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Abstract
Background: Oxidative stress plays a key role in the neuropathogenesis of Human
Immunodeficiency Virus-1 (HIV-1) infection causing apoptosis of astroglia cells and neurons. Recent
data have shown that oxidative stress is also responsible for the acceleration of human fibroblast
telomere shortening in vitro. In the present study we analyzed the potential relations occurring
between free radicals formation and telomere length during HIV-1 mediated astroglial death.

Results: To this end, U373 human astrocytoma cells have been directly exposed to X4-using HIV-
1IIIB strain, for 1, 3 or 5 days and treated (where requested) with N-acetylcysteine (NAC), a
cysteine donor involved in the synthesis of glutathione (GSH, a cellular antioxidant) and apoptosis
has been evaluated by FACS analysis. Quantitative-FISH (Q-FISH) has been employed for studying
the telomere length while intracellular reduced/oxidized glutathione (GSH/GSSG) ratio has been
determined by High-Performance Liquid Chromatography (HPLC). Incubation of U373 with HIV-
1IIIB led to significant induction of cellular apoptosis that was reduced in the presence of 1 mM
NAC. Moreover, NAC improved the GSH/GSSG, a sensitive indicator of oxidative stress, that
significantly decreased after HIV-1IIIB exposure in U373. Analysis of telomere length in HIV-1
exposed U373 showed a statistically significant telomere shortening, that was completely reverted
in NAC-treated U373.

Conclusion: Our results support the role of HIV-1-mediated oxidative stress in astrocytic death
and the importance of antioxidant compounds in preventing these cellular damages. Moreover,
these data indicate that the telomere structure, target for oxidative damage, could be the key
sensor of cell apoptosis induced by oxidative stress after HIV infection.
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Background
Oxidative stress has been shown to contribute to apop-
totic cell death occurring in AIDS-dementia complex
(ADC) [1]. Despite the demonstrated role of free radicals
in ADC, the mechanism underlying HIV related oxidative
damage of central nervous system (CNS) is still unknown.
HIV-1 proteins such as gp120 and Tat can cause free radi-
cal production, possibly as part of their signal-transduc-
tion pathways activation [2]. It has previously been shown
that gp120 can cause lipid peroxidation and production
of hydroxynonenal esters [3] which in turn can mediate
oxidative stress induced apoptosis of cultured neurons
and cause cognitive dysfunction in vivo [4]. Significantly,
greater numbers of apoptotic astrocytes were detected in
the brain of HIV/AIDS patients with rapidly progressing
dementia [5], and detection of apoptotic astrocytes
appeared to be more common in patients with dementia,
compared to non-demented HIV/AIDS patients [6], sug-
gesting a role for astrocytic cell loss in the neuropathogen-
esis of HIV-1 associated dementia (HAD). It has been
demonstrated that incubation of human cultured astro-
glial cells with the supernatants of HIV-1 infected mono-
cytes derived macrophages (MDM) leads to apoptotic cell
death of astrocytes (not infected and not necessary adja-
cent to HIV-infected MDM), an effect that is driven by
overproduction of superoxide anions [7]. Oxidative stress
contributes to many aspects of HIV-1 disease pathogene-
sis, including viral replication, inflammatory response,
decreased immune-cell proliferation and loss of immune
function [7]; moreover, it leads to the production of reac-
tive oxygen species that can attack lipid membranes, pro-
teins, and deoxynucleic acids resulting in cellular
dysfunction and cell death [8]. Moreover, cellular oxida-
tive stress levels directly and quantitatively determine the
rate of telomere shortening [9]. Telomeres are heterochro-
matin regions at the end of linear chromosomes, com-
posed of a double-stranded region (of several Kbp.) and
of a single stranded extremity (150–300 bases), responsi-
ble for chromosome stability and cell viability [10]. More
recently, experimental evidence has accrued that
addresses the challenging question of if and how telomere
length regulation may contribute to normal human aging
or to human disease [11,12]. The presence of telomeres,
constituted by short, tandem DNA repeats of the 5'-
(TTAGGG)n-3'sequence and a multitude of associated
proteins, distinguishes the natural ends of chromosomes
from random DNA breaks, thereby preventing unwanted
end-to-end fusion or nucleolytic degradation [13-15]. A
dysfunctional telomere is detected as damaged DNA and
results in activation of the DNA-damage checkpoint, and
increased apoptosis [10]. Apoptotic loss of progenitor
cells in response to telomere shortening stimuli has been
clearly demonstrated in animal models; e.g., mice with
shortened dysfunctional telomeres demonstrate increased
apoptosis in germ cells of the testes and crypt cells of the

