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ABSTRACT

CReSCENT: CanceR Single Cell ExpressioN Toolkit
(https://crescent.cloud), is an intuitive and scalable
web portal incorporating a containerized pipeline ex-
ecution engine for standardized analysis of single-
cell RNA sequencing (scRNA-seq) data. While
scRNA-seq data for tumour specimens are read-
ily generated, subsequent analysis requires high-
performance computing infrastructure and user ex-
pertise to build analysis pipelines and tailor inter-
pretation for cancer biology. CReSCENT uses public
data sets and preconfigured pipelines that are ac-
cessible to computational biology non-experts and
are user-editable to allow optimization, comparison,
and reanalysis for specific experiments. Users can
also upload their own scRNA-seq data for analysis
and results can be kept private or shared with other
users.

INTRODUCTION

Recent advances in single-cell RNA-sequencing (scRNA-
seq) have enabled the measurement of expression levels of
thousands of genes across thousands of individual cells
(1). scRNA-seq technologies can be used to identify cell
subpopulations with characteristic gene expression pro-
files in complex cell mixtures, including both cancer and
non-malignant cell types within tumours. A typical com-
putational pipeline to process scRNA-seq data involves
mapping of reads against a transcriptome, quality con-
trol (QC), normalization, dimension reduction, cell cluster-

ing, cell cluster labeling, and detection of differentially ex-
pressed genes (DEGs). Diverse visualization tools can be
used to explore results from these steps, such as t-distributed
stochastic neighbor embedding (t-SNE) or Uniform Man-
ifold Approximation and Projection (UMAP) plots for di-
mension reduction and cell clustering. QC and differential
gene expression can be visualized using violin plots. Op-
portunities to improve scRNA-seq data analysis include
making user-friendly and standardized end-to-end analysis
pipelines readily available and the ability to tailor analysis
parameters to account for atypical gene expression in can-
cer cells due to underlying genome alterations.

In the last five years, the number of algorithms and pack-
ages available for the various components of scRNA-seq
analysis has increased considerably (2,3). In Bioconduc-
tor alone, the number of packages for single-cell analysis
has increased from two in 2016 to 50 in 2019 (2). This,
while providing many options, leaves users with the difficult
task of deciding which tools and parameters they should
use. Benchmarking studies (4–6) help to facilitate those de-
cisions, however, some analyses require high-performance
computing infrastructure and intermediate to advanced lev-
els of computational expertise, limiting their use. Since
scRNA-seq technologies are being widely used across var-
ious fields of research, standardized analysis pipelines are
needed to process data for comparison and integration of
data sets. This is particularly relevant for comparison and
integration of data across cancer research studies, where
scRNA-seq data are now routinely generated from a diver-
sity of patients, cancer types, tissue types, treatment proto-
cols, and cell selection methods.

In this study, we describe CReSCENT: CanceR Single
Cell ExpressioN Toolkit (https://crescent.cloud), an intu-
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itive and scalable web portal for standardized analysis and
exploration of scRNA-seq data from cancer studies. CReS-
CENT is accessible through a web-browser and provides
these tools without the need for extensive bioinformatics
expertise or access to high-performance computing infras-
tructure. CReSCENT pipelines are end-to-end, removing
the need for users to spend time learning how to integrate
various independent tools. CReSCENT is populated with
multiple public data sets and preconfigured pipelines that
are user-configurable, enabling optimization, comparison,
and reanalysis of scRNA-seq data. Users can also upload
their own experimental scRNA-seq data for analysis and
can opt to keep it private, share it with specific users, or
make it public. CReSCENT’s interactive data visualizations
allow users to deeply explore features of interest without
re-running pipelines, as well as overlay additional, custom
meta-data such as cell types or T cell receptor sequences. In
addition, vector format plots and tables are downloadable
for offline analysis and publication purposes.

