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Abstract

The distinct distribution and abundance of C-to-U and U-to-C RNA editing among land
plants suggest that these two processes originated and evolve independently, but the pau-
city of information from several key lineages limits our understanding of their evolution. To
examine the evolutionary diversity of RNA editing among ferns, we sequenced the plastid
transcriptomes from two early diverging species, Ophioglossum californicum and Psilotum
nudum. Using a relaxed automated approach to minimize false negatives combined with
manual inspection to eliminate false positives, we identified 297 C-to-U and three U-to-C
edit sites in the O. californicum plastid transcriptome but only 27 C-to-U and no U-to-C edit
sites in the P. nudum plastid transcriptome. A broader comparison of editing content with
the leptosporangiate fern Adiantum capillus-veneris and the hornwort Anthoceros formosae
uncovered large variance in the abundance of plastid editing, indicating that the frequency
and type of RNA editing is highly labile in ferns. Edit sites that increase protein conservation
among species are more abundant and more efficiently edited than silent and non-conser-
vative sites, suggesting that selection maintains functionally important editing. The absence
of U-to-C editing from P. nudum plastid transcripts and other vascular plants demonstrates
that U-to-C editing loss is a recurrent phenomenon in vascular plant evolution.

Introduction

In land plants (Embryophyta), plastid and mitochondrial transcripts undergo a type of post-
transcriptional processing called RNA editing, which converts specific cytidines to uridines
(C-to-U) or uridines to cytidines (U-to-C) through undefined mechanisms (reviewed in [1-3]).
Surveys of organellar RNA editing have revealed extensive variability in the frequency and type
of editing among and within the major land plant groups, which includes seed plants (Sperma-
tophyta), ferns sensu lato(Monilophyta), lycophytes (Lycopodiophyta), hornworts (Anthocero-
tophyta), mosses (Bryophyta sensu stricto), and liverworts (Marchantiophyta). Numerous
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studies of RNA editing in seed plants (particularly angiosperms) have identified hundreds of
C-to-U edit sites in the mitochondria and dozens of plastid C-to-U sites [4-8]. A few reports
have suggested that U-to-C editing may also occur at a low frequency in some angiosperm mi-
tochondria [9-12], although cloning or sequencing artifacts cannot be ruled out in these rare
cases. Most moss and liverwort organelles have a low number of C-to-U sites and no U-to-C
sites [13-15]. However, some early diverging lineages such as Takakia and Haplomitrium ap-
pear to have many C-to-U sites [16-18], while the complete absence of edited sites in marchan-
tiid liverwort organellar transcripts indicates a secondary loss of editing in this group [16].

The pattern of RNA editing is more complex in hornworts, lycophytes, and ferns. Frequent
C-to-U and U-to-C editing has been identified in plastid and mitochondrial transcripts from
many hornworts [19-22]. Among lycophytes, both types of editing are apparent in Isoetes and
Huperzia organelles, with pervasive editing in Isoetes mitochondria [23-26]. C-to-U editing is
even more extensive in Selaginella organelles, whereas no U-to-C editing was found, indicating
a secondary loss of U-to-C editing in this genus [27, 28]. The diversity of RNA editing is less
clear in ferns. There is abundant C-to-U and U-to-C editing in the plastids of the leptospor-
angiate ferns Adiantum capillis-veneris and Pteridium aquilinum [29, 30]. In contrast, the ab-
sence of internal stop codons suggests a potential loss of plastid U-to-C editing in several early
diverging ferns such as Equisetum and Psilotum [24, 31]. Analyses of individual mitochondrial
genes indicate a similar pattern, in which U-to-C editing is clearly present in several ferns but
absent (at least from the examined genes) in Equisetum and Psilotum [32-34].

