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Abstract 

Background: Malaria epidemiological and immunological data suggest that parasite tolerance wanes in the absence 
of continuous exposure to the parasite, potentially enhancing pathogenesis. The expansion of control interventions 
and elimination campaigns raises the necessity to better understand the host factors leading to susceptibility or 
tolerance that are affected by rapid changes in malaria transmission intensity (MTI). Mediators of cellular immune 
responses are responsible for the symptoms and pathological alterations during disease and are expected to change 
rapidly upon malaria exposure or cessation.

Methods: The plasma concentrations of 30 cytokine, chemokine and growth factors in individuals of all ages from 
a malaria endemic area of southern Mozambique were compared between 2 years of different MTI: 2010 (lower, 
n = 234) and 2013 (higher, n = 143). The effect of the year on the correlations between cytokines, chemokines and 
growth factors and IgGs to Plasmodium falciparum (markers of exposure) was explored. The effects of age, sex, neigh-
bourhood and parasitaemia on analyte levels and their interactions with year were also assessed.

Results: An inverse correlation of several cellular immune mediators with malarial antibodies in 2013, and a lack of 
correlation or even a positive correlation in 2010 were observed. Most cytokines, chemokines and growth factors, 
regardless of their immune function, had higher concentrations in 2010 compared with 2013 in P. falciparum-infected 
and uninfected subjects. Age and neighbourhood showed an effect on analyte concentrations.

Conclusions: The results show a different regulation of the cellular immune response in 2010 vs 2013 which could 
be related to a loss of immune-tolerance after a decline in MTI in 2010 and previous years, and a rapid re-establish-
ment of tolerance as a consequence of more continuous exposure as MTI began increasing in 2012. Cellular immune 
mediators warrant further investigation as possible surrogates of MTI-associated host susceptibility or tolerance.
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Background
The burden of malaria disease has experienced significant 
changes in endemic areas in the 21st century. Between 
2000 and 2015, an expansion of malaria interventions 
helped to reduce malaria incidence by 37% globally, and 

by 42% in Africa. However, between 2015 and 2017 no 
significant progress was made, with an estimated 219 
million cases and 435 000 related deaths in 2017 [1].

Geographical and temporal changes in malaria trans-
mission intensity (MTI) can affect disease burden and 
Plasmodium parasite dynamics. Thus, the expansion 
of control interventions and elimination campaigns 
raises the necessity to better understand the host factors 
affected by rapid changes in MTI.
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In endemic areas of Africa, naturally acquired immu-
nity (NAI) to malaria is developed with age and exposure 
to Plasmodium falciparum infection. NAI is suggested 
to be comprised of two main components: (i) an anti-
parasite component, resulting in control of parasite rep-
lication and parasite clearance, which takes years to be 
acquired and is never sterilizing [2, 3]; and (ii) an anti-
disease component, consisting of the ability to tolerate 
parasites asymptomatically, which is acquired rapidly and 
can result in long periods without malaria symptoms in 
older individuals [4, 5].

Tolerance is a less understood phenomenon. From the 
immunological perspective, it is defined as any endog-
enous mechanism by which a potentially injurious 
immune response is prevented, suppressed, or shifted to 
a non-injurious response [6]. In malaria, such tolerance 
developed by the host is suggested to be multi-factorial, 
including: (i) the neutralization of parasite toxins and 
other virulence factors; (ii) immuno-regulatory processes 
that reduce the damage triggered by excessive immune 
responses of the host; and (iii) cellular and systemic adap-
tive responses that limit the deleterious effects associated 
with stress imposed by pathogens and/or host immunity 
[7].

Epidemiological and immunological data suggest 
that anti-parasite immunity and tolerance wane in the 
absence of continuous exposure to the parasite [8], and 
changes in MTI likely affect anti-malarial immunity. In 
fact, the geographical distribution of malaria prevalence, 
morbidity and mortality depends directly upon MTI. In 
low MTI settings, exposed people are at a higher risk of 
severe disease. In high MTI settings, severe disease is 
limited to naïve individuals (visitors, infants), young chil-
dren, and pregnant women, while the rest of adults toler-
ate the presence of parasites [8].

Temporally, immune adults who migrate to non-
endemic areas are at significant risk of contracting 
malaria upon return to an endemic area, even increased 
susceptibility to severe malaria [9]. Previous studies show 
that IgG responses to malaria-specific antigens are main-
tained to a large extent upon cessation of malaria expo-
sure, suggesting a long-lasting anti-parasite immunity 
[10]; however, control of pro-inflammatory responses and 
tolerance to P. falciparum appeared to be reduced [11]. 
Thus, a rapid decrease in exposure to P. falciparum would 
result in a lesser development of NAI in children, and a 
possible partial loss of previous immunity and tolerance 
in the older population if exposure was very low or dis-
continued, which may enhance malaria pathogenesis.

Cytokines, chemokines and growth factors mediate cel-
lular responses and are responsible for the symptoms and 
pathological alterations during disease. The outcome of 
infection depends on the regulation of pro-inflammatory 

and anti-inflammatory responses, leading to protection 
or immunopathology [12]. Thus, blood soluble media-
tors are expected to change rapidly upon malaria expo-
sure or cessation, and to reflect changes in anti-disease 
immunity and tolerance associated with varying MTI. 
Some P. falciparum-specific cytokine responses have 
been associated with protection against clinical malaria, 
including interferon gamma (IFN-γ) [13–17], interleu-
kin-10 (IL-10) and tumour necrosis factor (TNF) [18, 19]. 
Others, such as IL-6, have correlated with increased risk 
of clinical malaria [12, 20]. Serum cytokines like IL-5 and 
RANTES appear to be important in the pathogenesis of 
severe malaria [20–23].

In this study, changes in cellular immune mediator pro-
files in 2 years of different MTIs were assessed in individ-
uals of all ages from a malaria endemic area of southern 
Mozambique. To address this, a comprehensive panel of 
30 cytokines, chemokines and growth factors, several of 
them known to vary upon malaria infection and/or expo-
sure [11, 24, 25], were measured in plasma samples col-
lected in two cross-sectional surveys in 2010 and 2013 in 
the Manhiça District. Most analytes had higher concen-
trations in 2010 (lower MTI) compared to 2013 (higher 
MTI) in P. falciparum infected but also in uninfected 
subjects. This could be indicative of a loss of immune-
tolerance after years of decline in MTI, and a re-estab-
lishment of the tolerance as a consequence of a more 
continuous exposure due to a rise in MTI starting before 
2013. The possibility of cytokines as surrogates of loss of 
parasite tolerance upon changes in MTI deserves further 
investigation.

