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Background
Probiotics have been defined jointly by FAO and WHO as “Live microorganisms which 
when administered in adequate amounts confer a health benefit to the host” (FAO Joint 
2007). Probiotics are mass produced by fermentation technology. Bacteriophages are the 
most notorious contaminants in dairy and probiotic industries, leading to cell death and 
hence, huge financial losses. One established and proven economic way to overcome the 
risk of phage attack is introduction of mutations to make the bacterial host genetically 
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Probiotics are microorganisms which when administered in adequate amounts confer 
health benefits to the host. A leading pharmaceutical company producing Bacil-
lus coagulans as a probiotic was facing the problem of recurring phage attacks. Two 
mutants viz. B. co PIII and B. co MIII that were isolated as phage resistant mutants after 
UV irradiation and MMS treatment of phage sensitive B. coagulans parental culture 
were characterized at functional and molecular level and were noted to have under-
gone interesting genetic changes. The non-specific genetic alterations induced by 
mutagenesis can also lead to alterations in cell performance. Hence, in the current 
study the parental strain and the two mutants were selected for shake flask optimi-
zation. Plackett–Burman design was used to select the significant culture variables 
affecting biomass production. Evolutionary operation method was applied for further 
optimization. The study showed wide variations in the nutritional requirements of 
phage resistant mutants, post exposure to mutagens. An increment of 150, 134 and 
152 % was observed in the biomass productions of B. coagulans (parental type) and 
mutants B.co PIII and B.co MIII respectively, compared to the yield from one-factor-at-
a-time technique. Using Logistic and modified Leudeking–Piret equations, biomass 
accumulation and substrate utilization efficiency of the bioprocess were determined. 
The experimental data was in agreement with the results predicted by statistical analy-
sis and modelling. The developed model may be useful for controlling the growth and 
substrate consumption kinetics in large scale fermentation using B. coagulans.
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resistant to such attacks (Adsul et al. 2007). In the previous work, random mutagenesis 
was employed to obtain seven phage resistant mutants from the phage sensitive pro-
biotic culture—Bacillus coagulans (Dubey and Vakil 2012). These mutants displayed 
variations in functional attributes in comparison to the parental culture (Pandey et al. 
2015). Molecular characterization of the mutants revealed significant alterations in the 
genomic and proteomic profiles of mutants, compared to the parental profile. Partial 
16SrRNA sequences of the mutants were provided with unique accession numbers by 
GenBank (Pandey et al. 2015). These alterations can be attributed to the use of mutagens 
which in turn might have introduced random mutations at multiple points throughout 
the DNA (Pandey et  al. 2015). Owing to induced mutations the nutritional require-
ments of the mutants were altered as indicated by the “one-factor-at-a-time” (OFAT) 
technique. Hence, optimization of the medium composition and process conditions was 
considered necessary for the mutants.

Optimization of key process parameters, plays a vital role in process development, 
which in turn influences the cost of bioprocess (Bajaj et  al. 2009). Culture medium 
optimization by traditional OFAT approach, requires considerable amount of time and 
labour (Cui et  al. 2006). An alternative is to use statistical designs. Statistically based 
experimental designs provide a systematic and efficient plan for experimentation to 
achieve certain goals so that many factors and their interactions can be simultaneously 
studied. Therefore, in recent years number of statistical designs such as Plackett Burman 
(PB) design, factorial designing etc., have been used to rapidly identify the significant 
parameters influencing productivity. PB-design assists in screening of the important 
variables (five or more independent variables) affecting the desired product formation 
(Naveena et al. 2005). PB methodology allows evaluation of n variables in n + 1 experi-
ments. Incorporation of dummy variables in an experiment makes it possible to esti-
mate the variance of effects (Plackett and Burman 1946). Statistical optimization not 
only allows quick screening of large experimental domains, but also reveals the role of 
each component and their interactions with the other parameters (Kumar et  al. 2011; 
Del Castillo 2007; Bae and Shoda 2005; Baskar and Renganathan 2009).

Evolutionary operation (EVOP) is a continuous process of optimization, which sys-
tematically determines the effects of two or three variables and their interactions at a 
time (Lynch 2003). The first step in implementing EVOP is identifying the pertinent pro-
cess variables associated with an existing process (Bajaj et al. 2009). Then, a cycle of pro-
cess runs are designed around the existing values of the process variables. Here, small 
changes are introduced deliberately in the process signal or process outputs to inves-
tigate their effects (Raissi and Farsani 2009). The changes made to variables from one 
cycle to the next are restricted and can only be made when the estimated improvements 
are greater than the estimated experimental error (Bajaj et al. 2009; Bankar and Singhal 
2010).