The above results illustrate the differential distribution of C-to-U and U-to-C RNA editing
among land plants, which implies independent origins and subsequent evolutionary trajecto-
ries of the two editing processes. C-to-U editing has been observed in the mitochondria and
plastids of all major land plant groups but in none of the closely allied green algal lineages nor
in marchantiid liverworts, indicating an origin in the common ancestor of land plants followed
by a single loss of editing from marchantiid liverworts. In contrast, U-to-C editing appears to
be confined to ferns, lycophytes, and hornworts. Most current hypotheses about land plant re-
lationships indicate that hornworts are the sister group to vascular plants [35-37], suggesting
that U-to-C editing originated in the common ancestor of vascular plants and hornworts, with
independent losses from the lycophyte Selaginella and most (or all) seed plants. Several ferns
may also lack U-to-C editing, but complete organellar transcriptomes are needed to substanti-
ate this possibility. To begin to understand the evolutionary diversity of RNA editing among
ferns, we sequenced the plastid transcriptomes of two early diverging species, the adder’s-
tongue fern (Ophioglossum californicum) and the whisk fern (Psilotum nudum), using the Illu-
mina platform.

Materials and Methods
RNA extraction and sequencing

O. californicum and P. nudum plants, which were previously sequenced to obtain the plastid
genome sequences [38] (accession numbers KC117178 for O. californicum and KC117179 for
P. nudum), were obtained from the living collection at the Beadle Center Greenhouse (Univer-
sity of Nebraska-Lincoln). For each species, an organelle-enriched RNA sample was prepared.
Mature, above-ground tissue (50-100 g) was homogenized in a Waring blender, filtered
through four layers of cheesecloth, and then filtered through one layer of Miracloth. The filtrate
was centrifuged at 2500 x g in a Sorvall RC 6+ centrifuge, and then the supernatant was centri-
fuged at 12000 x g for 20 min to pellet organelles. RNA was isolated from the pellet using the
RNeasy Plant RNA Kit (QIAGEN) and treated with DNase I (Fermentas) according to manu-
facturer’s instructions. Ribosomal RNA content was reduced from the enriched organellar
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RNA using the RiboMinus Plant Kit for RNA-Seq (Invitrogen) according to the supplied
protocol.

The RiboMinus-treated organellar RNAs for both species were sent to the University of Ne-
braska Genomics Core Facility for 75 bp single-read sequencing on the Illumina GAII platform,
generating 26.6 M raw reads for O. californicum and 23.6 M raw reads for P. nudum. Read qual-
ity was assessed using FastQC version 0.10.1 (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/). Adapter and low-quality sequences were trimmed from the O. californicum
and P. nudum raw reads using cutadapt version 1.4.1 (https://code.google.com/p/cutadapt/)
with modified parameters (-a AGATCGGAAGAGC-q 20-m 35) before further analysis.

An automated pipeline for edit site detection

All remaining data were mapped to the O. californicum and P. nudum plastid genomes using
TopHat version 2.0.9 [39] with relaxed parameters (-N 4—read-gap-length 3—read-edit-dist

5 -1 5000—coverage-search). Transcription coverage maps were drawn from the TopHat map-
ping results in R v3.1.0 with both window-size and step-size of 10 bp, and the number of reads
mapped per genomic region were calculated (S1 Table) using the BEDTools multicov com-
mand [40]. Mismatches were identified in the O. californicum and P. nudum plastid transcrip-
tomes by comparing the mapped transcript reads to the reference genome sequences. To do so,
a pileup mapping summary file was generated with the mpileup command in SAMtools ver-
sion 0.1.19 [41]. All DNA:RNA mismatches were reported, including mismatches supporting
putative C-to-U edit sites (seen as C:T mismatches for sense-strand genes and G:A mismatches
for antisense-strand genes), mismatches supporting putative U-to-C edit sites (T:C and A:G),
and all other types of mismatches attributable to some type of error rather than RNA editing
(A:C, AT, CA, CG, G:C, G:T, T:A, and T:G).

The read depth of the transcriptome mapping and the proportion of reads containing a mis-
matched nucleotide were calculated at each reference genome position by comparing the re-
sulting pileup file with the reference plastid genome sequences. The pipeline required that all
DNA:RNA mismatches have a minimum read depth of 3X and at least 5% of total reads or
three individual reads supporting the mismatch, whichever is greater. Initial analysis on un-
trimmed data using these criteria (“trim0, >5%, min3” as black bars in Fig. 1) identified a large
number of C:T and G:A mismatches, which is a clear signal of C-to-U editing in both species.