Methods
Study design, subjects and sample collection
This study was developed in the context of yearly 
cross-sectional surveys performed to monitor changes 
in malaria burden and MTI in the Manhiça District, 
Maputo Province, in southern Mozambique, which 
started in 2010 and are still on going. The characteristics 
of the study area have been described in detail elsewhere 
[26]. The climate is subtropical and transmission of P. 
falciparum malaria is perennial and of moderate inten-
sity, with two different seasons, a warm and rainy season 
from November to April, and a cool and dry season the 
rest of the year [27]. The cross-sectionals were performed 
at the end of the peak of the transmission season (Feb-
ruary–March) and lasted approximately 1  month. Data 
on monthly mean rain in the 5  months previous to the 
2010 and 2013 surveys are shown in Additional file  1: 
Table  S1 (CHIRPS: http://chg.geog.ucsb.edu/data/chirp 
s/). The cumulative rainfall levels between the months 
of September 2009 and January 2010 was 310.76  mm, 
and doubled to 625.26  mm between the months of 

http://chg.geog.ucsb.edu/data/chirps/
http://chg.geog.ucsb.edu/data/chirps/
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September 2012 and January 2013. Individuals of all ages 
were selected by random age-stratified sampling from 
the demographic surveillance system census and were 
invited to participate in the study. Weighted sampling 
was done according to the following age groups: Infants 
< 1 year; 1 ≤ 2 years; 2 ≤ 3 years; 3 ≤ 4 years; 4 ≤ 5 years; 
5 ≤ 10  years; 10 ≤ 20  years; 20 ≤ 40  years; 40 ≤ 60  years; 
≥ 60 years. Participants were recruited from six different 
neighbourhoods: Malavele, Manhiça and Maragra, his-
torically considered of low MTI; and Ilha Josina, Palmeira 
and Taninga, of moderate MTI [28]. A standardized 
questionnaire was filled-in with basic demographic infor-
mation, use of malaria control tools and socio-economic 
status. Axillary temperature was measured and registered 
in the questionnaire. A blood smear was collected to 
determine Plasmodium parasitaemia according to stand-
ard, quality-controlled procedures [29].

Haemoglobin was measured using HemoCue portable 
devices (Ängelholm, Sweden). A blood aliquot was col-
lected in an EDTA microtainer and plasma separated by 
centrifugation and cryopreserved at − 80 °C for immuno-
logical analyses. Blood was also collected onto filter paper 
for IgG quantification by ELISA [30], and for parasitae-
mia quantification by real time quantitative PCR (qPCR), 
as described elsewhere [31]. Febrile infection was defined 
as the presence of asexual P. falciparum parasites in blood 
detected qPCR, together with fever or reported fever 
during the previous 24  h. Febrile infections with para-
sites also detected by microscopy were considered clini-
cal malarias. Anemia was defined as haemoglobin < 11 g/
dL. Participants presenting with parasitaemia, anaemia, 
fever or history of fever in the previous 24 h were treated 
according to standard procedures. All malaria infections 
were treated with the first-line anti-malarial treatment 
(Coartem), and anaemia cases received ferrous sulphate, 
according to national guidelines. Participants presenting 
signs/symptoms of severity were transferred to the Man-
hiça District Hospital.

Plasma samples analysed in this study were from 
377 participants from the surveys performed in 2010 
(N = 234, 96 infected and 138 non-infected) and 2013 
(N = 143, 65 infected and 78 non-infected). Years 2010 
and 2013 were defined as lower and higher MTI periods, 
respectively, based on the trends reported in Mozam-
bique, with a decrease in malaria prevalence from 2007 to 
2011, and an increase since 2012 [32, 33].

All plasmas from infected individuals (161 participants 
qPCR positive) and the plasmas from 216 non-infected 
participants (qPCR negative) were analysed separately 
to assess cytokine profiles in 2010 and 2013 during an 
infection and at baseline, respectively. The plasmas from 
non-infected individuals were randomly selected from 
the surveys, balancing between years and stratifying by 

specific age groups (1 ≤ 2, 2 ≤ 5, 5 ≤ 10, 20 ≤ 40 and ≥ 60), 
with the last two groups enriched to have a sample size 
powered to address older age effects.

Cytokine, chemokine and growth factor multiplex bead 
array assay
The Cytokine Human Magnetic 30-Plex Panel from Life 
Technologies™ was used to measure the concentrations 
(pg/mL) of the following cytokines, chemokines and 
growth factors in plasma: epidermal growth factor (EGF), 
fibroblast growth factor (FGF), granulocyte colony-
stimulating factor (G-CSF), granulocyte-macrophage 
colony-stimulating factor (GM-CSF), hepatocyte growth 
factor (HGF), vascular endothelial growth factor (VEGF), 
tumour necrosis factor (TNF), interferon (IFN)-α, IFN-γ, 
interleukin (IL)-1RA, IL-1β, IL-2, IL-2R, IL-4, IL-5, IL-6, 
IL-7, IL-8, IL-10, IL-12(p40/p70), IL-13, IL-15, IL-17, 
IFN-γ induced protein (IP-10), monocyte chemoattract-
ant protein (MCP-1), monokine induced by IFN-γ (MIG), 
macrophage inflammatory protein (MIP)-1α, MIP-1β 
and regulated on activation normal T cell expressed and 
secreted (RANTES) and eotaxin. This panel has been 
used in previous studies showing several analytes varying 
upon malaria infection and/or exposure [11, 24, 25].

Twenty-five microlitres of all plasmas were tested in 
single replicates applying a modification of the manufac-
turer’s protocol that implies using half the volume of each 
reagent except for the washing buffer [34]; this modifica-
tion was previously tested, showing no difference in assay 
performance compared to the original protocol. Each 
plate included 16 serial dilutions (two fold) of a standard 
sample provided by the vendor with known concentra-
tions of each analyte, two blank controls and three posi-
tive controls of high, medium and low concentrations 
in duplicate prepared from a reference sample for qual-
ity assurance/quality control purposes. Samples from 
infected and non-infected individuals were assayed in 
two separate batches. In each batch, plates were balanced 
across the two cross-sectionals and age groups. Samples 
were acquired on a  Luminex® 100/200 instrument and 
analysed in  xPONENT® software 3.1. The concentration 
of each analyte was obtained by interpolating the median 
fluorescent intensity (MFI) (after blank MFI subtraction) 
to a 5-parameter logistic regression curve automatically 
calculated by  xPONENT® software. Any value below the 
lower limit of detection (mean of blanks + 2 standard 
deviations) was assigned half the expected concentration 
at the low limit of quantification for that analyte.

Enzyme‑linked immunosorbent assay
Antibody data obtained in a separate study of serocon-
version rates performed in the context of the Manhiça 
cross-sectional surveys were analysed in relation to 
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the cytokine data. Briefly, 2.5  mm disks of dried blood 
(≈ 1.5 µL of blood) were cut from filter paper spots and 
incubated overnight at room temperature (RT) with 
150  mL of PBS/0.05% Tween 20/0.01% sodium azide 
(w/v) [35].

Reconstituted sera were stored at − 20  °C until use. 
The ELISA assay was performed as previously described 
[30]. High-binding 96-well titer plates (Immulon 4HBX, 
Thermo Scientific, Inc.) were coated with merozoite sur-
face protein-1 (MSP-142) (3D7 strain) or apical membrane 
protein-1 (AMA-1) (FVO strain) produced at the Walter 
Reed Army Institute of Research (MD, USA), at 0.5 mg/
mL of carbonate buffer. PBS with 0.05% Tween (PBS-
T) was used to wash plates between incubations. Plates 
were blocked with 1% skimmed milk powder (Sigma-
Aldrich, Inc.) in PBS-T (blocking buffer) for 3  h at RT. 
Reconstituted antibodies were transferred to the ELISA 
plates (1/1000 and 1/2000 final dilution for MSP-142- and 
AMA-1-coated plates, respectively) and incubated over-
night at 4  °C. HRP-conjugated rabbit anti-human IgG 
(Dako/Agilent Technologies, Inc.) was applied at 1/5000 
in PBS-T and incubated for 3 h at RT. OPD development 
substrate was applied and incubated in the dark at RT 
for 20–25 min, stopping development with the addition 
of 2 M  H2SO4. Plates were read on Bio-Tek ELx 50 plate 
reader using KC Junior software package (version 1.10, 
Biotek Instruments Inc.). Normalized optical density 
(OD) was calculated as the mean background-adjusted 
OD divided by the mean of a hyperimmune plasma. The 
same standard dilution was used for normalizing each 
plate in the study. Test samples were assayed in duplicate 
and included in the analysis if the coefficient of variation 
was less than 50% for all values greater than 0.1 OD.