The rationale design and optimization of the fermentation requires thorough under-
standing of production kinetics. A kinetic model can provide insight about the influence 
of operational parameters on cell growth, product formation and substrate utilization 
rate (Weiss and Ollis 1980). Thus it ensures the economic viability of a process. This 
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information is important in order to identify the optimal operating conditions for maxi-
mal biomass accumulation (Shuler and Kargi 2002).

In the present study, Plackett–Burman design was adopted to identify the significant 
factors (glucose concentration, C/N ratio, agitation speed, temperature, pH, mineral 
concentration, size and age of inoculum), affecting biomass production. The most sig-
nificant factors influencing the production were then optimized using EVOP. Further, 
simple logistic and Leudeking–Piret equations were developed for kinetic modelling of 
biomass production and substrate utilization, respectively.

Methods
Bacterial strain

Shake flask optimization was carried out for the parental strain and the previously 
obtained bacteriophage resistant mutants B.co-PIII (accession number-BankIt1761411 
Bacillus KM652655) and B.co-MIII (accession number-BankIt1761402 Bacillus 
KM652654). These were phage resistant mutants obtained from a phage sensitive paren-
tal strain, using random mutagenesis technique (Dubey and Vakil 2010).

Cultivation medium and culture conditions

The strains were cultured in glucose yeast extract broth (composition g/l—glucose: 
10, yeast extract: 10, peptone: 10, sodium acetate: 10, magnesium sulphate: 0.1, potas-
sium dihydrogen sulphate: 0.25, ferrous sulphate: 0.005, manganese sulphate: 0.005 and 
sodium chloride: 0.005; pH 6.8 ± 0.2) and incubated on orbital shaker at 37 °C. Optimi-
zation was carried out in 250 ml Erlenmeyer’s flasks containing 50 ml of glucose yeast 
extract broth. Each experimental set was carried out in triplicates.

Statistical methodology

In probiotic fermentations, the product of interest is biomass itself. Hence, shake flask 
optimization was carried out to achieve enhanced biomass production. Figure 1 depicts 

I. Plackett-Burman methodology
Screening of parameters to be optimized for enhanced biomass production

Control levels of the screened parameters chosen

Procedure for data analysis defined and designed experiments performed

Data analysed using StatEase 7.0® software

II. Evolutionary operations (EVOP)
Performances at -1 and +1 levels predicted

Performance under optimized conditions

Validation of results by experimentation.

III. Kinetic modelling

Logistic equation                     Leudeking-Piret equation
(Cell growth)  (Substrate utilization)

Fig. 1  Schematic representation of the experimental plan (Walters et al. 1991)
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the scheme of work adopted for statistical optimization of shake flask cultivation condi-
tions (for both, parent and two mutants), followed by kinetic modelling of the process.

Screening of important physic–chemical parameters

To identify the variables which influence biomass production significantly, Plackett–
Burman methodology was adopted using the tool design expert (Plackett and Burman 
1946; Djekrif-Dakhmouche et al. 2006). On the basis of OFAT results (data not shown) 
parameters selected for the statistical optimization were glucose concentration, C/N 
ratio, agitation speed, temperature, pH, mineral concentration, size and age of inoculum. 
These variables have been enlisted in Table  1 (key) with low (−1) and high (+1) val-
ues. Dry cell weight (DCW) was analysed at intervals of 3 h during the 24 h incubation 
period. Standard deviation and error limits were calculated based on 95 % confidence 
limit. Data obtained from performed PB experiments were subjected to statistical evalu-
ations like standard deviation, p value and regression analysis.

Optimization of screened parameters

EVOP methodology was used to optimize the selected parameters affecting biomass 
production (screened through PB experiments). The first process was run in five sets 
of conditions, in a random order and responses (yields—g/l) were recorded. In order 
to obtain higher yield, multiple sets of experiments were planned where, the best con-
ditions of the previous set were used as the new search level of the next set. This was 
repeated till the optimum fermentation combinations were obtained yielding maximum 
biomass (g/l). Each set was run in triplicates. Analysis of variance (ANOVA) was used 
to estimate the significance of model coefficients. The experimental data were analysed 
with standard set of statistical formulae (Table 2) (Bankar and Singhal 2010).