intestine [16,17]. In these systems, an increase in apopto-
sis correlates with tissue atrophy and other phenotypes
associated with premature aging. The principal protein
involved in telomere maintenance in human cells is the
ribonucleoprotein enzyme telomerase, that adds the
repetitive sequences to the ends of chromosomes, thus
compensating for the end replication problem and thus
stabilizes the lengths of telomeres, allowing cells to divide
indefinitely [18]. In general, somatic cells do not express
telomerase and their replicative potential is limited by
progressive telomere shortening, eventually resulting in
the onset of cellular senescence. In contrast, cells that con-
stitutively express telomerase are able to divide almost
indefinitely [19]. In vitro infection of human PBMC with
HIV-1 down-modulates telomerase activity [20] that is
down-regulated at both nuclear and cytoplasmic compart-
ments [21]. Oxidative stress is responsible for telomere
shortening accelerations in human fibroblast in vitro [22-
26]. Free radicals enhance induction of telomeric single
strand breaks leading to the loss of the distal fragments of
telomeric DNA following replication [27]. Further studies
have shown that telomeric DNA is a preferential target for
oxidative damage [28-30] and accelerated telomere short-
ening has been detected in cells from patients with muta-
tions in mitochondrial DNA characterized by an increased
production of reactive oxygen species [31] but the relative
contributions of these different mechanisms to telomere
shortening still remain unknown, although oxidative
stress has been suggested as one of the major causes of tel-
omere shortening [24]. The relationship among neu-
roAIDS/oxidative stress and oxidative stress/telomere and
telomerase modulation is an important issue for better
understand the role of the ends of eukaryotic chromo-
somes and telomerase activity regulation in HIV-related
neuroimmune disorders. The purpose of our work was to
evaluate the link existing between HIV-1-induced oxida-
tive stress and cellular damage, such as apoptosis, altera-
tions of telomeric structures and glutathione (GSH/
GSSG) redox system in a human astrocytoma cell line.

Results
HIV-1 mediated apoptosis in human astrocytoma cell line
Apoptosis has been evaluated and statistically analyzed in
HIV-1 exposed U373, NAC treated and HIV-1-exposed
U373, in mock HIV-infected and not NAC treated U373
(negative control) and in NAC treated U373 at day 1, day
3, day 5 post exposure. We chose the days 1, 3 and 5
because in these days it is possible to observe an incre-
ment of apoptosis; after the day 5 we can observe only a
plateau. HIV-p24 antigen production in supernatants of
HIV-1 exposed astrocytes was negative (data not shown.
ELISA kit HIV-p24 gag, Biorad, Italy). A significant induc-
tion of apoptosis was seen in a time dependent fashion
with a maximum of 70.2% at day 5 post exposure in HIV-
1 IIIB exposed U373. In U373 exposed to HIV-1 Bal the
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value of apoptosis at day 5 is only 22.5%; so the incre-
ment of apoptosis at day 5 for HIV-1 IIIB is around 80%,
whereas for HIV-1 Bal is around 21%. For this reason in
our experiments we used the HIV-1 IIIB. Apoptosis in
HIV-1 exposed samples observed at day 3 and 5 was three
and four fold higher compared to negative control, respec-
tively (22.1% compared to 7% at day 3, and 70.2% com-
pared to 17.8 at day 5; Figure 1). HIV-1 mediated
apoptosis was reduced in U373 by treatment with the
antioxidant compound NAC (1 mM), (71.1% and 47.1%
of apoptosis reduction after 3 and 5 days of HIV-1 virus
exposure respectively, Figure 1); this result underlines the
role of oxidative stress in the apoptotic process. Viability
test by using trypan blue, at days 1, 3 and 5, revealed that
the NAC treatment is not toxic for the cells.