Statistical analysis
Plasmas from malaria-infected and non-infected vol-
unteers were analysed separately. The studied popu-
lation was categorized into 6 age groups (≤ 2  years, 
> 2 ≤ 5 years, > 5 ≤ 10 years, > 10 ≤ 20 years, > 20 ≤ 60, and 
≥ 60  years) according to commonly observed immuno-
logical patterns. Demographic continuous variables were 
analysed using the non-parametric Wilcoxon rank-sum 
test. Comparisons between groups for categorical vari-
ables were done using Fisher’s exact test. Concentrations 
of cytokines, chemokines, growth factors, parasite densi-
ties and IgG levels (OD) were  log10 transformed for fur-
ther analysis.

Comparison of cellular analyte concentrations between 
two or more groups was performed through Wilcoxon 
rank-sum test or Kruskall–wallis test, respectively. Com-
parisons of IgG levels between years were performed by 
Wilcoxon rank sum test with continuity correction for all 
age groups together or into each age category separately. 

Trends of IgG levels along age groups were assessed by 
Spearman correlations (p-trend). The correlations of IgG 
levels and analyte concentrations were assessed with uni-
variable linear models, with IgG levels as independent 
variable, separate for each analyte. The effects of year, age 
group, neighbourhood, sex and parasite density (predic-
tors) on analyte levels (outcome) were assessed through 
univariable and multivariable (adjusted models) linear 
regressions, separate for each analyte. Interaction tests 
were performed to determine if there was an interac-
tion of age group, neighbourhood, sex, parasite density 
and antibody levels with year on the analyte levels. When 
interactions were statistically significant, a stratified anal-
ysis was performed.

All p-values were considered statistically significant 
when < 0.05. P-values were adjusted for multiple testing 
to control the false discovery rate using the Benjamini–
Hochberg approach in each study endpoint separately 
(effect of year in infected subjects, effect of year in unin-
fected subjects, comparison of infected and uninfected 
subjects, effect of age, neighbourhood, sex,   parasitae-
mia and AMA-1 and MSP-1 IgG levels) except for the 
comparison of antibody levels between years into age 
categories for which the Holm method was used. In all 
endpoints evaluating cytokine associations of this explor-
atory study, the Benjamini–Hochberg approach was used 
because it has more power than family-wise-error rate 
methods, such as Bonferroni or Holm, and allows iden-
tifying as many significant associations as possible while 
incurring a relatively low proportion of false positives 
[36]. For the AMA-1 and MSP-1 antibody data a family-
wise error rate method was used to be more conservative 
and because only two markers were analysed. All data 
collected were analysed using the R software version 3.2.4 
(2016-03-10) [37]. The ggplot2 package [38] was used to 
perform boxplot graphs and scatter plots. The compare 
Groups package was used for computing p-trend values 
[39]. The fmsb package [40] was used to draw the radar 
charts with the radarchart function. The reshape and 
dyplr packages were used for data manipulation purposes 
[41] and the ReporteRs package for exporting data tables 
in Microsoft Word documents [42].

Results
Malaria prevalence and antibody levels in the 2010 
and 2013 surveys
A total of 981 and 980 individuals participated in the 
malaria cross-sectional surveys in 2010 and 2013, respec-
tively. In 2010, 975 (99.5%) individuals were tested by 
microscopy and 970 (99%) by qPCR; while 944 (96.3%) 
and 808 (82.4%) individuals were tested by microscopy 
and qPCR, respectively, in 2013. Weighted prevalence 
of P. falciparum infection in 2010 and 2013 were 1.1% 
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and 5.2% by microscopy, and 12.6% and 23.9% by qPCR, 
respectively; and the numbers of febrile infections were 
15 and 43, being 3 and 18 clinical malarias, respectively 
(Table 1). When stratifying by neighbourhood, Palmeira, 
Ilha Josina and Taninga showed the highest increases 
in malaria prevalence (qPCR) from 2010 to 2013, with 
Palmeira and Ilha Josina presenting the highest increases 
in clinical cases.

Levels of IgG against AMA-1 and MSP-142 were 
higher in 2013 compared to 2010 (p < 0.001 for both 
IgGs) mirroring the MTI trends between 2010 and 2013, 
and increased with age within each cross-sectional (p 
trend < 0.001 in all four cases), reflecting the continuous 
exposure to P. falciparum infection (Fig. 1a). When strati-
fying by P. falciparum infection during the survey, simi-
lar trends were observed in the infected and uninfected 
populations with overall higher IgG levels in the infected 
subjects (Fig. 1b).

Description of the subset of participants included in this 
study
Among infected participants, there were no differences in 
age median or distribution of age groups between years, 
while in 2013 the non-infected individuals were younger 
than in 2010, with more subjects below 10 years old and 
less above 20  years old (Table  2). Participants’ distribu-
tion between neighbourhoods was also different between 
years in both groups (Table 2). Among the infected sub-
jects, there were no differences in parasitaemia by qPCR 
between years (Table 2). In total, there were 11 cases of 
clinical malaria, 8 (12.3%) in 2013 and 3 (3.1%) in 2010 
(p = 0.017).

Cytokine, chemokine and growth factor profiles differed 
between 2010 and 2013
The main aim of the study was to evaluate differences in 
cellular analyte concentrations between years of different 
MTI in P. falciparum-infected and uninfected individu-
als separately, as differences by MTI were expected to be 
altered by infection. Overall, 25 analytes out of 30 had 
higher levels in 2010 compared to 2013 in infected and/or 
uninfected volunteers, except for RANTES that showed 
an opposite pattern (Fig.  2, Additional file  2 and Addi-
tional file  3). The analytes that increased in 2010 were: 
the pro-inflammatory cytokines IL-1β, the IL-1 inhibitor 
IL-1RA, TNF and IL-6; the anti-inflammatory cytokine 
IL-10; the  TH2 cytokine IL-13; the regulatory cytokine 
IL-7; the chemokines IL-8, IP-10, MCP-1, MIP-1α and 
MIP-1β; and the growth factors EGF, G-CSF, GM-CSF, 
HGF and VEGF. The regulatory or  TH1-related cytokine 
IL-15, the  TH1 cytokine receptor IL-2R, the anti-inflam-
matory cytokine IL-17 and the growth factor FGF were 
higher in 2010 only in the infected individuals (Fig. 2 and 

Additional file 2). The pro-inflammatory cytokine IFN-α, 
the  TH1 cytokine IL-12 and the  TH2 IL-4 were higher in 
2010 only in the non-infected subjects (Fig. 2 and Addi-
tional file 3).

Levels between infected and non-infected individuals 
were also compared. As expected, P. falciparum infection 
was associated with higher levels of several cytokines, 
chemokines and growth factors in both years (Fig.  3): 
IFN-γ, IL-12, IL-17, IL-10, IL-2, IL-2R, IL-15, MIG, EGF, 
FGF, G-CSF and HGF. However, some markers were only 
affected in 2013: IL-1β, IL-6, IL-8, MIP-1α, MIP-1β and 
VEGF; and IL-5 only in 2010. There were also some ana-
lytes that were  lower in the infected vs the uninfected 
individuals: IL-13, IL-7, eotaxin, IP-10 and RANTES in 
both years; IL-4 in 2010; and IL-1RA in 2013. IFN-α and 
MCP1 showed opposite patterns depending on the year. 
Additional file 1: Table S2 shows the effect of the infec-
tion on analyte levels and the interaction with year.