METHODS

Data

For scRNA-seq analysis, CReSCENT requires a gene ex-
pression matrix in Matrix Market format (MTX) as in-
put. Compared to gene-by-barcode text files, the MTX for-
mat requires less storage space for sparse matrices where
many elements are zeros, as is often the case for scRNA-seq
data sets. CReSCENT provides one-line-command scripts
to convert gene-by-barcode text files to MTX. Metadata for
individual cells can also be uploaded to the portal to visu-
alize and colour cells, for example, using results from or-
thogonal assays, sample annotations, cell annotations, in-
cluding cell types, and T and B cell receptor sequences from
single cells. The metadata format is a tab-separated file with
cell barcodes in the first column and appropriate values in
the subsequent columns. Two types of variables can be con-
tained in the metadata: ‘group’ for categorical variables, like
cell types, and ‘numeric’ for continuous values, like orthog-
onal assay measurements.

Analysis

CReSCENT uses Seurat (7,8), a single-cell analysis R
toolkit, to define and configure a standardized scRNA-seq
pipeline. The steps included in the pipeline that CReSCENT
currently provides are QC, normalization, dimension reduc-
tion, cell clustering, cell cluster labelling, and differential
gene expression detection. QC filters remove low-quality
cell data from the analysis, such as data from dying cells (9).
Normalization is necessary to remove technical biases, and
CReSCENT allows the user to choose between three nor-
malization options: (i) a traditional Log-scale normaliza-
tion followed by a search of variable genes and data scaling,
(ii) SCTransform, which provides a framework for the nor-
malization and variance stabilization of molecular count
data and reportedly improves common downstream analyt-
ical tasks including variable gene selection (7) or (iii) the use
of pre-normalized measurements (e.g. transcripts per mil-
lion). Dimension reduction (principal component analysis)

identifies the dimensions with the highest variation and uses
them for cell clustering.

For cell clustering, CReSCENT provides Seurat’s clus-
tering algorithm, which outperforms other methods in
benchmarking studies (4,6). Non-linear dimension reduc-
tion techniques (t-SNE and UMAP) are used to visualize
cells in a two-dimensional space and colour them accord-
ing to features of interest, such as cell clusters, expression of
genes of interest, or cell metadata. Finally, DEGs per clus-
ter are detected by comparing the expression of each gene in
a cluster to the expression of the same gene in the rest of the
cell clusters. For this step we used Seurat’s function FindAll-
Markers() with most parameters set to defaults. We speci-
fied that only genes detected in a minimum of 25% of cells
(parameter ‘min.pct = 0.25’) enter the DGE to speed up the
function by not testing genes that are very infrequently ex-
pressed. Another parameter that we adjusted is the pseudo-
count to add to averaged expression values when calculating
logFC (Seurat’s default = 1); instead we use 1 / number of
cells in the dataset (10). The top DEGs are shown in t-SNE,
UMAP and violin plots and a full list of DEGs is provided
as downloadable tables.

Output

CReSCENT’s graphical user interface (GUI) (Figure 1A)
allows users to interactively colour cells on-the-fly using
specific features including candidate genes of interest or
custom metadata without having to rerun the analysis or
reload the R object. CReSCENT provides four types of in-
teractive visualizations: QC violin plots, dimension reduc-
tion plots (t-SNE and UMAP), and gene expression violin
plots. Within the QC menu, violin plots show the distribu-
tions of the configurable cell QC metrics before and after the
filtering of cells by those metrics (Figure 1B). This includes
the number of genes, the number of reads, the percentage of
reads mapped to mitochondrial genes, and the percentage
of reads mapped to ribosomal protein genes. These QC met-
rics can also be viewed individually as gradients in UMAP
plots (Figure 1C). All plots in CReSCENT are interactive
and the user can zoom into groups of cells or move the
mouse cursor over points representing cells to obtain in-
formation such as the cell barcode or value of the attribute
in the plot. By default, the dimension reduction plots show
cells coloured according to cell clusters defined by gene ex-
pression using CReSCENT’s pipeline (Figure 2A). Alterna-
tively, these plots can be coloured using the expression of a
gene of interest using the ‘Search’ function or using the top
DEGs identified by CReSCENT’s pipeline (Figure 2B). The
DEG measurements across clusters can be also visualized
using violin plots (Figure 2C). Additionally, dimension re-
duction plots can be coloured using cell metadata provided
by the user. Two types of metadata can be used: (i) discrete
(‘group’) variables such as cell type annotations, which are
coloured using solid tones (Figure 2D) or (ii) continuous
(‘numeric’) variables, such as gene expression measurements
from orthogonal assays, which are represented using colour
gradients (Figure 2E). Interactive plots, vectorized figures,
text tables, and R objects are all downloadable through the
GUI for further offline analysis.
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Figure 1. CReSCENT’s web portal run control menu. (A) Control menu of a CReSCENT project called Human Tumour-Associated T cells. Users can
see details of the project and controls to share the project with other CReSCENT users, upload cell metadata, delete the project, and view number and
status of runs in the project. Runs within a project use the same input dataset (i.e. the same scRNA-seq measurements) but parameters of the run change
between runs. For example, this panel shows three runs using different clustering resolutions:1.0 (left), 0.7 (middle) and 0.3 (right). Each run box has three
controllers: visualization of results, display of the run parameters and deletion of the run. (B) QC results from the run with resolution of 0.3. Each dot
represents a cell and the violins represent the distribution of one out of four QC metrics. Distributions are shown for cell populations before and after
filtering cells by each QC metric. In this run, no cells were filtered out. (C) UMAP plot showing one of the four QC metrics (percentage of mitochondrial
genes). The other three metrics can be visualized by selecting them from a drop-down menu in the results control panel (shown in Figure 2). Interactive
visualization tools allow the user to zoom-in/out and select data from the plots.