Table 1  Plackett–Burman design for shake flask optimization

The variable codes and their lower (−1) and higher (+1) values are as follows: A: glucose concentration—10 and 30 g/l, 
B: C/N ratio—20 and 40, C: agitation—150 and 250 rpm, D: temperature—30 and 40 °C, E: pH—5.5–7.5; F: mineral 
concentration—1× and 5×, G: inoculum size—5 and 10 % and age of seed—18 and 24 h, Act.: experimental data, Pred.: 
response predicted by model, responses are average of three values

Runs Variables Response (biomass—g/l)

A B C D E F G H B. coagulans Mutant B. co 
PIII

Mutant B. co 
MIII

Act. Pred. Act. Pred. Act. Pred.

1 −1 +1 +1 −1 +1 −1 +1 −1 3.58 3.585 3.89 4.293 2.89 2.843

2 −1 −1 +1 −1 +1 −1 −1 +1 3.57 3.862 3.03 3.535 2.21 2.243

3 +1 +1 −1 +1 +1 −1 −1 −1 2.95 3.198 3.89 4.183 2.52 2.400

4 +1 −1 −1 −1 +1 +1 +1 +1 2.75 2.720 2.61 3.425 2.07 2.297

5 +1 +1 −1 −1 −1 −1 −1 +1 4.52 4.542 4.12 4.183 2.75 2.837

6 −1 −1 −1 −1 −1 +1 −1 −1 2.37 2.13 2.41 2.303 2.37 2.157

7 +1 −1 +1 +1 +1 +1 −1 −1 5.35 5.043 5.1 4.657 3.41 3.317

8 +1 −1 +1 +1 −1 −1 +1 +1 4.8 4.877 4.91 4.657 3.23 3.257

9 +1 +1 +1 −1 −1 +1 +1 −1 6.12 6.110 5.89 5.415 4.48 4.353

10 −1 −1 −1 +1 −1 −1 +1 −1 2.67 2.882 2.82 2.303 1.64 1.660

11 −1 +1 +1 +1 −1 +1 −1 +1 4.23 4.173 4.03 4.293 3.57 3.777

12 −1 +1 −1 +1 +1 +1 +1 +1 2.98 2.772 3.61 3.062 2.32 2.320
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Biomass and residual glucose determinations

Bacterial cell growth was determined by measuring the OD (A540nm). The biomass con-
centration was determined with a calibration curve made from the relationship between 
OD and DCW. The glucose concentration in the broth was determined by di-nitro sali-
cylic acid (DNSA) assay, a spectrophotometric method (Sengupta et al. 2006).

Kinetic modelling for the optimized process

Microbial fermentations which do not follow the classical kinetic model of substrate-
limited biomass growth can be described using Logistic equation, which is an empirical 
function for sigmoid profile independent of substrate concentration (Rao et  al. 2012). 
Modified Leudeking–Piret equation was applied to study the glucose utilization patterns 
of the probiotic strains (Weiss and Ollis 1980; Rajendran et al. 2007). Biomass produc-
tion by B. coagulans (parental and mutant strains) and their substrate utilization pat-
terns were evaluated in order to establish an unstructured mathematical model, which 
can be used to describe the corresponding kinetics.

Results and discussion
Screening of important physic–chemical components

PB-design of 12 experimental runs was constructed, where effect of each variable on 
biomass formation was determined by the equation given below:

where E(xi) = concentration effect of tested variable, Pi+ and Pi− represent the response 
(yield) where variables were added at high and low levels respectively and N = no. of 
experiments.

The experimental data were analysed with standard set of statistical formulae enlisted 
in the Table 2.

Using PB methodology, three most significant variables influencing biomass produc-
tion were identified for the three probiotic cultures viz. glucose concentration, C/N ratio 
and agitation speed. Combination of variables employed in experiment E9 in Table  1 
(medium having 30 g/l of glucose, pH 5.5, 5× of minerals concentration and C/N ratio 
of 40:1, incubated at 30 °C, with agitation at 250 rpm when 18 h old seed was inoculated 
as 10 % (v/v) quantity) yielded the maximum biomass for all the three cultures. Maximal 
biomass production for the parental strain and mutants B. co PIII and B. co MIII were 
6.12, 5.89 and 4.48 g/l respectively.