These results were confirmed by ultrastructural studies
with electron microscopy. At day 3 after exposure to HIV-
1 IIIB, astrocytes showed an increase of plasmamembrane
protrusions and in many cells, a developed cytoplasmic
blabbing and large vacuoles as a result of cytoplasmic loss
(Figure 2c) as compared to the control cell line (Figure
2a). Moreover the chromatin was seen condensed and
marginalized (Figure 2c). The effect of HIV on astroglial
cells was antagonized strongly by coincubation with NAC

(1 mM). In particular, we found that in NAC-pretreated
astrocytes, cells maintained the normal architecture and
the normal ratio between nucleus and cytoplasm, and
nuclei appeared almost completely normal (Figure 2d).
The treatment with NAC on control cell line did not
induce any change (Figure 2b).

HIV-1 exposure induces the telomeres shortening in human 
astrocytoma cell line
To observe the correlation between astrocytic apoptosis
and telomeres shortening the Q-FISH staining was per-
formed on metaphase using the fluorescent PNA telom-
eric probe labeled with Cy3. Co-hybridisation was done
with Cy-3 telomeric-PNA probe and Cy-3 centromeric-
PNA(chromosome 2) probe. Each data was shown as per-
centage of T/C (telomere/centromere) ratio (Figure 3). At
the same time point of apoptosis evaluation, the analysis
of telomere length showed a statistically significant tel-
omere shortening in HIV-exposed samples compared to
negative control of mock HIV-1 exposed cells; this is in
agreement to the observed increase of apoptotic cells (Fig-
ure 1 and 2) indicating a possible telomere role in cellular
surviving, at the days of the analysis. On the other hand,
the results obtained from NAC pretreatment of HIV-1
exposed cells at days 1, 3 and 5, show a statistically signif-

Percentage of apoptosis in HIV-1 IIIB exposed U373 (8,000 pg/ml) and/or NAC treated compared to negative control after dif-ferent times (day 1; day 3; day 5)Figure 1
Percentage of apoptosis in HIV-1 IIIB exposed U373 (8,000 pg/ml) and/or NAC treated compared to negative 
control after different times (day 1; day 3; day 5). The apoptotic cells were stained with propidium iodide (PI) and ana-
lysed by flow cytometry. The percentage of apoptotic cells was significantly lower for infected NAC-treated vs HIV treated 
cells. *P < 0.01 when compared vs control; §P < 0.01 when compared vs HIV-1. F: 5.84, 23.63, 32.42, respectively at day 1, 3, 5.
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Ultrastructural analysis of astroglial cellsFigure 2
Ultrastructural analysis of astroglial cells. (a) Control cell line. The cells are large with irregular nuclei composed mainly 
by euchromatin with a few peripheric heterochromatin. Numerous dense mitochondria, endoplasmic reticulum are shown in 
the cytoplasm (original magnification, ×3800). (b) Incubation of astroglial cells with NAC did not modify ultrastructural images 
of astroglial cells (original magnification, ×3800). (c) Astroglial cells exposed to HIV-1 undergo apoptotic cell death 3 days after 
exposure. In fact, the cells displayed an increase of plasma-membrane protrusions and cytoplasmic blabbing and large vacuoles 
as a result of cytoplasmic loss. The chromatin is condensed and marginalized, expressing DNA fragmentation (original magnifi-
cation, ×3800). (d) The effect of HIV on astroglial cells is strongly antagonized by coincubation with NAC. In particular, it is 
shown that cells maintain the normal architecture and the normal ratio between cytoplasm and nuclei, which appear almost 
completely normal (original magnification, ×3800).
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icant inhibition of telomere shortening indicating a tel-
omere protective effect of this antioxidant against the
oxidative stress-induced damage (Figure 3). In the figure 3
it is shown an interesting telomere lengthening, probably
due to the NAC activity against an endogen oxidative
intracellular status. In figure 4 we can observe a color
image Q-FISH staining on metaphase performed on met-
aphase chromosomes with fluorescent PNA telomeric
probe.