Additionally, the number of T:C and A:G mismatches was slightly higher than other mis-
matches, suggesting the possibility of U-to-C editing as well. However, there were also many
identified mismatches that could not be caused by C-to-U or U-to-C editing, showing that
many false positives were being identified by the automated approach.

Several modifications to the automated approach were evaluated in an attempt to reduce
these false positive results (Fig. 1). To potentially eliminate false positives introduced by the
higher rate of sequencing error and sequencing bias at the ends of reads (based on FastQC
quality analysis), we compared the effect of trimming all reads by 6 bp or 12 bp at both ends
(Fig. 1A). Although read trimming generally reduced the number of non-editing mismatches,
it did not completely eliminate such sites. Furthermore, the different trimming treatments
identified a slightly different set of C:T and G:A mismatches (due to slight differences in cover-
age at inefficiently edited sites that pushed the mismatch frequency just above or just below the
5% cutoff), raising the possibility that true edit sites could be missed from any single treatment,
increasing false negatives. We also attempted to reduce the number of non-editing mismatches
by increasing the minimum mismatch frequency threshold (Fig. 1B) or minimum depth-of-
coverage threshold (Fig. 1C). While the number of non-editing mismatches dropped at higher
thresholds, they were not eliminated completely. Furthermore, the increased stringency of
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Figure 1. Results of automated detection of RNA edit sites with different cutoff values. All DNA:RNA mismatches have a minimum read depth of 3X
and at least 5% of total reads and 3 individual reads support. A) Number of DNA:RNA mismatches recovered after no trimming (trim0), trimming all reads at
both ends by 6 bp (trim6), or trimming all reads at both ends by 12 bp (trim12). B) Number of DNA:RNA mismatches supported by >5%, >10%, or >20% of
total reads. C) Number of DNA:RNA mismatches supported with at least 3X, 5X or 10X read depth.

doi:10.1371/journal.pone.0117075.9001

these thresholds caused C:T and G:A mismatches (consistent to C-to-U editing) to drop much
more dramatically, suggesting a substantial increase in false negatives at increased thresholds.
These results demonstrated that there were no settings that could effectively reduce the number
of false positives without also increasing the number of false negatives.

Manual annotation of automated results to eliminate false positives

To minimize the number of false negatives with the automated approach, we retained all mis-
matches identified by all three read trimming treatments using the least stringent 5% mismatch
frequency and 3x read depth thresholds. We then manually examined all mismatches by visual-
ly inspecting mapped reads using the SAMtools tview command. This inspection identified
four factors that could provide alternative explanations for some DNA:RNA mismatches: 1)
DNA heteroplasmy (i.e., sequence polymorphism among plastid genome copies), 2) errors in
the transcriptome reads due to imperfect binding of random hexamers during cDNA prepara-
tion, as described previously [42, 43], 3) mapping artifacts at exon/intron junctions due to the
mismapping of spliced transcript reads onto the unspliced reference genome sequence, and 4)
errors in the reference genome sequence.

To eliminate false positives from the automated approach, we used a defined set of criteria
to identify DNA:RNA mismatches arising by one of the alternative explanations defined above.
Heteroplasmic regions in the genomes were detected by mapping Illumina DNA sequence data
from the plastid genome sequencing projects [38] onto the plastid genome sequences using
Bowtie version 2.2.2 [44] (S1 Fig). Mismatches introduced by imperfect primer binding were
identified by searching for mismatches that occurred only within 6 bp of the end of all mapped
transcript reads (S2 Fig). Mismatches near exon/intron junctions were inspected to determine
if they resulted from the mismapping of spliced transcript reads onto the unspliced genome se-
quence (S3 Fig). Errors in the reference genomes were identified by mapping the Illumina
DNA sequence data onto the plastid genome sequences using Bowtie (54 Fig).
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Comparative analyses of RNA editing content, sequence effects, and
editing efficiency

To compare editing content among species, genes from O. californicum, P. nudum, Anthoceros
formosae (AB086179), and Adiantum capillus-veneris (AY178864) were aligned with clustalW
[45] and manually adjusted when necessary. Homology of edit sites among species were deter-
mined based on the alignments. Using these alignments, the effect of RNA editing on the en-
coded amino acid were scored as conservative if editing improved amino acid identity with
other species or non-conservative if editing did not improve or decreased amino acid identity
with other species. Editing efficiency for each edit site was scored as the fraction of reads that
contained the edited nucleotide sequence.