Correlations of cytokines, chemokines and growth factors 
with antibodies differ between 2010 and 2013
The correlations of cellular analyte  concentrations with 
malaria antibodies as markers of exposure were explored. 
When considering data from 2010 and 2013 together 
(Table  3), the overall trend showed an inverse correla-
tion of several cytokines and chemokines with antibodies 
to AMA-1 and MSP-1 in the univariable and multivari-
able models. In the univariable models, IL-13, IL-1RA, 
IP-10 and IL-2R negatively correlated with both antibod-
ies, IL-12 was negatively correlated with IgG to AMA-1, 
and VEGF negatively correlated with IgG to MSP-1. The 
correlations of AMA-1 and MSP-1 IgG levels with IFN-
α, AMA-1 IgG with VEGF and MSP-1 IgG with MCP-1 
were different in 2010 compared to 2013 (Table 3, Addi-
tional file 4).

Year‑dependent effects of age, sex and neighbourhood 
on analyte concentrations
Effect of age
The effect of age on the cytokine, chemokine and 
growth factor responses was  assessed, with particu-
lar interest in the children and the elderly who have a 
developing and a senescent immune system, respec-
tively. Age had a statistically significant effect on some 
analyte concentrations in infected and uninfected indi-
viduals, with different patterns depending on the ana-
lyte and infection status (Figs. 4 and 5). Levels of IL-12, 
IL-2, IL-2R, IL-15, FGF and HGF decreased with age in 
both groups. IFN-γ, IL-17, IL-13, IL-4, IL-5, MIG and 
G-CSF only decreased in the infected subjects, with 
some of the analytes slightly increasing in the elderly. 
Although not statistically significant, other analytes 
also showed a decreasing trend with respect to age in 
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the infected group like IFN-α, IL-10, IL-15 and GM-
CSF. The most marked drop in concentrations was 
always between age 2 and 10  years old. RANTES lev-
els increased with age in both groups. Eotaxin and 
IP-10 profiles showed a U-shape with higher values 
in the groups < 2  years and > 60  years old. A trend of 
U-shape was also observed for some other analytes like 
the  TH2 cytokines IL-4, IL-5, IL-13 and the G-CSF in 
the infected group. Overall, the children and the elderly 
showed opposite patterns for some cytokines but simi-
lar for others, reflecting the intrinsic characteristics of 
the immune system in these two age groups and sug-
gesting a process of immunosenescence in the older 
one. 

The interaction of age with year on analyte concen-
trations was assessed, and statistically significant inter-
actions were found for eotaxin and VEGF in infected 
individuals, and IL-6, MCP-1, EGF, G-CSF, HGF and 
VEGF in uninfected individuals (Additional file  1: 
Table S3 and Additional file 5), however, after correcting 
by multiple testing significance disappeared (Additional 
file 1: Table S3).

Effect of sex
Sex did not have an effect on analyte concentrations in 
either infected or uninfected subjects (Additional file  1: 
Table S4). However, an interaction of sex with year was 
found for RANTES and GM-CSF concentrations in 

Fig. 1 Differences in IgG levels against apical membrane protein-1 (AMA-1) and merozoite surface protein-1 (MSP-142) between 2010 and 2013 
in each of the age groups (a) and stratifying by P. falciparum infection detected by qPCR (b). Box plots representing the median and interquartile 
range of IgG levels  (log10 OD) measured by ELISA. a Shows an increase of IgGs to both antigens along age groups within each cross-sectional (p 
trend < 0.001in all four cases). In (a) and (b) levels between years were compared by Wilcoxon rank-sum test (adjusted p-values for multiple testing 
by the Holm approach < 0.05 are shown)



Page 8 of 21Aguilar et al. Malar J          (2019) 18:406 

infected individuals (p-values = 0.002 and 0.041, respec-
tively), although the significance was only maintained 
for RANTES after adjusting for multiple comparisons. 
RANTES presented higher levels in males compared to 
females in 2010, but the opposite was observed in 2013 
(Additional file 6). Sex and year interactions were found 
in uninfected individuals for TNF, IFN-γ and IL-4, 
although they were not significant after adjusting for 
multiple testing (Additional file  1: Table  S4 and Addi-
tional file 6).

Effect of neighbourhood
The neighbourhood had an effect on analyte concentra-
tions only in the uninfected subjects (Fig. 6), with lower 
levels of several of them (IL-1β, IL-1RA, IL-6, IFN-α, 
IL-8, MCP-1, MIP-1α, MIP-1β and VEGF) in Palmeira 
and Taninga, and a trend of higher levels in Ilha Josina 
and Maragra; and the opposite trend for RANTES. No 
effect was observed in infected individuals (Additional 
file  7). However, the neighbourhood only interacted 

with year for IL-5 and FGF in the infected individuals, 
and the interaction only remained significant for FGF 
after adjusting by multiple testing (Additional file  1: 
Table S5).

Effect of parasitaemia on analyte concentrations
Among P. falciparum-infected subjects, parasite den-
sity had an effect on different analytes (Table 4). IL-10, 
IL-2R, IL-12 and MCP-1 increased with higher para-
sitaemia, and IFN-γ, IL-13, IL-5, IL-7 and eotaxin 
decreased with increasing  parasitaemia (Table  4). The 
effect only remained significant for IL-10, IL-13 and 
IL-2R when adjusting for multiple testing. The effect 
of parasitaemia on IL-10 and GM-CSF was differ-
ent by year (Table  4 and Additional file  8). However, 
after adjusting for multiple testing, interaction only 
remained statistically significant for IL-10, showing a 
stronger correlation with parasitaemia in 2013 com-
pared to 2010.

Table 2 Description of Plasmodium falciparum infected and uninfected study participants (defined by qPCR)

Continuous variables were analysed using the non-parametric Wilcoxon rank-sum test. Comparisons between groups for categorical variables were done using 
Fisher’s exact test. Parasite densities were  log10 transformed

Infected (by qPCR) Uninfected (by qPCR)

2010 2013 p‑value 2010 2013 p‑value

N 96 65 138 78

Age [median (IQR)] 9.79 (3.61–35.89) 10.06 (3.31–27.64) 0.462 28.4 (5.86–64.03) 7.18 (3.28–36.38) 0.002

Age group (%) 0.737 0.016

 < 2 years 8 (8.3) 10 (15.4) 15 (10.9) 14 (17.9)

 2–5 years 29 (30.2) 16 (24.6) 15 (10.9) 15 (19.2)

 5–10 years 12 (12.5) 6 (9.2) 15 (10.9) 14 (17.9)

 10–20 years 15 (15.6) 12 (18.5) 0 (0.0) 1 (1.3)

 20–60 years 23 (24.0) 16 (24.6) 45 (32.6) 18 (23.1)

 > 60 years 9 (9.4) 5 (7.7) 48 (34.8) 16 (20.5)

Male (%) 42 (43.8) 31 (47.7) 0.632 49 (35.5) 33 (42.3) 0.381

Anaemia (%) 47 (49.0) 28 (43.1) 0.521 79 (57.2) 39 (50.0) 0.322

Area (%) 0.002 < 0.001

 Ilha Josina 19 (19.8) 19 (29.2) 23 (16.7) 4 (5.1)

 Malavele 7 (7.3) 9 (13.8) 12 (8.7) 11 (14.1)

 Manhiça 26 (27.1) 11 (16.9) 45 (32.6) 25 (32.1)

 Maragra 30 (31.2) 6 (9.2) 51 (37.0) 15 (19.2)

