, they should be excluded from the phylogeny re-
construction, generally because they will affect the reliability of the phylogenetic analysis
results or be less informative, as suggested by other studies [75–78].

The monophyly of the family and each subfamily is well supported, which is consistent
with some phylogenetic studies [2,19,28]. Korynetinae is recovered next to the remaining
clerids with high support value, which is congruent with the morphology-based phylogeny
carried out by Kolibáč [19]. Korynetinae was defined by a synapomophy (reduction in
size of the fourth tarsomeres) by Kolibáč [19]. However, when the fossil evidence was
implemented, Thaneroclerinae was recovered as the basal clade of Cleridae [27]. Otherwise,
the molecular phylogenies suggested Tillinae were at the base of the clerid clade [3,23,25,28],
regardless of whether Thaneroclerinae was sampled or not. Tillinae is the only clerid
subfamily in which the procoxal cavities are closed internally, which is a synapomorphy
of this subfamily [1] but may be apomorphic within Cleridae, since the Cleroid family
Rentoniidae is also equipped with this feature [3].

Hydnocerinae and Clerinae are recovered as sister groups, which is consistent with
the results of some studies [2,28], but they were suggested to be paraphyletic by oth-
ers [3,23,25,78]. Based on the latter results, Hydnocerinae was synonymized with Clerinae
by Bartlett [23]. Although our taxa sampling is too limited to test the monophylies of
these two subfamilies, Opitz’s [1] findings indicated that Hydnocerinae and Clerinae both
possess two secondary stomodaeal valve lobes (four in Tillinae and Thaneroclerinae or com-
pletely reduced in Korynetinae), which is synapomorphic for supporting their monophyly
or sister relationship.

The clade of Hydnocerinae + Clerinae is sister to Tillinae, which is highly supported
and shows some similarity to the phylogeny when the fossil data were implemented [78].
However, Epiclininae, which was separated from Clerinae, together with Korynetinae
recovered a sister relationship with this clade [3,25]. In terms of our results, Korynetinae is
relatively distant from this clade in the affinity, although no Epiclininae was available for
this study.
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The estimated divergence time is earlier than those predicted by previous stud-
ies [28,29,31], while later than others [25,30]. Protoclerus korynetoides, one of the two earliest
clerid fossil was not attributed to any subfamily [24] but was used to assign age calibration
prior for the family in the present study, so the estimated time is later than in theory at least.
Therefore, the origin of Cleridae is probably from the early Jurassic period, as predicted
by Toussaint et al. [30] and Kolibáč et al. [25], and accordingly, the divergence time of the
subfamilies was also earlier than that estimated in this study.

4.2. The Characteristics of Mitochondrial Genomes

All typical animal mitochondrial genes and control regions were identified in the
18 mitogenomes, and they are arranged in the same order as the hypothetical ancestral
insect [79], indicating that the mitogenomes are highly conserved in Cleridae.

The sizes of the whole mitogenome among the species are comparable, in which the
length of the control region varies greatly, whereas other components show little variation.
This suggests that the mitogenome size of different clerids is largely determined by the size
of control regions, such as other insects [80].

As with all other insects [36], the mitochondrial genomes of clerids exhibit the typical
high A+T-bias either in the full genome or different components or different positions of
PCGs (Figure 2a), with the A+T contents all higher than 68.19% (Table S3). Additionally,
Cleridae usually have a preference of A and G over T and C in the mitogenomes. The
causes for such base composition bias are multifactorial, but most of the hypotheses
suggest that the asymmetric nucleotide composition is the result of mutations and selection
pressures [81], and the value of the GC-skew of the insect mitochondrial genomes seems to
be associated with the replication orientation [82].

The ratio (ω) of Ka/Ks can be used to estimate whether a sequence is undergoing
purifying, neutral, or positive selection [83]. We found that all PCGs are evolving under a
purifying selection (ω < 1), and cox2 exhibited the strongest purifying selection, whereas
the nad family genes and atp8 relaxed. Furthermore, the results of pairwise genetic distance
calculation and the nucleotide diversity analysis are consistent, indicating that cox2, cytb,
and nad4l evolve comparatively slowly or have lower variability, whereas atp8, nad2, and
nad6 are evolving faster or have higher variability. Nucleotide diversity analyses are critical
for designing species-specific markers useful in taxa where morphological identification is
difficult and ambiguous [84–86]. Usually, cox1 is the last variable and can be a potential
marker for species identification and has been widely used in the taxonomic work of
insects [87,88]. However, our analysis reveals that cox2 may be more suitable for Cleridae.
Given this result, we suggest that the gene markers should be designed for different families
or even for different subfamilies in the taxonomy if necessary.

5. Conclusions

The previous work attempted to resolve the phylogenetic relationship of Cleridae
exclusively based on morphological characters or short nucleotide fragments. With this
study, we documented the phylogenetic relationships of Cleridae based on the complete
mitochondrial genomes. We chose the Chinese species as a start point, because they
were the most accessible for us, with 18 species representing four subfamilies providing a
diverse, but not unmanageable, number of taxa for analysis. Nevertheless, the molecular
phylogenies, including this study, were analyzed on the basis of a minority part of species
or limited molecular data in comparison with an estimated 4000 species of checkered
beetles worldwide. Therefore, many more species need to be included in future analysis
to establish a solid and dependable classification of Cleridae, especially for some taxa
(i.e., Thanerocleri-dae/-nae, Epiclininae) whose status is controversial. In particular, the
complete mitochondrial genomes should be encouraged to accumulate more for Cleridae,
in view of their high value in investigating phylogenetic relationships of the insects.
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datasets, Figure S2: Maps of the nearly complete mitogenomes of four subfamilies of Cleridae.
Different color represents different types of genes and regions, Figure S3: Phylogenetic tree of Cleridae
inferred from the BI and ML analyses of the PCGRNA (left), PCGrRNA (middle) and PCG (right)
datasets. Numbers at the branches are bootstrap values (upper) or posterior probabilities (lower),
Table S1: Best models calculated by BI of four mitochondrial datasets, Table S2: Best models calculated
by IQ of four mitochondrial datasets, Table S3: The length and A+T% of different components of
mitogenomes in Cleridae, Table S4: A+T% of each PCG of mitogenomes in Cleridae, Table S5: A+T%
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