Results

An automated approach combined with manual inspection for edit site
detection

To detect edit sites in the O. californicum and P. nudum plastid transcriptomes, we generated
an automated bioinformatics pipeline that compared transcript reads to the plastid genome se-
quences that were previously sequenced from the same plants [38]. Although sequence mis-
matches consistent with RNA editing were most abundantly detected by this automated
approach, it was clear that the pipeline also detected many false positive mismatches that could
not be generated by RNA editing (Fig. 1), which implies that some of the editing-type mis-
matches may also be false positives. Modifications to the automated pipeline that altered the
trimming of sequence reads (Fig. 1A), the minimal frequency threshold to detect mismatches
(Fig. 1B), or the minimum depth of sequence coverage to examine (Fig. 1C) were insufficient
to effectively eliminate all obvious false positives (i.e., the non-editing mismatches) without
also introducing numerous unwanted false negatives (apparent by the even larger drop in the
number of mismatches consistent with editing). Thus, none of the automated threshold set-
tings could provide a satisfactory tradeoft between the number of false positives and false nega-
tives. To address this issue, we set the automated thresholds to the lowest stringency to
minimize the number of false negatives, and then we manually examined all mismatches to ex-
amine the potential sources of error and to eliminate false positives.

Manual inspection of results identified several sources of error that generated false positive
signals. First, heteroplasmy (i.e., sequence polymorphism among plastid genome copies) occur-
ring in transcribed segments of the genome produces polymorphism among transcripts, which
generated a mismatch signal in our automated approach. To eliminate this issue, mismatches
occurring at heteroplasmic sites (identified by mapping Illumina DNA reads onto the genome
sequences) were removed from the results. Second, there was increased sequencing error at the
ends of reads, mostly likely caused by imperfect binding of random hexamers during cDNA li-
brary preparation [42, 43]. To avoid this problem, we manually excluded all identified mis-
matches that were solely supported by reads where the mismatch occurred within 6 bp of the
end. Third, several mismatches were caused by obvious mismapping of reads at exon/intron
junctions and were also eliminated. Finally, there were a few sites where both DNA and RNA
read mappings disagreed with the published genome sequence. Because the genomes and tran-
scriptomes were sequenced from the same source plants, this discrepancy indicates an error in
the genome sequence. These mismatches were removed from the results, and the genome se-
quence was corrected to the proper nucleotide. Altogether, our manual corrections eliminated
all of the mismatches that could not be caused by C-to-U or U-to-C RNA editing, and also
eliminated a small number of editing-type mismatches (S2 Table).
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Diverse types and frequency of plastid RNA editing among ferns

After manual inspection of mismatch results generated by the automated pipeline, a total of
297 C-to-U edit sites and three U-to-C edit sites were identified in the O. californicum plastid
transcriptome (Fig. 2; S3 Table). The majority of sites (232/300) affect coding regions, and
there is a strong preference for editing at second codon positions relative to first or third posi-
tions (Table 1). RNA editing alters the reading frame for eight genes, including the creation of
five start codons (accD, ndhA, ndhD, ndhF, psaB) and two stop codons (chIL and petD) by C-
to-U editing and the removal of an internal stop codon (ycfI) by U-to-C editing (Table 1). The
rps15 gene also appears to have a start codon created by editing, but the C-to-U change was
supported by only a single transcript and was thus not included in our results. Outside of cod-
ing regions, a single edit site alters the trnV-GAC gene, which improves base pairing in the
stem of the TyC arm (Fig. 3A). In addition, ten edit sites reside in six introns (clpPi71,
clpPi363, ndhAi556, petBi6, rpoCli432, and trnKUUUI37). At least one of these intronic edit
sites, in domain V of intron ndhAi556, reconstructs an A:U base pairing that is conserved at
the DNA level in related plants and appears essential for proper intron folding (Fig. 3B). The
remaining 57 non-coding edit sites were found in intergenic regions, presumably affecting 5’ or
3’ UTRs. No edit sites were identified in any ribosomal RNAs.