With these results we can suppose that the telomeres, pref-
erential target for oxidative damage, could be the key sen-
sor of cell apoptosis induced by oxidative stress after HIV-
1 exposure.

Telomerase activity is not modulated in HIV-1 exposed 
and/or NAC treated human astrocytoma cell line
To evaluate if the reduction of telomere shortening is due
to the telomerase modulation, we analyzed the telomer-
ase activity in U373 exposed to HIV-1 by using the TRAP

assay, at the same treatment time points used for Q-FISH
analysis. As expected, U373 cell line express telomerase
activity as usually observed in tumor cell lines. Interest-
ingly, the data indicate no telomerase modulation in HIV-
or NAC treated- HIV exposed U373 cells compared to the
control. In fact, where we observed telomere shortening,
we can't point out an enhanced or reduced telomerase
activity (Figure 5). These data indicate no correlation
between telomere length modulation and telomerase
activity suggesting that NAC is able to act preventing the
telomere shortening not by restoring the telomere length
suggesting that the antioxidant protective effects does not
occur via telomere elongation but most likely by restoring
the oxidant status of the cells.

HIV-1 modulates the GSH levels and GSH/GSSG ratio in 
human astrocytoma cell line
HPLC was employed for evaluation of the cellular levels
of the reduced or oxidized form of the cysteine-containing
peptide glutathione (GSH and GSSG, respectively) in

Telomere length in U373 at different time points (1, 3, 5 days) following HIV-1 exposure or NAC treatmentFigure 3
Telomere length in U373 at different time points (1, 3, 5 days) following HIV-1 exposure or NAC treatment. 
Each data is shown as percentage of T/C (telomere/centromere) ratio. A statistically significant telomere shortening was 
observed for U373 after HIV-1 exposition at all time points while NAC treatment was able to inhibit this effect. *P < 0.05 and 
**P < 0.001 when compared vs control; §P < 0.05 and §§ P < 0.001 when compared vs HIV-1. F: 96.59, 9.01, 8229, respectively 
at day 1, 3, 5.
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U373 exposed to HIV-1 IIIB and exposed, where
requested, to NAC. As it is shown in the figure 6 the levels
of GSH (nmol/mg protein), measured by HPLC, in U373
exposed to HIV-1 IIIB, decreased compared to negative
control of not HIV-1 exposed cells at several days (day 1,
day 3, day 5). Moreover we can observe that the NAC-
treatment of U373 HIV-1 exposed, is able to restore the
GSH levels at the same time points. The GSH/GSSG ratio,
in U373 exposed to HIV-1 IIIB, also decreased compared
with control of not HIV-1 exposed cells, the ratio signifi-
cantly increased with NAC treatment (table 1).

Discussion
HIV infection is still pandemic with more than 30 million
people infected today. In Europe, most of the 50% of HIV-
affected patients and about 80% of AIDS affected patients
undergo cognitive dysfunction which is indicated, at the
late stage, as AIDS-dementia complex [32-34]. The neu-
ropathogenesis of HIV-infection and therapeutic
approaches for treatment of neurological disturbances
accompanying AIDS still remain to be identified. Overall
data suggest that the mechanism(s) that lead to neuronal,
as well as non-neuronal damage, in the brain of AIDS
patients may involve the combined effect of more than
one neurotoxic factor. Oxidative stress and the alteration
of the homeostasis induced by HIV-1 infection, have
shown to contribute to the mechanisms underlying apop-
totic cell death occurring in AIDS-dementia complex [1].
It is known that enhanced oxidative stress, which occurs