E(xi) = 2(�Pi+ +�Pi−)/N

Table 2  Calculation worksheet for analysis of effects, standard deviation and error limits 
for higher productivity

X = response, C/N = carbon–nitrogen ratio

Effect of variables Formulae to calculate effects of variables

Glucose 1/6 [X3 + X4 + X5 + X7 + X8 + X9] − [X1 + X2 + X6 + X10 + X11 + X12]

C/N 1/6 [X1 + X3 + X5 + X9 + X11 + X12] − [X2 + X4 + X6 + X7 + X8 + X10]

Agitation 1/6 [X1 + X2 + X7 + X8 + X9 + X11] − [X3 + X4 + X5 + X6 + X10 + X12]

Minerals conc. 1/6 [X4 + X6 + X7 + X9 + X11 + X12] − [X1 + X2 + X3 + X5 + X8 + X10]
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The p value indicates the significance of each coefficient, which indirectly reveals the 
interaction strength between each independent variable (Table 3). p values, <0.05 con-
firmed the credibility of models. The adequate precision measures signal to noise ratio 
(S/N) were 8.915, 10.037 and 8.779 for B. coagulans, mutants B.co PIII and B.co MIII 
respectively. All the values being >4 (desired value) ensured the reliability of the models 
(Bankar and Singhal 2010). The multiple regression analysis resulted in empirical models 
that relate the response measured to independent variables. Using PB-design variables 
having significant effect(s) on biomass accumulation were selected (Glucose concentra-
tion, C/N ratio and agitation speed), while the other statistically unimportant parame-
ters like mineral concentration or pH, were eliminated. Variations observed in responses 
(yield—g/l) reflected the importance of statistical optimization to attain higher produc-
tivity. The regression equation obtained after ANOVA provided the levels of biomass 
produced as a function of initial values of A, B and C.

Optimization of screened parameters

EVOP cycles were run till the most productive fermentation combinations were 
obtained. Process optimization for the mutants B. co PIII and MIII was achieved in three 
EVOP cycles each, whereas four EVOP cycles were run to achieve optimization for the 
parental type. Table 4 displays the combination of variables for EVOP cycle I. E17 yielded 
the maximum productivity for strain B. coagulans (7.1 g/l), while mutants B.co PIII and 
B.co MIII exhibited highest biomass accumulation in E16 (5.88  g/l) and E15 (4.79  g/l) 
respectively. It is noteworthy that yield of phage resistant mutants B.co PIII and B.co 
MIII were 82.82 and 67.46 % of the parental strain. C/N ratio suitable for maximum pro-
ductivity was different for all the three strains (40, 35 and 30).

Table 5(a) displays the EVOP cycles (II-IV) for optimization of shake flask conditions 
for the parental culture B. coagulans. As can be observed from the table, the interval 

Table 3  Multiple regression analysis of the data obtained by PB-design

Cultures SD (σ) Adequate  
precision

p value Model remark

Parent B. coagulans 0.63 8.915 <0.05 Significant

Mutant B.co PIII 0.54 10.037

Mutant B.co MIII 0.43 8.779

Table 4  Cycle-I of EVOP with five sets of conditions

a  Responses are average of three values

E13 (−1) E14 (−2) E15 (0) E16 (+1) E17 (+2)

Conditions

 Glucose (g/l) 5 6.25 7.50 8.75 10

 C/N ratio 20 25 30 35 40

 Agitation (rpm) 150 175 200 225 250

Responsea (biomass—g/l)

 Parent B. coagulans 4.80 5.72 6.10 6.97 7.10

 Mutant B.co PIII 4.74 5.19 5.81 5.88 5.23

 Mutant B.co MIII 3.79 4.02 4.79 4.38 4.25
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difference for C/N was 5, and in the next three cycles they were 2, 1 and finally 0.5. Max-
imum productivity for the culture under study was 7.88 g/l and it was achieved in E20 
with C/N ratio 42:1. The biomass accumulation of B. coagulans (parental type) after four 
EVOP cycles (7.88 g/l) was 28.75 % higher than the earlier yield of 6.12 g/l.

Optimization of shake flask conditions for mutants B.co PIII and B.co MIII were 
achieved in 3 EVOP cycles [Table 5(b, c)]. Combination in E21 worked out to be the best 
for both the mutants. Compared to responses generated earlier (5.89  g/l), yield after 
EVOP cycles (6.3 g/l) was marginally higher (1.07 times). Combination E21 yielded 6.1 g/l 
of biomass.

An estimated optimum response may not be optimum in reality. Errors in the esti-
mates can lead to inadequacies of the model. Thus errors in estimations have to be taken 
into account. Banerjee and Bhattacharyya (1993) have put forward formulae to calculate 
the possible errors at 3 levels- error in average, effect and change in mean. The error 
limit values of average were lesser than the error limits for change in mean. Thus, the 
optimal conditions attained in the study are optimum in reality as well. Finally the opti-
mized shake flask conditions for enhanced biomass production of the cultures under 
study are summarized in Table 6.