In the P. nudum plastid transcriptome, a total of 27 C-to-U edit sites and no U-to-C sites
were detected (Fig. 2; S3 Table), including the previously identified site in the ndhB gene [46].
Of these sites, 24 reside in coding regions and preferentially alter the second codon position,
but no start or stop codons are created for any gene (Table 1). The three non-coding edit sites
are located within intron clpPi71 and within the psaM-ycf12 and rpl21-rpl32 intergenic regions.
No transfer RNAs or ribosomal RNAs were found to be edited.

A comparison of shared plastid RNA edit sites among the three ferns (Adiantum capillus-
veneris, O. californicum, and P. nudum) and the hornwort outgroup (Anthoceros formosae)
shows a large amount of variation in the frequency and type of RNA editing among species
(Fig. 4). Of the >500 different edit sites identified in the coding regions of at least one fern,
only 50 are shared among more than one fern or with the hornwort. That most of the edit sites
are not shared among species indicates a highly lineage-specific pattern of frequent gain and
loss during fern evolution. The presence of plastid U-to-C editing in two of the three examined

Table 1. Number of edit sites in O. californicum and P. nudum.

O. californicum P. nudum
Total 300 100.0% 27 100.0%
C-to-U 297 99.0% 27 100.0%
U-to-C 3 1.0% 0 0.0%
Coding 232 77.3% 24 88.9%
1st 26 8.7% 4 14.8%
2nd 163 54.3% 17 63.0%
3rd 43 14.3% 3 11.1%
start created 5 1.7% 0 0.0%
stop created 4 1.3% 0 0.0%
stop removed 1 0.3% 0 0.0%
Non-coding 68 22.7% 3 11.1%
intron 10 3.3% 1 3.7%
tRNA 1 0.3% 0 0.0%
UTR 57 19.0% 2 7.4%

doi:10.1371/journal.pone.0117075.t001
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doi:10.1371/journal.pone.0117075.g002

ferns and the hornwort outgroup is most parsimoniously explained by the presence of this pro-
cess in the common ancestor of all ferns followed by loss from the plastid of P. nudum.

RNA editing efficiency correlates with functional effects and identifies
potential mis-editing

To examine the relationship between the functional effects of RNA editing on a protein se-
quence and the efficiency of editing in the plastid, we classified editing events in O. californi-
cum and P. nudum protein-coding genes based on whether they improved sequence
conservation to homologous proteins from other species (conservative sites), decreased conser-
vation to homologous proteins (non-conservative sites), or did not alter the encoded amino
acid (silent sites), and then we calculated editing efficiency as the proportion of reads that
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contained the edited nucleotide in the plastid transcriptome (Fig. 5A). Overall, edit sites that
improve sequence conservation are substantially more abundant and more efficiently edited on
average than non-conservative and silent editing events.

The rarity and generally low editing efficiency of the non-conservative sites in the O. califor-
nicum plastid transcriptome suggest that they result from mis-editing (Fig. 5B). For example,
editing at position 1109 in the atpB gene changes a conserved serine to a leucine at only 5.1%

e
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231/29 176/3
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Figure 4. Comparison of plastid editing content among plants. The Venn diagram shows shared

homologous C-to-U and U-to-C edit sites among coding regions of examined species. Non-coding edit sites
were excluded from comparison.

doi:10.1371/journal.pone.0117075.9004
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editing efficiency for groups of RNA edit sites with different functional effects on the encoded amino acids.
Error bars indicate two times the standard error. B) Multiple sequence alignments show the editing effect of
several non-conservative RNA edit sites. The non-conservative edited position is shaded in black. The full
length of each protein is listed in parentheses.

doi:10.1371/journal.pone.0117075.9005

ioglossum MTRVKRGCIARRRRNSILKLV

efficiency (6/118 transcripts), while an edit site at position 74 in the psal gene changes a con-
served serine to a phenylalanine at 15% efficiency (41/267 transcripts). Both events substitute a
small, hydrophilic amino acid with a large, hydrophobic amino acid, which may have negative
effects on protein folding and function. In two more extreme cases, premature stop codons are
introduced in the clpP gene at position 136 with 6.7% editing efficiency (5/75 transcripts) and
in rpl20 at position 172 with 6.0% editing efficiency (16/267 transcripts). These events, which
truncate >75% of the CLPP protein and half of the RPL20 protein, would almost certainly
abolish their functional activity.