Computing time benchmark

CReSCENT uses Seurat’s parallelization via the R library,
‘future’. We used a scRNA-seq dataset with 68 579 human
peripheral blood mononuclear cells (PBMCs) (11) to deter-
mine CReSCENT’s pipeline running times. First, we ran-
domly subsampled 60 000 cells from the 68 579 cells dataset,
then randomly removed 10,000 cells five times in a stepwise
manner to obtain between 50 000 and 10 000 cells, then re-
moved 5000 cells and finally 4000 cells to finish with 1000
cells. For each subsample, we ran the CReSCENT pipeline
with default parameters using each of the following num-
ber of cores for ‘future’: 1, 2, 4, 10, 20, 30, 40, 50, 60, 70,
75. The procedure, including subsampling and running the
CReSCENT pipeline, was repeated three independent times
and an average and standard deviation of computing times
was calculated for each combination of number of cells and
number of cores. All computing times were calculated using
an Intel Xeon Processor (Skylake) 2GHz Virtual Machine
with 75 cores and 182.6GB RAM.

IMPLEMENTATION

Applications

CReSCENT scRNA-seq applications are made in R v3.6.1
(https://www.r-project.org) using Seurat v3.1.1 (8), ggplot2
v3.2.1 (http://ggplot2.tidyverse.org), and in-house func-
tions. These workflows are containerized and described be-
low and can also be used as stand-alone one-line-command
scripts in R. For reproducibility purposes, CReSCENT
generates downloadable files ordered into folders. One of
those folders, called LOG FILES, will contain the fol-
lowing files that the user can use for reproducibility: (i)
*UsedOptions.txt file with the one-line-commands used for
the run and (ii) *RSessionInfo.txt with the R and R li-
brary versions used in the run. A copy of the R one-line-
command script used in the run is included in the root
of the Download Results file provided by our web appli-
cation. All our software is provided under the GPL-3.0
licence.

https://www.r-project.org
http://ggplot2.tidyverse.org
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Figure 2. CReSCENT’s web portal visualizations menu. (A) Control menu of a CReSCENT project called Human Tumour-Associated T cells, showing a
UMAP with the five cell clusters detected by the CReSCENT pipeline. The right-hand menu allows the user to switch between plot types (UMAP, t-SNE
or violin) and between the type of data to be plotted (e.g. cell clusters, DEG’s expression or metadata). (B) UMAP of CMC1, which is a DEG from cluster
3. Each dot denotes an individual cell and the opacity of the dot corresponds to the expression of CMC1 in that cell. (C) Violin plot representation of
CMC1 expression across the five cell clusters detected by CReSCENT shows higher expression of the gene in cluster 3. (D) UMAP coordinates obtained
by CReSCENT’s pipeline are used to show cell metadata provided by the user for cell types (‘group’ discrete categories). (E) Similar to D but showing
other types of metadata provided by the user for expression of gene CCL5 measured by an orthogonal method with ‘numeric’ continuous values.