in brain tissues of patients undergoing HIV infection and
is implicated in apoptotic cell death of both astroglia and
neurones, may play a role in the pathogenesis of neu-
roAIDS and it is also known that HIV-1-infected patients
are under chronic oxidative stress [32,35-37]. Evidence
exists that HIV infection is accompanied by simultaneous
activation of free radical species in CNS cells other then
superoxide anions, such as nitric oxide (NO) [1]. Apop-
totic death of astrocytes could indirectly contribute to
brain atrophy [38]. The design of this study was based on
the crucial importance of oxidative stress induced by HIV-
1 infection on the astrocytic damage. In particular, the
aim of our research was to investigate the pathophysiolog-
ical role of oxidative/inflammatory processes consequent
to HIV-1 infection, in the development of apoptosis in the
human astrocytic cell line U373. On the other hand, with
the aim to correlate HIV-related apoptotic cell death with
telomere dysfunction, we evaluated the telomere length
changes and telomerase activity occurring in U373
exposed to HIV and undergoing oxidative stress subse-
quent to HIV-related inflammatory processes. In addition,
the HIV-related generation of oxidative stress, has been
correlated with the changes occurring on GSH/GSSH lev-
els, involved in the regulation of endogenous antioxidants
such as glutathione. GSH is the major thiol present in the
brain tissue and the most important redox buffer in the
cells [39]. This antioxidant molecule cycles between GSH
and GSSG, and serves as a vital sink for control of ROS lev-
els in cells. In our experiments we observed that HIV
induced apoptosis is strictly related to changes occurring
in GSH/GSSG ratio and GSH decrease suggesting the cru-
cial role of oxidative stress in HIV related cellular damage.
The presence of the antioxidant NAC was able to reduce
the apoptosis occurring in astrocytoma cell line after 3
and 5 days of HIV virus exposure (71.1% and 47.1%,
respectively Figure 1). This reduction of apoptosis can be
considered more high if we take in account that the per-
centage of apoptosis in the mock-infected and NAC-
untreated U373 at day 5 is around 17%. A confirming
experiment of apoptosis was done by using the electron
microscopy (Figure 2) and confirmed the results obtained
with cytofluorimetric analysis. To observe if the astrocytic
apoptosis is correlated to nuclear damage we analyzed the
telomere shortening by Q-FISH staining. The telomere
length in HIV-exposed samples was significantly shorter
compared to control in keeping with the increase of apop-
totic cells at the same time points, indicating a possible
role of telomeres in the cellular surviving. NAC treatment
shows a protective effect on HIV induced telomere short-
ening by inhibiting the oxidative stress-induced damage
and restoring the GSH/GSSG ratio (Figure 3, Figure 6 and
table 1). A statistically significant telomere lengthening
was revealed at day 1 in NAC treated but not HIV-1
exposed cells, compared to negative control; this interest-
ing telomere lengthening is probably due to the activity of

U373 metaphase hybridized with telomere PNA probe labeled with Cy3Figure 4
U373 metaphase hybridized with telomere PNA 
probe labeled with Cy3. Co-hybridisation was done with 
Cy-3 telomeric-PNA probe and Cy-3 centromeric-PNA(cro-
mosome 2) probe.
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the drug against an endogen oxidative intracellular status.
It is in fact known that malignant cells produce height lev-
els of oxidative stress to suppress apoptosis, accelerate
proliferation, metastasis and angiogenesis [40]. For this
reason in our cellular model we already have a basal level
of oxidative compounds that can be removed by the NAC
alone (a glutathione precursor).

High levels of telomerase activity have been demonstrated
in immortalized cell lines [32] and in majority of human
cancers [41,42] in which these cells that constitutively
express telomerase can continue to divide almost indefi-
nitely [19]; differently somatic cells, do not express telom-
erase, and their replicative potential are limited by
progressive telomere shortening.

As expected, U373 cell line express telomerase activity as
usually observed in tumor cell lines. Moreover, our results
interestingly showed no statistically significant telomerase
modulation in HIV and NAC+HIV- treated U373 cells
(Figure 5) compared to the control, as observed by TRAP
assay, despite telomere length modulation observed. This
data could suggest two possible explanations for telomere
lengthening observed in NAC pre-treated samples: the
involvement of a telomerase-independent mechanism,
the ALT pathway (Alternative Lengthening of Telomeres)
[41,42]. In fact, it is well known that, consistent with the