Discussion

Our analyses have uncovered a large amount of variation in the frequency of C-to-U and U-to-
C RNA editing among ferns. In addition, we demonstrated the complete loss of U-to-C editing
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from the plastid transcriptome of P. nudum. Together, these findings show that the frequency
and type of RNA editing is highly labile in ferns. Importantly, the discovered loss of U-to-C ed-
iting from the P. nudum plastid transcriptome, along with the independent losses of U-to-C ed-
iting from seed plant and Selaginella plastids and potentially from additional fern lineages,
reveals a recurrent pattern of loss of this process from vascular plants (Fig. 6). One caveat is
that we cannot be absolutely certain that are no U-to-C edit sites in P. nudum. This same argu-
ment could also be made for the apparent absence of U-to-C editing from Selaginella and seed
plant plastids. However, the overwhelming majority of the P. nudum plastid genome exhibits
substantial transcription in our data set (Fig. 2), suggesting that few sites could have been
missed due to low coverage. Furthermore, our analysis, which searched for very inefficiently
edited sites (down to only 5% efficiency), is by far the most sensitive approach that has yet been
performed for plastid RNA editing. Thus, while it is formally possible that a U-to-C edit site es-
caped detection because it is very inefficiently edited (<5% efficiency) or it is present in one of
the very few lowly expressed (<3X depth of coverage) regions of the genome, we consider this
to be unlikely.

The absence of any internal stop codons in many early diverging lineages suggests addition-
al losses of U-to-C editing in ferns (Fig. 6). Because U-to-C editing often acts to eliminate inter-
nal stop codons in transcripts of essential genes, it is possible to predict the activity and relative
abundance of U-to-C RNA editing in a species based on the presence and abundance of inter-
nal stop codons in otherwise intact and presumably functional genes, although it should be
noted that the absence of internal stop codons does not guarantee that U-to-C editing is absent
from the organelle. The available plastid genomes of most leptosporangiate ferns contain sever-
al internal stop codons in their genes [31], and the two sequenced plastid transcriptomes from
A. capillus-veneris and Pteridium aquilinum confirm that U-to-C editing is abundant in these
leptosporangiate ferns [29, 30]. In contrast, there are no internal stop codons in most early di-
verging fern lineages, including Psilotales, Equisetales, Marattiales, or in the earliest diverging
lineage of leptosporangiate ferns, Osmundales [31], suggesting that U-to-C editing may be

U-to-C editing

Adiantum
Alsophila
Marsilea
Lygodium
Diplopterygium
Osmundastrum -7
Angiopteris -7
Ophioglossum +
Mankyua
Psilotum
.Mﬂ_ Equisetum

— Angiosperms

L— Gymnosperms
loss Selaginella

=?
Isoetes +
I Huperzia +
hornworts +

loss

Origin
of U-to-C

mosse
liverworts

Figure 6. Distribution of U-to-C RNA editing among land plants. A plus sign indicates presence, a minus
sign indicates absence. A question mark indicates that the presence or absence of U-to-C editing was
inferred based on the presence or absence of internal stop codons in essential plastid genes. Inferred gain
(black bar) and losses (white bars) of U-to-C editing were mapped using parsimony onto a phylogeny
depicting the currently accepted relationships among land plants [35-37].

doi:10.1371/journal.pone.0117075.9006

PLOS ONE | DOI:10.1371/journal.pone.0117075 January 8, 2015 10/16



@' PLOS ‘ ONE

Variable Frequency of Plastid RNA Editing in Ferns

absent from these lineages. Here, we verified that the P. nudum plastid transcriptome lacks
U-to-C editing, consistent with the absence of internal stop codons in its genome. More RNA
editing analyses are needed, particularly from Equisetales, Marattiales, and Osmundales, to bet-
ter understand the dynamic evolutionary history of C-to-U and U-to-C editing among ferns
and to determine whether U-to-C editing was lost multiple times during fern evolution.