 Palmeira 11 (11.5) 16 (24.6) 4 (2.9) 17 (21.8)

 Taninga 3 (3.1) 4 (6.2) 3 (2.2) 6 (7.7)

Par. dens. qPCR (parasites/
µL) [median (IQR)]

10.46 (1.61–102.94) 7.61 (1.43–299.84) 0.999 NA NA

Clinical malaria (%) 0.026 NA NA

 No 93 (96.9) 55 (84.6)

 Yes 3 (3.1) 8 (12.3)

 NA 0 (0.0) 2 (3.1)
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Fig. 2 Differences in analyte concentrations between 2010 and 2013 stratified by infection. Radar charts representing the medians of each analyte 
concentration  (log10 pg/mL) in 2010 and 2013 and stratifying in infected and uninfected subjects. Levels into each group have been compared 
between years by Wilcoxon rank-sum test and p-values were adjusted for multiple testing by the Benjamini–Hochberg approach. Statistically 
significant differences between years are highlighted with an asterisk

Fig. 3 Differences in analytes concentrations between P. falciparum-infected and uninfected subjects stratified by year. Radar charts representing 
the medians of each analyte concentration  (log10 pg/mL) in infected and uninfected subjects and stratifying by year. Levels between infected 
and uninfected subjects into each year have been compared by Wilcoxon rank-sum test and p-values were adjusted for multiple testing by the 
Benjamini–Hochberg approach. Statistically significant differences between infected and uninfected subjects are highlighted with an asterisk
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Adjusted effect of year on cytokine, chemokine 
and growth factor concentrations
The effect of the year on analyte concentrations was 
also assessed in regression models adjusting by age 
and neighbourhood. Results were similar to the unad-
justed analyses, with lower levels of almost the same 
analytes in 2013 compared to 2010 in infected and 
uninfected volunteers, and RANTES showing an 

opposite pattern (Table  5). Analytes that were lower 
in 2013 in infected and non-infected individuals were: 
the pro-inflammatory cytokines IL-1β, IL-1RA, TNF, 
IL-6; the  TH1 cytokine IL-2R; the anti-inflammatory 
cytokine IL-10; the  TH2 cytokine IL-13; the regula-
tory cytokine IL-7; the chemokines IL-8, IP-10, MCP1, 
MIP-1α and MIP-1β; and the growth factors EGF, 
G-CSF, GM-CSF, HGF and VEGF. The regulatory or 

Fig. 4 Differences in concentrations of cellular immune mediators between age groups in P. falciparum-infected subjects from both years 
combined. Box plots representing the median and interquartile range of each analyte concentration  (log10 pg/mL) in infected subjects stratified 
by age group. Levels between age groups have been compared by Kruskal–Wallis test. P-values were adjusted for multiple testing using the 
Benjamini–Hochberg approach
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 TH1-related cytokine IL-15 and the growth factor FGF 
were lower in 2013 only in the infected subjects. In 
the non-infected individuals, there were some addi-
tional analytes also with lower levels in 2013: the 

pro-inflammatory cytokine IFN-α, the  TH1 cytokine 
IL-12, and the  TH2 cytokine IL-4.

Fig. 5 Differences in concentrations of cellular immune mediators between age groups in uninfected subjects from both years combined. Box 
plots representing the median and interquartile range of each analyte concentration  (log10 pg/mL) in uninfected subjects stratified by age group. 
Levels between age groups have been compared by Kruskal–Wallis test. P-values were adjusted for multiple testing using the Benjamini–Hochberg 
approach
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Discussion
In spite of significant reductions in the burden of 
malaria over the last 10  years [43], scarce monitor-
ing has been done on the impact on malaria immu-
nity. Mozambique is one of the countries with the 
highest malaria burden in the world, although there 
are increasing efforts to move towards elimination in 
southern provinces [44]. Malaria burden decreased in 
all provinces from a malaria incidence rate over 6 mil-
lion in 2007 to 3 million in 2011, but an increase was 

observed again in 2012 reaching near 6 million in 2014 
[32, 33, 45]. In this study, the association of shifting 
epidemiological patterns with the systemic cellular 
immune profiles, with or without a current infection, 
was assessed through quantification of several plasma 
cytokines, chemokines and growth factors.

Previous studies have found that the balance between 
pro-inflammatory and anti-inflammatory cytokines 
determines host protection and injury [22, 46, 47], and 
the same for growth factors and chemokines [48, 49]. 

Fig. 6 Differences in concentrations of cellular immune mediators between areas in uninfected subjects. Box plots representing the median and 
interquartile range of each analyte concentration  (log10 pg/mL) in uninfected subjects stratified by neighbourhood. Levels between areas have 
been compared by Kruskal–Wallis test. p-values were adjusted for multiple testing using the Benjamini–Hochberg approach
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Given the importance of these proteins in the immune 
response and the consequent control of immunopathol-
ogy, it was hypothesized that they could be importantly 
affected by changes in MTI. Results from this study show 
that in both infected and uninfected subjects most of 
the analytes were at higher concentrations in 2010 than 
2013, suggesting the possibility of a blunted cytokine 
response with higher MTI, which could be associated to 
host tolerance. Albeit weakly, analytes were negatively 
associated with antibody markers of malaria exposure, 

further suggesting a blunted response with higher expo-
sure. For some analytes, the correlations with antibod-
ies differed by year, indicating a different regulation of 
the cellular response. The higher cytokine, chemokine 
and growth factor levels in 2010 could be related to 
a loss of immune tolerance after a decline in MTI, and 
their lower levels in 2013 could be indicative of a rapid 
re-establishment of tolerance as a consequence of more 
continuous exposure. Thus, these cellular immune 
mediators could be candidate surrogates of MTI and the 

Table 4 Effect of parasite density (qPCR) on cellular immune mediators concentrations and interaction with year

The effect of parasite density on analytes concentrations was assessed through multivariable linear regressions for each analyte, with analyte concentration as 
outcome (pg/mL) and parasitaemia as the predictor variable. Interaction tests were performed to determine if there was an interaction of parasite density with year 
on the analyte levels. BH: p-values adjusted for multiple testing by Benjamini–Hochberg