requirement for telomere maintenance as a step in car-
cinogenesis, 80–90% of human tumor possess telomerase
activity and the remainder maintains telomeres via ALT, a
recombination-mediated process [42]. On the other
hand, this data could suggest that NAC is able to prevent
the telomere shortening not by inducing the telomere
lengthening, but most likely inhibiting the oxidative stress
and restoring the cellular homeostasis as shown by the
analysis of the levels of GSH and GSSG (ratio of reduced
glutathione to oxidized glutathione) in HIV-1 exposed
U373 and in NAC treated HIV-1 exposed U373. It is
known that HIV infection is associated with decreases in
the GSH content [43,44]. This decreased GSH content
may reduce the survival of HIV-infected patients [45] per-
haps by contributing to several disorders, such as CD4+ T
cell apoptosis [46], neuroAIDS [47] and enhancing HIV
replication. The figure 4 shows that the levels of GSH in
U373 exposed to HIV-1 IIIB decreased compared to con-
trol; NAC treatment reversed this decrease and GSH
returned to control levels. Moreover, as we can see in the
table 1, the GSH/GSSG ratio at the days 1,3,5, in HIV-1
exposed U373 decreased compared to negative control of
not HIV-1 exposed cells; at the same time points, the
GSH/GSSG ratio significantly increased with NAC treat-
ment. NAC-treatment of U373 HIV-1 exposed is able to
restore the GSH levels, one of the major endogenous anti-
oxidant molecule present in high levels in the cells. Sev-

Telomerase activity in U373 at different time points (1, 3, 5 days) following HIV-1 exposure and NAC treatmentFigure 5
Telomerase activity in U373 at different time points (1, 3, 5 days) following HIV-1 exposure and NAC treat-
ment. Data obtained on telomerase activity using the TRAP assay indicate no telomerase modulation in HIV- and NAC+HIV- 
treated U373 cells.

�

���

���

���

���

�

���

	
��

��

�����	

��	

�������
�������������� ��

� � !!� "
Page 7 of 11
(page number not for citation purposes)



BMC Neuroscience 2009, 10:51 http://www.biomedcentral.com/1471-2202/10/51
eral authors have suggested that low GSH levels were a
consequence of decreased levels of plasma cysteine, the
rate-limiting amino acid for GSH synthesis [34]. For this
reason the presence of NAC, a cysteine donor involved in
the synthesis of GSH, underlining that NAC can be a
potential pro-GSH compound acting as part of the glu-
tathione (GSH/GSSG) redox system.

Conclusion
Our data demonstrated that, as shown in human fibrob-
last [23,27], in human astrocytic cell line U373, the
increase of oxidative stress, consequent to HIV-1 expo-
sure, is responsible of acceleration of telomere shortening
"in vitro". So, we can suppose that the telomeres could
represent a key sensor of cell apoptosis induced by oxida-
tive stress following HIV-1 exposure. These observations
can be an important starting point for future experiments.
In addition, we demonstrated the protective action of
antioxidant compound in reducing the HIV-1 IIIB-medi-
ated cellular damage.

Methods
Cells
Glioblastoma cell line (U373) was obtained from the
American Type Culture Collection (ATCC; Manassas, VA,
USA) and grown, at 37°C and 5% CO2, in DMEM (Gibco,
Grand Island, NY) supplemented with 10% heat-inacti-
vated fetal bovine serum (FBS, Euroclone, Ltd, UK), Gen-
tamicin 20 ug/ml, 2 mM L-glutamine.

Virus
HIV-1 strain used in the preliminary experiment was R5-
using Bal, and the HIV-1 strain used for the other experi-

Effects of NAC on GSH valueFigure 6
Effects of NAC on GSH value. In control experiments GSH level was expressed as nmol/mg protein and * p < 0.01; ** p < 
0.05; *** p < 0.001 when compared with control; §p < 0.01; §§§ p < 0.001 when compared with HIV. F: 13.42, 18.60, 11.78, 
respectively at day 1, 3, 5. The data represent mean + SEM %.
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Table 1: Effects of HIV-1 on GSH/GSSG ratio, a sensitive 
indicator of oxidative stress

GSH/GSSG (% Control)