Software architecture

CReSCENT is designed to enable ease-of-use with the en-
tire portal represented by three pages: ‘Projects’, ‘Project
Runs’, and ‘Visualizations’. CReSCENT’s software archi-
tecture consolidates a variety of web technologies to achieve
this user-friendly interface for scRNA-seq analyses. In Fig-
ure 3, we outline these web technologies and their interac-
tions within the CReSCENT architecture. The front end is
built using the JavaScript frameworks React v16.8.6 (https:
//reactjs.org) and Redux v4.0.4 (https://www.npmjs.com/
package/redux) with Nginx v1.17.9-alpine (https://www.
nginx.com) serving them in production (Figure 3A and
B). File storage is supported by MinIO (https://min.io)
and project and run documents are stored in MongoDB
(https://www.mongodb.com) (Figure 3C). The data inte-

gration layer, GraphQL v14.4.2 (https://graphql.org), facil-
itates the interactions between these technologies. In the
back end, Express v4.16.4 (https://expressjs.com) is respon-
sible for submitting containerized workflows and spawn-
ing Python v3.7.3 (https://www.python.org). processes that
rapidly query gene expression across large gene-by-cell ma-
trices (Figure 3D). The entire web application is container-
ized with Docker v17.05.0-ce (https://www.docker.com) for
accessible deployment.

Data layer

GraphQL consolidates MinIO and MongoDB technologies
into a graph schema and serves an application program-
ming interface (API) to the user interface. The modular

https://reactjs.org
https://www.npmjs.com/package/redux
https://www.nginx.com
https://min.io
https://www.mongodb.com
https://graphql.org
https://expressjs.com
https://www.python.org
https://www.docker.com
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Figure 3. CReSCENT’s web portal technologies and their interactions. Overview of the technology components utilized in developing CReSCENT. Blue
lines indicate Docker containers. Files are uploaded through the React front end (A and B) and saved into MinIO and MongoDB (C), parameters are sent
to the Express server, and the CWL job is sent to compute (D). Once results are available, project and run documents are updated in MongoDB, results
are visualized in the front end with gene expression queries processed by a Python back end, and results are served as a zipped download through MinIO.
Interactions are facilitated by GraphQL.

graph structure currently includes users, projects, and runs.
Only necessary data is queried from the graph, resulting in
a more performant approach than commonly used REST
APIs. For instance, the structure of a GraphQL query is re-
solved server-side, resulting in a single client call and server
response. This is in contrast to REST APIs, where multiple
calls would be made to the server to resolve the resulting
data for the client. Using a graph definition also allows for
simple versioning and flexible deployment. Furthermore,
GraphQL allows for the integration of multiple scRNA-seq
data sources as well as project organization via cancer type
ontologies, making it an appropriate tool for CReSCENT’s
future applications.

Containerized compute

The Common Workflow Language v1.0.2 (CWL, https://
www.commonwl.org) is a standardized pipeline language
used to describe containerized workflows in a portable, re-
producible, and scalable fashion. CReSCENT uses CWL to
provide users pipeline customizability and to organize jobs
within the back end. CWL pipelines are written by map-
ping inputs and outputs of a workflow. CWL is powerful
within scRNA-seq analyses due to the increasing number
of dependencies required to install and run these analyses.
CReSCENT submits customized jobs through the Express
server to run CWL workflows in a high-performance com-
puting environment within Docker or Singularity v2.6.1-
dist (https://singularity.lbl.gov) containers.

Interactive visualizations

The JavaScript graphing library Plotly v1.49.0 (https://
plotly.com) is used to create CReSCENT’s interactive vi-
sualizations. A back end written in Python provides QC
data and gene expression levels. Barcoded cells are grouped
by Seurat clusters or metadata attributes for display. To re-
sponsively return normalized gene expression data from up
to 100 000 cells, information is stored in Loom files built

on the HDF5 standard for storing sparse datasets and ex-
tracted with the Python package LoomPy LoomPy v3.0.0
(http://loompy.org).