P-values < 0.05 are in italic

CI confidence intervals

Analyte Parasite density by qPCR

Coefficient (CI) p‑value p‑value BH p‑value interaction p‑value 
interaction 
BH

IL-1β − 0.076 (− 0.186, 0.034) 0.176 0.377 0.296 0.902

IL-1RA 0.002 (− 0.053, 0.057) 0.945 0.945 0.143 0.860

TNF − 0.072 (− 0.149, 0.006) 0.069 0.207 0.764 0.916

IL-6 0.017 (− 0.122, 0.157) 0.805 0.894 0.274 0.902

IFN-α − 0.015 (− 0.041, 0.011) 0.252 0.472 0.883 0.916

IFN-γ − 0.025 (− 0.049, − 0.001) 0.045 0.151 0.470 0.916

IL-12 0.03 (0.007, 0.053) 0.010 0.076 0.894 0.916

IL-17 − 0.046 (− 0.1, 0.008) 0.097 0.266 0.409 0.916

IL-10 0.157 (0.098, 0.216) < 0.001 <0.001 <0.001 0.002

IL-13 − 0.057 (− 0.095, − 0.018) 0.004 0.040 0.772 0.916

IL-4 − 0.029 (− 0.074, 0.016) 0.207 0.414 0.912 0.916

IL-5 − 0.07 (− 0.126, − 0.014) 0.015 0.090 0.515 0.916

IL-2 − 0.022 (− 0.066, 0.023) 0.338 0.590 0.753 0.916

IL-2R 0.053 (0.021, 0.085) 0.001 0.018 0.898 0.916

IL-15 − 0.016 (− 0.063, 0.031) 0.506 0.732 0.819 0.916

IL-7 − 0.193 (− 0.354, − 0.032) 0.019 0.094 0.785 0.916

Eotaxin − 0.04 (− 0.079, − 0.002) 0.040 0.148 0.179 0.896

IL-8 − 0.053 (− 0.18, 0.075) 0.414 0.653 0.301 0.902

IP-10 0.024 (− 0.027, 0.074) 0.354 0.590 0.799 0.916

MCP1 0.041 (0.002, 0.081) 0.039 0.148 0.443 0.916

MIG 0.035 (− 0.011, 0.081) 0.134 0.334 0.276 0.902

MIP-1α − 0.027 (− 0.128, 0.074) 0.594 0.742 0.500 0.916

MIP-1β − 0.004 (− 0.107, 0.098) 0.933 0.945 0.093 0.697

RANTES − 0.01 (− 0.044, 0.024) 0.561 0.732 0.896 0.916

EGF − 0.015 (− 0.089, 0.059) 0.683 0.820 0.916 0.916

FGF − 0.007 (− 0.125, 0.112) 0.911 0.945 0.734 0.916

G-CSF − 0.009 (− 0.035, 0.018) 0.522 0.732 0.366 0.916

GM-CSF − 0.05 (− 0.117, 0.018) 0.147 0.339 0.028 0.424

HGF 0.007 (− 0.035, 0.049) 0.733 0.846 0.712 0.916

VEGF 0.023 (− 0.055, 0.101) 0.560 0.732 0.076 0.697
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Table 5 Effect of 2013 compared to 2010 on analyte concentrations in infected and uninfected individuals

Analytes Coefficient (CI) p‑value p‑value BH Coefficient (CI) adjusted p‑value adjusted* p‑value BH 
adjusted*

Infected

 IL-1β − 1.248 (− 1.463, − 1.034) < 0.001 < 0.001 − 1.311 (− 1.543, − 1.079) < 0.001 < 0.001

 IL-1RA − 0.638 (− 0.743, − 0.534) < 0.001 < 0.001 − 0.67 (− 0.781, − 0.559) < 0.001 < 0.001

 TNF − 0.666 (− 0.842, − 0.49) < 0.001 < 0.001 − 0.678 (− 0.867, − 0.489) < 0.001 < 0.001

 IL-6 − 1.945 (− 2.144, − 1.746) < 0.001 < 0.001 − 2.023 (− 2.239, − 1.807) < 0.001 < 0.001

 IFN-α − 0.025 (− 0.093, 0.043) 0.470 0.486 − 0.026 (− 0.097, 0.046) 0.481 0.505

 IFN-γ − 0.036 (− 0.099, 0.028) 0.268 0.321 − 0.039 (− 0.103, 0.026) 0.235 0.293

 IL-12 − 0.035 (− 0.096, 0.027) 0.265 0.321 − 0.029 (− 0.092, 0.033) 0.358 0.410

 IL-17 − 0.147 (− 0.288, − 0.006) 0.041 0.057 − 0.149 (− 0.295, − 0.002) 0.047 0.064

 IL-10 − 0.227 (− 0.391, − 0.063) 0.007 0.010 − 0.235 (− 0.407, − 0.063) 0.008 0.012

 IL-13 − 0.119 (− 0.22, − 0.017) 0.022 0.031 − 0.149 (− 0.252, − 0.046) 0.005 0.009

 IL-4 − 0.076 (− 0.193, 0.042) 0.205 0.267 − 0.073 (− 0.196, 0.051) 0.245 0.295

 IL-5 − 0.018 (− 0.167, 0.132) 0.815 0.815 − 0.033 (− 0.187, 0.121) 0.673 0.673

 IL-2 − 0.064 (− 0.181, 0.052) 0.278 0.321 − 0.056 (− 0.177, 0.066) 0.369 0.410

 IL-2R − 0.126 (− 0.21, − 0.042) 0.003 0.006 − 0.123 (− 0.202, − 0.043) 0.003 0.005

 IL-15 − 0.182 (− 0.302, − 0.063) 0.003 0.006 − 0.168 (− 0.294, − 0.043) 0.009 0.013

 IL-7 − 0.819 (− 1.228, − 0.411) < 0.001 < 0.001 − 0.858 (− 1.279, − 0.436) < 0.001 < 0.001

 Eotaxin − 0.043 (− 0.145, 0.058) 0.401 0.430 − 0.066 (− 0.173, 0.04) 0.221 0.288

 IL-8 − 1.769 (− 1.956, − 1.582) < 0.001 < 0.001 − 1.868 (− 2.067, − 1.669) < 0.001 < 0.001

 IP-10 − 0.242 (− 0.369, − 0.116) < 0.001 0.001 − 0.227 (− 0.36, − 0.094) 0.001 0.002

 MCP1 − 0.29 (− 0.384, − 0.196) < 0.001 < 0.001 − 0.284 (− 0.385, − 0.182) < 0.001 < 0.001

 MIG − 0.061 (− 0.181, 0.059) 0.313 0.348 − 0.044 (− 0.169, 0.081) 0.488 0.505

 MIP-1α − 1.14 (− 1.335, − 0.946) < 0.001 < 0.001 − 1.2 (− 1.41, − 0.991) < 0.001 < 0.001

 MIP-1β − 1.413 (− 1.565, − 1.26) < 0.001 < 0.001 − 1.454 (− 1.622, − 1.287) < 0.001 < 0.001

 RANTES 0.143 (0.056, 0.23) 0.001 0.003 0.109 (0.018, 0.201) 0.019 0.027

 EGF − 0.61 (− 0.778, − 0.442) < 0.001 < 0.001 − 0.684 (− 0.858, − 0.511) < 0.001 < 0.001

 FGF − 0.754 (− 1.04, − 0.467) < 0.001 < 0.001 − 0.935 (− 1.222, − 0.648) < 0.001 < 0.001

 G-CSF − 0.1 (− 0.169, − 0.032) 0.004 0.006 − 0.096 (− 0.167, − 0.026) 0.008 0.012

 GM-CSF − 0.291 (− 0.462, − 0.12) 0.001 0.002 − 0.345 (− 0.524, − 0.167) < 0.001 < 0.001

 HGF − 0.16 (− 0.268, − 0.053) 0.004 0.006 − 0.154 (− 0.261, − 0.046) 0.005 0.009

 VEGF − 0.913 (− 1.057, − 0.769) < 0.001 < 0.001 − 0.967 (− 1.118, − 0.816) < 0.001 < 0.001

Uninfected

 IL-1β − 2.586 (− 2.949, − 2.223) < 0.001 < 0.001 − 2.551 (− 2.961, − 2.14) < 0.001 < 0.001

 IL-1RA − 0.501 (− 0.597, − 0.406) < 0.001 < 0.001 − 0.523 (− 0.628, − 0.418) < 0.001 < 0.001

 TNF − 0.684 (− 0.877, − 0.49) < 0.001 < 0.001 − 0.699 (− 0.917, − 0.48) < 0.001 < 0.001

 IL-6 − 2.876 (− 3.129, − 2.623) < 0.001 < 0.001 − 2.878 (− 3.162, − 2.595) < 0.001 < 0.001

 IFN-α − 0.291 (− 0.344, − 0.239) < 0.001 < 0.001 − 0.288 (− 0.347, − 0.23) < 0.001 < 0.001