TIME (Day) 1 2 3

CTRL 100 *** 100** 100 ***
HIV 51 ± 6.2 § 46 ± 6.3§ 35 ± 2.8 §

HIV + NAC 72 ± 4.3 68 ± 8.7 48 ± 5.1

The GSH/GSSG ratio, in U373 exposed to HIV-1 IIIB, decreases 
compared with control of not HIV-1 exposed cells. The ratio 
significantly increased with NAC treatment. *p < 0.05, **p < 0.01, 
***p < 0.001 when compared vs control; §p < 0.05, §§ p < 0.01, §§§ p 
< 0.001, when compared vs HIV.
Page 8 of 11
(page number not for citation purposes)



BMC Neuroscience 2009, 10:51 http://www.biomedcentral.com/1471-2202/10/51
ments was X4-using IIIB. Both the viruses are provided by
R. C. Gallo and M. Popovic at that time at the National
Cancer Institute, National Institutes of Health, Bethesda,
MD. The virus used for the experiments was ultra-centri-
fuged for two hours at 22,000 rpm at 4°C, stored in phos-
phate buffered saline (PBS) at -80°C.

Analysis of cellular apoptosis
U373 were seeded in Petri plates (60,000 cells/plate, Cos-
tar, Cambridge, MA) and, 24 hrs later, were exposed,
where requested, to 1 mM NAC for 20 min. Then, 8,000
pg/ml of p24-gag HIV-1 IIIB were added to the medium (3
ml of medium culture). The cells were then incubated at
37°C in humidified air containing 5% CO2. On the day
of analysis, the cells were gently detached with trypsin/
EDTA (0.02%) and centrifuged at 1,600 rpm for 10 min.
Pellets were washed with PBS, placed in ice, and perme-
ated with ice-cold 70% ethanol for 30 min. The aliquots
were centrifuged at 1,500 rpm for 10 min, the pellets were
washed with PBS, incubated with propidium iodide (PI;
100 μg/ml, SIGMA-Aldrich, Germany) and RNase (250
μg/ml Qiagen, Mi, Italy) at 4°C for 2 h in the dark. Sam-
ples were then washed twice with PBS and PI-stained cells
were analysed by monitoring the incorporation of intrac-
ellular PI with a FACScan flow cytometer. Results are from
3 separate experiments; 105 events were collected for each
sample. Data were acquired and analysed by the Lysis II
program (Becton Dickinson, Buccinasco, Mi, Italy).

Electron microscopy
Cells for electron microscopy (1 × 106/ml) were fixed in
2.5% glutaraldehyde in PBS, pH 7.4, at 4°C and then
washed for 2 times in PBS and post-fixed in osmium
tetroxide, 1.33% for 2 h at 4°C. After several washes in
PBS, the cells were dehydrated in graded alcohol, trans-
ferred into toluene, and embedded in Epon 812 resin. The
resin was allowed to polymerize in a dry oven at 60°C for
24 h. Thin sections were cut and stained with toluidine
blue, and examined on an Axioscope microscope.
Ultrathin sections were cut on a Reichert microtome using
a diamond knife, stained with uranyl acetate/lead-citrate,
and evaluated and photographed on a Philips electron
microscope CM 10 (Philips Electronic Instruments, Mt.
Vernon, NY).

Evaluation of telomeric length
cells metaphases, obtained treating samples for 2,5 hours
with colchicine (10-6 M), were treated with hypotonic KCl
buffer (0.075 M) and successively fixed with methanol:
acid acetic (3:1). Cells were therefore seeded onto glass
slides and stored at RT for 48 hours. Metaphase chromo-
somes were analyzed by Quantitative-Fluorescent In Situ
Hybridization (Q-FISH) with peptide nucleic acid (PNA)-
telomeric probe. Briefly, after washing with Tris Buffered
Saline (TBS), slides were fixed in formaldehyde (3.7%),

treated with proteinase K, dehydrated through a series of
ethanol rinses (70%–85%–100%) and air-dried. Probe
mixture containing Cy-3-conjugated (C3TA2)3 peptide
nucleic acid (PNA) and Cy-3 centromeric-PNA(chromo-
some 2) probe (DAKO, Glostrup, Denmark) was added to
the slides, and a DNA/probe co-denaturation (3 min at
80°C) was carried out. After hybridization for 2 hours at
room temperature, slides were washed in 4 × SSC +
0.01%Tween20 for 5 min at 65°C and dehydrated in an
ethanol series (70%–85%–100% for 2 min). Finally,
slides were counterstained with DAPI in Vectashield (Vec-
tor Laboratories, Burlingame, CA).