Table 5  EVOP designing for the three probiotic cultures and effects of error limits

σ—standard deviation
a  Responses are average of three values

Parameters E18 (−1) E19 (0) E20 (+1) E21 (−1) E22 (0) E23 (+1) E24 (−1) E25 (0) E26 (+1)

(a) B. coagulans (parental strain)

 Glucose (g/l) 53 55.8 59 57 59 60 58 59 59.5

 C/N ratio 38 40 42 41 42 43 41.5 42 42.5

 Agitation 
(rpm)

200 225 250 240 250 250 245 250 250

 Responsea 
(biomass—
g/l)

7.2 7.38 7.88 7.2 7.6 7.42 7.3 7.5 7.2

Parameters E18 (−1) E19 (0) E20 (+1) E21 (−1) E22 (0) E23 (+1)

(b) Mutant B.co PIII

 Glucose (g/l) 38 44 50 47 50 53

 C/N ratio 33 35 37 36 37 38

 Agitation (rpm) 200 225 250 230 240 250

 Responsea (biomass—g/l) 4.8 5.6 6.1 6.3 6.2 5.8

Parameters E18 (−1) E19 (0) E20 (+1) E21 (−1) E22 (0) E23 (+1)

(c) Mutant B.co MIII

 Glucose (g/l) 22.5 30 37.5 32.5 37.5 42.5

 C/N ratio 28 30 32 31 32 33

 Agitation (rpm) 175 200 225 220 230 240

 Responsea (biomass—g/l) 4.82 5.2 5.56 6.1 6 5.8

Error limits Formulae B. coagulans B.co PIII B.co MIII

(d) Summary of effects of error limit values of EVOP cycles

 Averages ±1.414 × σ 0.577 0.409 0.363

 Effects ±1.004 × σ 0.954 0.677 0.601

 Change in mean ±0.891 × σ 0.814 0.578 0.513
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Kinetic modelling

The bacterial growth can be described by the following first order equation which states 
that the instantaneous rate of change in biomass is proportional to the quantity of 
biomass

where dx/dt is the growth rate (g/l/h), X is the specific growth rate (/h). The microbial 
growth is governed by a hyperbolic relationship and there is a limit to the maximum 
attainable cell mass concentration which is described by the logistic equation (Thiruma-
valavan et al. 2008).

The logistic equation has been used to evaluate µ.

where µ denotes the specific growth rate (/h) and Xm is the maximum cell mass concen-
tration (g/l). The maximum specific growth rate (µmax) for the three strains were around 
0.4/h (Table  6). With increase in duration, biomass growth was accompanied with 
depletion of carbon source (glucose). Hence, substrate utilization kinetics, given by the 
modified Leudeking—Piret equation (below), was studied. Modified Leudeking–Piret 
equation considers substrate conversion to cell mass to product and substrate consump-
tion for maintenance.

where So and S are the substrate concentrations at time 0 and t, respectively. The values 
of the biokinetic parameters for biomass formation and substrate (glucose) utilization by 
B. coagulans have been enlisted in Table 7. The values of α (growth associated constant) 

(1)dX/dt = µX

(2)
dX

dt
= µ

[

1−
X

Xm

]

X

(3)S = S0− pX0





eµmt

�

1−
X0
Xm

�

�

1− eµmt
�

− 1



− qXmµm ln 1−
X0

Xm

�

1− eµmt
�

Table 6  Optimized shake flask conditions for maximum yields of probiotic strains

a  Responses are average of three values

Variables Optimized shake flask conditions for probiotic strains

B. coagulans Mutant B. co PIII Mutant B. co MIII

Glucose (g/l) 59 47 32.5

C/N ratio 42 36 31

Agitation (rpm) 225 250 220

Biomassa (g/l) 7.88 6.3 6.1

Table 7  Maximum growth rates obtained on kinetic modelling of the three cultures

S. no. Strain Actual µmax Predicted µmax Xm

1 Parental B. coagulans 0.408 0.40 0.41

2 Mutant MIII 0.389 0.399 0.4

3 Mutant PIII 0.396 0.40 0.4
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for B. coagulans and its mutants was around 6.5. Low β values indicate the negligible 
growth occurred in the stationary phase. Regression analysis was performed to assess the 
credibility of each model. R2 values for logistic as well as Leudeking–Piret equations for 
the three probiotic strains were above 91 %, indicating the reliability of the kinetic model.