 IFN-γ 0.002 (− 0.076, 0.08) 0.960 0.960 − 0.001 (− 0.087, 0.085) 0.975 0.975

 IL-12 − 0.129 (− 0.19, − 0.068) < 0.001 < 0.001 − 0.158 (− 0.217, − 0.098) < 0.001 < 0.001

 IL-17 0.072 (− 0.085, 0.228) 0.369 0.410 0.054 (− 0.121, 0.229) 0.544 0.628

 IL-10 − 0.391 (− 0.53, − 0.251) < 0.001 < 0.001 − 0.376 (− 0.532, − 0.221) < 0.001 < 0.001

 IL-13 − 0.264 (− 0.404, − 0.123) < 0.001 < 0.001 − 0.272 (− 0.432, − 0.112) 0.001 0.001

 IL-4 − 0.245 (− 0.342, − 0.148) < 0.001 < 0.001 − 0.233 (− 0.34, − 0.125) < 0.001 < 0.001

 IL-5 0.046 (− 0.086, 0.178) 0.493 0.510 0.066 (− 0.083, 0.215) 0.386 0.464

 IL-2 0.076 (− 0.13, 0.282) 0.467 0.501 0.012 (− 0.201, 0.224) 0.914 0.946

 IL-2R − 0.12 (− 0.247, 0.007) 0.064 0.087 − 0.195 (− 0.319, − 0.072) 0.002 0.003

 IL-15 − 0.22 (− 0.546, 0.106) 0.184 0.224 − 0.356 (− 0.711, − 0.001) 0.050 0.062

 IL-7 − 0.868 (− 1.188, − 0.549) < 0.001 < 0.001 − 0.917 (− 1.264, − 0.579) < 0.001 < 0.001

 Eotaxin − 0.081 (− 0.177, 0.015) 0.099 0.129 0.011 (− 0.089, 0.112) 0.824 0.883
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associated host susceptibility and tolerance deserving 
further investigation.

Recent studies suggest that repeated exposure to P. 
falciparum leads to the establishment of tolerance [4], 
which may be associated with the loss and/or altered 
function of several immune cell types, including γδ T 
cells [5], αβ T cells [50–52], B cells [53], and myeloid cells 
[54] that show less proliferation and cytokine production 
[5]. In addition, malaria exposure also induces changes 
in the innate immune response [55, 56]. A recent study 
identifies individuals who are primed to respond favora-
bly to P. falciparum infection by controlling inflamma-
tory symptoms (disease tolerance) and parasitaemia [57]. 
Accordingly, the lower levels of cytokines, chemokines 
and growth factors observed with increasing MTI could 
be reflecting a more controlled cellular response attrib-
uted to some degree of immuno-tolerance. In agreement 
with these results, a recent study in children with clini-
cal malaria from Ghana reported a decrease of several 
cytokines with increasing MTI [58].

Another study showed diminished cytokine response 
with age in children, in part probably due to increased 
exposure, which could also be indicative of tolerogenic 
mechanisms [59]. A  decrease in MTI is usually fol-
lowed by a  delayed acquisition of immunity to clinical 
and severe disease; data from a health facility in one of 
the higher endemic areas of Manhiça confirm that after 
years of sustained decrease in malaria incidence, there 

is an increase in the mean age of clinical malaria events 
and severe forms of disease [60]. Accordingly, a study 
on infected pregnant women from Manhiça between 
2003 and 2012, showed a decrease of antibodies against 
P. falciparum and an increase of malaria adverse conse-
quences after the decline of MTI [61]. Interestingly, in 
the present study, the differing cytokine, chemokine and 
growth factor levels detected in the non-infected indi-
viduals between 2010 and 2013 suggests that the impact 
of MTI could be beyond the response to P. falciparum 
infection at the time of the survey, suggesting that the 
rate of previous exposures could shape the basal immu-
nological status. This difference in the basal immune 
system agrees with the observation by Tran et  al. [57] 
of a marked different transcriptomic and cellular pro-
files between malaria-protected and malaria-susceptible 
children prior to Plasmodium infection. This study also 
suggests that previous exposure to malaria, and possibly 
other pathogens or commensals, shape the basal immune 
system.

In the same line, a previous study by our group in 
semi-immune African adults, migrants and Euro-
pean travellers, showed that naïve adults had stronger 
cytokine responses upon infection than semi-immune 
adults; and that migrants, in the absence of continuous 
exposure, presented higher concentrations of cytokines 
and chemokines than semi-immune individuals, but 
lower than individuals with a first infection [11]. There, 

The effect of year on analyte concentrations was assessed through univariable l and multivariable (adjusted models) separate linear regressions for each analyte, 
with analyte concentration (pg/mL) as outcome and year (2013 vs 2010) as the predictor variable. The analysis is presented separately for the infected and uninfected 
subjects. BH: P-values adjusted for multiple testing by Benjamini–Hochberg

P-values < 0.05 are in italic

CI confidence intervals

* Adjusted by age group and area

Table 5 (continued)

Analytes Coefficient (CI) p‑value p‑value BH Coefficient (CI) adjusted p‑value adjusted* p‑value BH 
adjusted*

 IL-8 − 2.096 (− 2.287, − 1.904) < 0.001 < 0.001 − 2.127 (− 2.339, − 1.916) < 0.001 < 0.001

 IP-10 − 0.343 (− 0.436, − 0.25) < 0.001 < 0.001 − 0.337 (− 0.441, − 0.233) < 0.001 < 0.001

 MCP1 − 0.527 (− 0.615, − 0.44) < 0.001 < 0.001 − 0.515 (− 0.614, − 0.416) < 0.001 < 0.001

 MIG − 0.076 (− 0.215, 0.062) 0.279 0.322 − 0.033 (− 0.186, 0.12) 0.673 0.748

 MIP-1α − 1.267 (− 1.442, − 1.093) < 0.001 < 0.001 − 1.299 (− 1.497, − 1.101) < 0.001 < 0.001

 MIP-1β − 1.484 (− 1.629, − 1.349 < 0.001 < 0.001 − 1.478 (− 1.638, − 1.319) < 0.001 < 0.001

 RANTES 0.129 (0.05, 0.209) 0.002 0.002 0.164 (0.087, 0.241) < 0.001 < 0.001

 EGF − 1.555 (− 1.855, − 1.255) < 0.001 < 0.001 − 1.682 (− 2.004, − 1.359) < 0.001 < 0.001

 FGF − 0.201 (− 0.499, 0.098) 0.187 0.224 − 0.336 (− 0.662,− 0.011) 0.043 0.056

 G-CSF − 0.211 (− 0.307, − 0.114) < 0.001 < 0.001 − 0.236 (− 0.341, − 0.131) < 0.001 < 0.001

 GM-CSF − 0.195 (− 0.354, − 0.036) 0.017 0.024 − 0.195 (0.374, − 0.016) 0.033 0.045

 HGF − 0.29 (− 0.364, − 0.215) < 0.001 < 0.001 − 0.305 (− 0.386, − 0.225) < 0.001 < 0.001

 VEGF − 1.887 (− 2.159, − 1.614) < 0.001 < 0.001 − 1.938 (− 2.235, − 1.641) < 0.001 < 0.001
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increased levels of IL-2, IFN-γ, IL-8 and IL-5 were associ-
ated with loss of exposure to P. falciparum [11]. Similarly, 
in the present study, higher levels of IL-8 were observed 
in 2010. In addition, increased levels of IL-6 and IL-10, 
and decreased levels of RANTES were detected in 2010; 
these three cytokines have been associated with severe 
malaria [22, 47, 62]. Several studies indicate a strong 
positive role of RANTES against Plasmodium species 
susceptibility [63, 64] and malaria severity [21], being 
down-regulated in severe malaria compared to uncom-
plicated malaria [65]. This immunomodulatory role of 
RANTES reducing the pathogenesis of malaria would 
agree with this chemokine being at lower levels in the 
lower MTI period in which a loss of immune-tolerance is 
hypothesized.