RESULTS

Human tumour-associated T cells

To show how CReSCENT may be used for the analysis of
scRNA-seq data, we performed an analysis of a publicly
available human tumour-associated T cell scRNA-seq data
set, containing data from the blood, lymph nodes, lungs and
bone marrow from two donors, with or without CD3/CD28
T Cell Activator stimulation (12). Using one of the samples
from this dataset, from the bone marrow of one donor, with
CD3/CD28 T cell activation, we performed multiple runs of
the CReSCENT pipeline, each with a different cell cluster-
ing resolution (1.0 [default], 0.7 and 0.3). Each run and its
parameters can be viewed independently in the Project Runs
page (Figure 1A), where the status of the run (e.g. run com-
pleted) is indicated above the run name. The total number
of runs for a project, as well as the number of pending, sub-
mitted, completed, and failed runs are also indicated here.
From the Project Runs page, additional metadata can be
uploaded, and the project can be shared with other CReS-
CENT users or deleted.

We show QC violin plots with the distribution of the
number of genes, the number of reads, percentage of mito-
chondrial genes, and percentage of ribosomal protein genes
measured in the sample before (blue) and after (orange)
QC; the average values for each of these metrics is indi-
cated by a dotted black line (Figure 1B). The initial anal-
ysis included 2080 cells, all of which were retained after QC
(Figure 1B). The same QC metrics can be visualized using
UMAP plots. For example, in Figure 1C each dot repre-
sents a cell and the percentage of mitochondrial genes mea-
sured in that cell correlates to the purple colour intensity
of the dot. In Figure 2, we show the results of our analysis
using a cell clustering resolution = 0.3, differential gene ex-
pression and metadata visualization. At this resolution, we

https://www.commonwl.org
https://singularity.lbl.gov
https://plotly.com
http://loompy.org
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Figure 4. Computing time benchmark. Computing times of runs of the CReSCENT pipeline using either a scRNA-seq dataset of 68 579 PBMCs or
random stepwise subsamples of 1000 to 60 000 cells from the full dataset. The full dataset or each subsample were run three independent times through
the pipeline. The number of cores used for each run is indicated in the x-axis and the run time is plotted in the y-axis. Each line represents the average
computing time used to process either the full dataset or each of the subsamples in three replications. Each line ribbon represents one standard deviation
from the same three replications analyses.

found five cell clusters and CReSCENT’s GUI displays the
top DEGs for each cluster on the right-hand side menu (Fig-
ure 2A). For example, cluster 3 showed significantly higher
expression of the CMC1 gene compared vs. the rest of the
cells in other clusters (corrected p-value = 1.189e–122, av-
erage fold change = 3.25). Thus, we listed CMC1 as a DEG
for cluster 3. This is reflected by both the intensity of the
cluster’s red colour in Figure 2B and the dominant distri-
bution of the red violin in Figure 2C when CMC1 is se-
lected from the DEGs menu. Other DEGs within cluster 3
include CST7, NKG7, KLDR1, GNLY and GZMH, sev-
eral of which have been previously associated with cyto-
toxic T cell function (13). This coincides with the analysis
from the original authors of this dataset (12), who identi-
fied cells belonging to cluster 3 enriched for CD8+ effector
memory CD45RA (CD8TEMRA) cells (Figure 2D) and ex-
pression of CCL5 (Figure 2E), which is a marker of CD8+
TEM cells (12,14). Together, this demonstrates the ability
of the CReSCENT framework to recapitulate findings from
original publications and support reproducible single-cell
science.