Substrate concentration gradually decreased with time correlated with enhanced bio-
mass accumulation. Maximum glucose supplement was used for cell multiplication and 
energy generation. Figure 2a–c shows comparison of experimental and model predicted 
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Fig. 2  Plots of biomass produced (experimentally) by the 3 probiotic cultures—B. coagulans (parent)  
(a) and mutants B.co PIII (b) and B.co MIII (c), against the values predicted by model (experiments were run in 
triplicates)
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values for shake flask level biomass growth and substrate utilization, respectively. The R 
values for biomass accumulation by the probiotic strains were 0.935, 0.90 and 0.968 for 
B. coagulans parental type and mutants B.co PIII and B. co MIII, while substrate utiliza-
tion trends displayed R values of 0.963, 0.905 and 0.952. Close resemblance of experi-
mental and model values had validated the proposed models.

The experimental results were very much in accordance with the results predicted by 
models hence best for the optimized process (Fig. 2a–c). Maximum biomass obtained 
for the probiotic strains B. coagulans and mutants PIII and MIII were 7.88, 6.3 and 
6.1 g/l respectively.

As may be noted from the data presented earlier, biomass produced by mutants B.co 
PIII (6.3 g/l) and B.co MIII (6.1 g/l) were almost equal, but at two different C/N ratios of 
36 and 31 respectively. Mutant B.co MIII appears to be best culture for commercializa-
tion as it is not only phage resistant but also yields 77.4 % biomass utilizing only 55.40 % 
amount of glucose as compared to the parental culture. Further work on optimization 
for this mutant can result in production of biomass equivalent to or even more than the 
phage sensitive parental culture.

Mandenius and Brundin (2008) have reviewed several examples of enhancing pro-
ductivity using statistical designing. Several reports have confirmed the effectiveness 
of statistical optimization in the production enhancement (Brinques et al. 2010; Kumar 
et al. 2012; Annapurna 2009). Statistical modelling of B. longum resulted in process opti-
mization such that the glucose requirement decreased by 50 % and yield increased by 
160 % (Meena et al. 2011). Productivity of jiean peptide—JAA was enhanced by 41 % in 
B. subtilis ZK8 cells by statistical optimization (Zhang et al. 2010). Fermentation condi-
tions for production of 2, 3 butanediol by K. pneumoniae were optimized using statisti-
cal approaches (Song et al. 2012).

The maximum specific growth rate obtained for the three probiotic strains was around 
0.4/h. The results are in good agreement with µmax values reported for Bacillus subtilis 
(0.49/h) and B. thuringiensis (0.38/h) (Rivera 1999; Chen et al. 2004). However, there are 
reports of some Bacillus strains displaying a wider range of µmax values (B. thuringiensis 
(0.54/h) and B. thuringiensis var kurstaki 1.1/h) (Rao et al. 2012; Anderson 1990; Avi-
gnone-Rossa and Mignone 1995; Monroy and De La Torre 1996).

Shake flasks are always used as a rapid and primary system for screening and optimi-
zation of a microbial process before moving the operations to fermentors. A shake flask 
and fermentor are quite different systems in the context of geometry, mixing and oxygen 
availability and lack the possibility to monitor the fermentation during the experiment. 
This necessitates a further statistical optimization of bioprocess for B. coagulans fermen-
tation at lab scale.

Conclusions
Shake flask studies as anticipated showed wide variations in the process conditions 
required for maximum growth of the three probiotic cultures. Using Plakett–Burman 
methodology the three most significant variables affecting biomass production were 
identified viz glucose concentration, C/N ratio and agitation speed. Parameters like min-
eral concentration and pH had negligible effects. EVOP was applied to the data obtained 
by PB-design to predict the optimum conditions leading to maximal biomass formation. 
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Application of statistical method—EVOP resulted in significant enhancement of 150, 
134 and 152 % in the biomass production by B. coagulans parental type, mutants B.co 
PIII and B.co MIII respectively compared to the yield from OFAT approach.

Thus, it can be inferred that use of random mutagenesis not only resulted in isola-
tion of phage resistant mutants but it also had its effect on the nutritional requirements 
and growth pattern of the mutants. Growth pattern followed the logistic model, while 
substrate utilization trend followed the modified Leudeking–Piret equation. The experi-
mental data was in agreement with the results predicted by statistical analysis and mod-
elling ensuring the credibility of the model. The developed model may be useful for 
controlling the growth and substrate consumption kinetics in large scale fermentation 
using B. coagulans.
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