Despite the lower cellular immune mediators observed 
in 2013, infected individuals showed higher levels of sev-
eral cytokines and chemokines compared to the unin-
fected ones, differences that were not observed in 2010; 
among them, the pro-inflammatory cytokines IFN-α, 
IL-1β and IL-6, the chemokines IL-8, MCP-1, MIP-1α 
and MIP-1β and the growth factor VEGF. This may 
be related to the lower basal levels of cellular immune 
mediators in 2013 compared to 2010. In 2010, basal 
levels of cellular mediators were so high that infections 
might have not been able to induce further increases; 
whereas in 2013, cytokine, chemokine and growth factor 
basal levels were low and infections increased them sig-
nificantly, though still below the basal levels from 2010. 
This observation supports the hypothesis of a more con-
trolled, non-harmful cellular immune response upon re-
infection in 2013.

Despite the overall decrease in cellular immune medi-
ators in 2013, a higher prevalence of clinical malaria 
(12%) was registered compared to 2010 (3%) among the 
infected individuals, similar to the prevalence in the 
surveys (18/162 vs 3/106). However, the total number 
of clinical malaria cases was low, and clinical malaria 
depends not only on tolerogenic responses but also on 
anti-parasite immunity. During lower MTI periods there 
is a delay in the acquisition of immunity in younger chil-
dren and a reduction in premunition in older children 
and adults; thus, in the context of a sudden increase of 
MTI, anti-parasite immunity may be acquired slower 
than tolerogenic responses. It is likely that a higher num-
ber of clinical cases would have been observed in 2013 
had some level of tolerance not been developed.

As expected, among the infected individuals the level of 
parasitaemia affected several analytes, some of them sim-
ilar to previous reports [11, 66]. Interestingly, a different 
effect of parasitaemia on IL-10 and GM-CSF was found 
depending on the year, reinforcing the idea of different 

cellular immune responses at different MTIs. A differ-
ent effect of parasitaemia on cytokine levels depending 
on MTI was also recently reported [58], with several 
cytokines correlating with parasitaemia only in the lower 
MTI area.

Age-related differences in immunity are suggested to 
also explain the different susceptibility to malaria dis-
ease in children vs adults [67] independently of cumula-
tive exposure [8, 68]. Previous studies showed that adult 
newcomers into a hyperendemic area developed NAI 
relatively quickly while their children remained suscep-
tible, suggesting that age is relevant for NAI develop-
ment. NAI against malaria may also be diminished at 
older ages because of changes in the immune system, 
known as immunosenescence, which contribute to make 
elderly more susceptible to infections, cancer and auto-
immunity. For example, there is a decline in the output of 
regulatory T cells after the age of 50 [69, 70] and altered 
cytokine levels have been observed [71, 72]. How immu-
nosenescence may affect the acquired protection against 
malaria is still unknown, and the impact of changing 
MTI could be different. Interestingly, results from this 
study show that different cellular immune mediators 
present diverse age patterns, and some were different 
in different MTI periods while others not. For example, 
the  TH1 cytokines IL-2, IL-12 and IL-2R and the  TH1 
related IL-15 decreased continuously with age; while 
eotaxin, IP-10 and the  TH2 cytokines IL-13, IL-4 and 
IL-5 presented a U-shape, i.e. higher levels in children 
and the elderly and lower levels in young adults. Previ-
ous studies have shown that some cytokines increase in 
the elderly [72], while others seem to decrease [70, 73], 
but none of the cytokines were the same observed in this 
study. A U-shape suggests similarities between the chil-
dren and elderly immune systems. High levels of some 
analytes in the age 1-2 years old group could be related 
to a lower immunity due to previous lack of exposure to 
malaria, but also to the intrinsic different characteristics 
of the immune system in early life. High levels of some 
analytes in the elderly could be related to the process of 
immunosenescence that may cause loss of anti-disease 
immunity, therefore behaving similar to a first infection 
or like a less exposed population presenting higher cel-
lular responses upon re-challenge [74].

Previous studies have also shown that the severity of 
malaria infection differs between males and females 
[75], with men developing more severe parasitaemia 
and pathology than women [76]. In addition, it has been 
described that in general women produce more intense 
humoral and cell-mediated immune responses than 
males [77, 78]. However, no effect of sex was observed 
on the analyte concentrations in either infected or 
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uninfected subjects, although a sex interaction was found 
with year for TNF, IFN-γ, IL-4, RANTES and GM-CSF, 
the impact of which is difficult to interpret. MTI is also 
expected to present spatial heterogeneities due to social 
and natural factors [79] but here the neighbourhood did 
not have an effect on the association between year and 
cytokine, chemokine or growth factor levels.

There are some limitations in this study that could 
have affected the results. First of all, the different stor-
age times for plasma samples collected in 2010 vs 
samples collected in 2013, which may have differently 
affected the cytokine concentrations. However, stor-
age time tends to decrease the concentration of most of 
the cytokines [80]. Therefore, if there was any general 
storage effect, it would have been in the opposite direc-
tion of what was observed. Secondly, total cytokines 
in plasma samples were measured instead of cytokines 
produced by peripheral blood mononuclear cells 
(PBMCs) upon in vitro stimulations with malaria anti-
gens, which limits the interpretation of malaria-spe-
cific responses. However, PBMCs were not available. 
Third, many comparisons were performed and despite 
adjusting for multiple testing, some of the significant 
differences may be false positives. Nevertheless, many 
consistent and biologically feasible associations of cel-
lular mediators with MTI were found. Fourth, the HIV 
serostatus of the study participants was not known, and 
the study area has a high HIV prevalence [81] which 
may be affecting the results. Finally, it is important to 
keep in mind that the average rainfall before 2013 sur-
vey doubled that before 2010 survey, therefore expo-
sure to infections other than malaria or hydration of 
study subjects may also vary between years, affecting 
the systemic homeostatic profile of the inhabitants and 
their basal immune activation and analyte concentra-
tions, thus it may have influenced or confounded the 
results. However, the higher P. falciparum IgG levels in 
2013 compared to 2010 across all age groups and nega-
tive correlations with cellular immune mediators sug-
gests that P. falciparum exposure could be driving the 
changes described. Future studies should have a longi-
tudinal design and comprise different MTI periods to 
address the role of cellular immune mediators as sur-
rogates of MTI and tolerance/susceptibility to malaria. 
In addition, controlling for other factors influencing the 
basal immune system would also be important. Under-
standing the mechanisms of longevity of immunity and 
tolerance may help in developing approaches to pro-
mote long-lasting anti-disease immunity, even after 
sustained interrupted exposure, which could be used in 
areas of low MTI and in elimination campaigns.

Conclusions
Cytokine, chemokine and growth factor profiles varied 
between years of different MTIs in P. falciparum infected 
and non-infected individuals, which could be related to a 
loss of immune tolerance when MTI declines and a rapid 
re-establishment of immune tolerance after an increase 
in P. falciparum exposure. This finding warrants further 
investigations on plasma cellular immune mediators as 
potential surrogate candidates of MTI and the associated 
host susceptibility and tolerance.
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