Metaphases were captured and karyotyped using dedi-
cated software. Telomeres length of each chromosome
was measured by ISIS/Telomere software (MetaSystems)
which allows precise measurement of single telomere sig-
nal. Centromere 2 was used as reference signal allowing to
calculate the Telomere/Centromere ratio (T/C ratio). Each
data was shown as percentage of T/C ratio. Statistical anal-
ysis was calculated by comparing >1800 telomere values
measured at least 10 metaphases for each experimental
point.

Estimation of telomerase activity
the PCR-based telomeric-repeat amplification protocol
(TRAPeze ELISA Telomerase detection Kit) in accordance
with the method proposed by Kim et al., [48] was used to
evaluate the activity of telomerase. This procedure is sep-
arated in three steps: 1) Extract Preparation, proteic extract
of untreated and HIV-treated cells was obtained by using
1× CHAPS lysis buffer (10 mM Tris HCl, 1 mM MgCl2, 1
mM EGTA, 0,1 mM PMSF, 5 mM β-Mercaptoethanol,
0,5% CHAPS, 10% glicerol) 2) TRAP extension/amplifica-
tion, where telomerase present in proteic extract, adds a
number of telomeric repeats (GGTTAG) onto the 3' end of
a biotinylated substrate oligonucleotide (b-TS); the
extended products are then amplified by PCR. 3) Detec-
tion (ELISA). PCR products were analysed and the absorb-
ance (A) was evaluated by the microplate reader. The
difference between the absorbance for the sample and
heat-treated sample was indicated as ΔA. When ΔA >
0.150 the sample is defined telomerase positive.

Measurement of GSH and GSSG
we measured the oxidative stress analysing the GSH value
and the GSH/GSSG ratio, as is already well documented
by the literature [49-51]. Specifically, intracellular cell
GSH and GSSG content were determined by High-Per-
formance Liquid Chromatography (HPLC) according to
Reed et al. [52]. Briefly, U373 cells were gently scraped off,
washed and harvested by centrifugation at 2,000 rpm in a
refrigerated centrifuge. Cell samples were suspended in
phosphate-buffered saline and then lysed by repeated
cycles of freezing and thawing under liquid nitrogen. Pro-
Page 9 of 11
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teins were precipitated by adding sodium metaphos-
phoric acid (MPA) to a final concentration of 5% (w/v). A
0.5 ml aliquot of the clear supernatant, was treated imme-
diately with 50 ul of a fresh aqueous solution (4 umol)
iodoacetic acid and then neutralized with an excess of
NaHCO3 (dry powder). After 60 min in the dark at room
temperature, 0.5 ml of an alcoholic solution of 1-fluoro-
2,4-dinitrobenzene (1.5 ml/98.5 ml absolute ethanol)
was added and allowed to react overnight in the dark [52].
Aliquots (100 ul) of the reaction mixtures were subjected
to HPLC analysis. Protein levels of the cell samples were
determined by the Bredford method [52,53].

Trypan blue-exclusion test of cell viability
The dye-exclusion test was used to determine the number
of viable cells after exposure of astrocytes to NAC. At days
1, 3 and 5, astrocytes were trypsinized, exposed to dye,
and then examinated visually to determine whether cells
take up or exclude dye. The live cells that possess intact
cell membranes exclude trypan blue, whereas dead cells
do not [54].

Statistical analysis
All the results were given as mean ± sem. Data are from 3
separate experiments, each experiment was run in tripli-
cate. These results were performed using ANOVA followed
by Student-Newman-Keuls unless specified (n = 3 differ-
ent experiments). P < 0.05 was considered statistically sig-
nificant.
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