Computing time benchmark

Using subsamples of a scRNA-seq dataset of 68 579
PBMCs, we found that, in general, using multicore process-
ing reduced computing times between 2 and 4 times com-
pared against using a single core for the same task (Figure
4). We found that using 4–10 cores reduced computing times
compared with fewer cores, but we did not observe further
improvements beyond 10 cores (Figure 4). Interestingly, we
found a slight increase in the computing time as the number
of cores increases. In practice the sizes of computing prob-
lems scale with the amount of available resources. However,
if a problem only requires a small amount of resources, it is
not beneficial to use a large amount of resources to carry out
the computation. This is because as the number of proces-
sors increases, computational work per processor decreases,
but communication time typically increases, and generally
degrades parallel performance (15). Thus, a more reason-
able choice is to use small amounts of resources for small
problems and larger quantities of resources for big prob-
lems. Based on our results, CReSCENT’s pipeline automat-
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ically allocates 4 cores for runs with <30 000 cells and 10
cores for runs with ≥30 000 cells, to avoid ‘saturation’ of
available CPU cores. CReSCENT’s current implementation
processes 1000 cells in ∼1 min, 30 000 cells in ∼19 min and
68 000 cells in ∼45 min (Figure 4). Using the same PBMC
subsamples, we measured the time to query and visualize
the expression of a single gene in CReSCENT’s GUI. CReS-
CENT was able to perform gene query and visualization in
∼3 s for 1000 cells, ∼8 s for 30 000 cells and ∼13 s for the
entire 68 579 cells dataset.

DISCUSSION

CReSCENT provides a standardized, end-to-end scRNA-
seq analysis pipeline that is accessible to users of all
bioinformatic expertise levels. Computing time benchmarks
showed that CReSCENT is capable of performing cell clus-
tering and DEG detection from raw read counts of 1000
cells in approximately 1 minute and 68 000 cells in 45
min. Importantly, the application is easily accessed via
a web browser through a simple and intuitive interface.
Software dependencies within CRESCENT are abstracted
through containerized workflows resulting in reproducible
and scalable analyses. This eliminates the need for users
to spend time learning bioinformatic analytical techniques
or how to consolidate various analytical tools to achieve
their scRNA-seq research goals. Furthermore, CReSCENT
provides interactive visualization tools allowing exploration
and querying of large data sets in real time. Responsive
querying is achieved through Python and Loom file for-
mat implementations which are highly scalable. This allows
users to find genes of interest pertaining to their experiment
as well as explore data-driven, differentially expressed genes
in a matter of seconds. This is in contrast to native R ses-
sions where analyses are stored in R objects that can take
several minutes to reload into memory, depending on the
size of the dataset. Typical scRNA-seq analyses are also
rerun frequently to query genes of interest, add new cell
metadata, and tune parameters. CReSCENT is designed to
streamline and automate these tasks.

We drew inspiration from other single-cell visualization
platforms, such as the Broad Institute’s Single Cell Portal
(https://singlecell.broadinstitute.org/single cell), and added
standardized analysis capabilities. We continue to curate
and implement applications and software based on bench-
mark studies (4–6). In addition to the development of vi-
sualization and analytic pipelines, CReSCENT is an ongo-
ing project to collect, store and make available high-quality,
cancer-specific scRNA-seq datasets in a standardized for-
mat, as well as valuable reference sets from healthy tissues.
Currently, in the system, we have deployed pre-processed
scRNA-seq data from ∼150 000 cells in 12 cancer and one
healthy reference tissue datasets.

At this stage, CReSCENT provides several cancer
datasets, however, our pipelines continue to be standard for
any type of tissue. In the future, CReSCENT will expand
to include additional collections of cancer and reference
scRNA-seq datasets, and the implementation of the follow-
ing applications: integration of multiple scRNA-seq data
sets, cell type labeling, detection of copy number variations,
and alternative cell clustering methods. We expect that these

cancer-specific applications will contribute to determining
more accurate empirical parameters for cancer studies. We
will continue to develop CReSCENT as a versatile scRNA-
seq analysis and visualization platform to help cancer re-
searchers accelerate accessible and reproducible single-cell
science.

DATA AVAILABILITY

This web application is free and open to all users
and there is no login requirement. The CReSCENT
GUI and cancer scRNA-seq data sets are accessible
online at https://crescent.cloud with user-friendly docu-
mentation available at https://pughlab.github.io/crescent-
frontend/. CReSCENT is an open-source initiative with
one-line-command scripts and containerized workflows
available at https://github.com/pughlab/crescent and the
portal code repository available at https://github.com/
pughlab/crescent-frontend.
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