Our results also show a clear distinction in the frequency and efficiency of editing at sites
that increase conservation among homologous proteins compared with sites that are silent or
decrease sequence conservation, which is consistent with many previous observations in other
vascular plant organelles (e.g., [4-8, 19, 25, 27-29, 47, 48-51]), indicating that this a general
pattern of RNA editing across vascular plants. That conservative edit sites are more abundant
and more efficiently edited strongly suggests that these sites are necessary for optimal protein
function, and, furthermore, that selection is acting to maintain editing at these sites. Converse-
ly, because silent editing events do not alter the protein sequence, there appears to be little to
no selection at the protein level to retain these sites or to maintain the editing factors that con-
trol their editing efficiency. The extreme rarity of non-conservative editing suggests that selec-
tion is acting to eliminate many of these sites and reduce the editing efficiency of those that
remain, thus mitigating their presumably negative consequences. The few non-conservative ed-
iting events that remain may occur at sites that are less functionally important in the protein,
in which case the editing effects are selectively neutral and behave like silent editing events. Be-
cause we extracted RNA from all above-ground tissues, including stems and leaves in O. cali-
fornicum and stems and enations in P. nudum, the low editing efficiency at some sites may
reflect tissue-specific differences in editing efficiency, as shown in some plant organelles
[12, 13,52, 53]. Alternatively, it is possible that some of these silent and non-conservative
events have a functional role, perhaps to regulate transcript stability, intron splicing efficiency,
or the efficiency of editing at other sites in the transcript [47, 54, 55].

Edit sites in introns and intergenic regions are likewise rare and inefficiently edited on aver-
age, suggesting that most of these sites have no major function and are thus under little to
no selective constraint to be maintained, similar to findings in other organellar transcrip-
tomes [51, 56-58]. However, intronic editing in O. californicum(Fig. 3B) and other species
[5, 19, 25, 59-62] appears in some cases to improve intron secondary structure, which is im-
portant to increase intron splicing efficiency. Intergenic edit sites in plant organellar transcripts
may also have functional importance in some cases, such as regulating translational efficiency
[7, 19, 63, 64].

Finally, our examination of false positives and false negatives revealed a wide variety of is-
sues that can arise when using RNA-seq data to detect edit sites in a plant transcriptome. Over-
ly stringent cutoff values introduced many false negatives by eliminating low-coverage and/or
inefficiently edited sites from the automated results, while biological and technical issues such
as heteroplasmy, imperfect binding of random hexamers during cDNA synthesis, mismapping
at exon/intron junctions, and simple errors in the genome sequence generated a large number
of false positive signals of editing that had to be eliminated. To minimize the number of false
negatives, we used relaxed search parameters that included sites with low depth of coverage
(down to only 3x read depth) and inefficient editing (down to only 5% efficiency), although we
acknowledge that sites edited at less than 5% efficiency or covered by fewer than three tran-
script reads would have been missed by our approach. Because these relaxed parameter values
increased the number of false positives, we manually evaluated all detected mismatches to elim-
inate signals due to biological and technical issues. In fact, our manual examination of results
eliminated all of the mismatches that could not be caused by C-to-U or U-to-C RNA editing,
verifying that our manual approach is able to efficiently detect and eliminate false positives. In
summary, our work demonstrates that automated detection approaches alone are not sufficient
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for accurate editing detection. It is imperative to manually curate the automated results to en-
sure that false edit sites are not reported and true edit sites are not missed due to the issues de-
scribed above. Additional suggestions, such as sequencing from organelle-enriched RNA, using
DNase I to ensure no DNA contamination, priming with random hexamers rather than oligo-
dT primers, subtracting rRNA from the RNA preparation, and employing sequence aligners
(such as TopHat) that can handle mismatches and splicing junctions, were recently proposed
to ensure optimal analysis of plant mitochondrial transcriptomes [65]. Many of these consider-
ations are equally applicable to the sequencing of plant plastid transcriptomes and were imple-
mented in our study.
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